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Efficient symmetry-preserving state preparation circuits
for the variational quantum eigensolver algorithm
Bryan T. Gard 1*, Linghua Zhu1, George S. Barron 1, Nicholas J. Mayhall 2, Sophia E. Economou1 and Edwin Barnes1

The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy
intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-
qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the
problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the
best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and
time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate
symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to
construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit
decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the H2

and LiH molecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.
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INTRODUCTION
Quantum simulation of fermionic systems, such as molecules, is
one of the first envisioned applications of quantum computers, as
famously proposed by Feynman.1 The first protocol introduced for
quantum chemistry simulations is based on the so-called phase
estimation algorithm.2,3 This algorithm however requires a large
number of quantum gates, leading to long quantum circuits that
are challenging for existing and near-term noisy intermediate
scale quantum (NISQ) devices.4,5 For such devices, alternative,
hybrid algorithms are instead envisioned. In such algorithms, the
work is shared between a quantum processor and a classical
computer. In particular, the variational quantum eigensolver (VQE),
first introduced and demonstrated experimentally by Peruzzo
et al.,6 has become the prevailing algorithm for chemistry
simulations with NISQ devices, with several milestone papers
demonstrating the calculation of molecular energies and wave-
functions.7–12

The VQE algorithm relies on preparing and measuring multi-
qubit states based on a variational ansatz, and using the classical
computer to optimize and update the variational parameters in
this ansatz. Some of the advantages of VQE are that its variational
character can provide some degree of error mitigation in the
gates,7,13–15 and that it features shallower circuits compared to the
phase estimation algorithm. The form of the ansatz is a crucial
ingredient of VQE and one that can determine its success on NISQ
devices. There are two main approaches in determining the
ansatz. One approach is based on a technique from chemistry, the
unitary coupled cluster method,16–18 translated into quantum
gates by Trotterization.18 This approach tends to lead to deeper
circuits than what is currently feasible on hardware, and is
generally not exact. To address these issues, a new, iterative
algorithm termed ADAPT-VQE, was recently put forward and was
shown to enable a much more compact ansatz while simulta-
neously exhibiting higher accuracy.19 An alternative approach is to
base the ansatz on the capabilities of the hardware and prepare
states by combining parameterized gates available on the

processor.8,20 Such an ansatz has the advantage of compatibility
with the capabilities of the hardware, and as such is NISQ-friendly.
On the other hand, in its simplest form it is an ad hoc ansatz that
can cause the algorithm to get stuck on ‘barren plateaus’21 as the
number of qubits increases and the Hilbert space correspondingly
grows exponentially. Therefore, for hardware-based ansätze to be
a viable approach for problems of interest, they must be selected
in a way that guarantees they span the part of the Hilbert space
where the solution lives, while avoiding generating unphysical
states.
Two ways to guarantee that the desired part of the Hilbert

space is accessed include adding terms in the VQE energy
function that penalize symmetry violations22,23 or carefully
designing state preparation circuits so that they only produce
states with the appropriate symmetries regardless of how their
variational parameters are chosen. An early step toward the latter
direction was taken by Wang et al.,24 who focused on the
preparation of states with a well-defined number of occupied spin
orbitals and showed that the number of CNOT gates required for
this scales polynomially with the number of qubits in the limit
where the number of electrons is much smaller than the number
of qubits. More recently, Barkoutsos et al.15 enforced particle
number conservation by using the particle-hole representation in
conjunction with a parametrized particle-conserving exchange-
type gate,25–28 which we also make use of here. However,
important open questions remain, including how other symme-
tries can also be built into the circuits and whether more efficient
circuits containing the minimal number of parameters necessary
to span the symmetry subspace exist.
In this paper, we address these questions by introducing state

preparation circuits that provide a systematic, economical way to
generate states with well-defined symmetries, including particle
number, total spin, spin projection, and time-reversal. Our circuits
incorporate the minimal number of parameters needed to fully
span the appropriate symmetry subspace while avoiding all states
outside this subspace. This general approach has two key
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advantages: the first is that the true ground state is guaranteed to
be contained within the space of states spanned by the circuit,
and the second is that resources are not spent on generating
irrelevant parts of the Hilbert space, reducing the complexity of
the classical optimization step of the VQE algorithm. Eliminating
extraneous parameters can dramatically speed up the optimiza-
tion process and suppress the probability of getting trapped in
local extrema or barren plateaus. We present circuits for arbitrary
numbers of single-particle orbitals and electrons and for arbitrary
spin quantum numbers. Our circuits are constructed with
hardware constraint considerations, including a reduced number
of CNOT gates that need only be applied between adjacent qubits
in a linear array, making our work particularly suited for NISQ
devices. In addition, since our construction conserves number and
spin symmetries, symmetry verification techniques can be used to
mitigate any errors which violate these symmetries.13,14,27 Our
most general circuits, which conserve particle number, time-
reversal, and spin symmetries, are guaranteed to span the
appropriate symmetry subspace by construction. We also present
circuits that conserve particle number and time-reversal symme-
tries, but not total spin; the symmetry-preserving properties of
these circuits are verified with numerical calculations. We test the
performance of our circuits against standard state preparation
ansätze by running VQE simulations of the H2 and LiH molecules.
We find that our circuits outperform the standard methods in
terms of both accuracy and circuit depth.
The paper is organized as follows. In the Results section, we

define the basic gate set we use to manipulate particle number on
the quantum processor and show how these gates can be
systematically assembled into circuits that preserve particle
number symmetry. We also discuss how to respect time-reversal
symmetry as well. In addition, in the Results section, we show how
to create circuits that respect total spin and spin projection
symmetries in addition to particle number. We give some
concluding remarks in the Discussion section. An appendix
contains additional details about gate decompositions.

RESULTS
Particle number and time-reversal symmetries
In this work, we focus on mapping chemistry problems onto
quantum processors using the Jordan-Wigner mapping,3,29 in
which each qubit in the quantum processor corresponds to a
particular spin-orbital, and the qubit states 0j i and 1j i encode the
occupation of that spin-orbital. Any multi-electron state involving
n spin-orbitals on the chemistry side can be mapped to a
corresponding state of n qubits on the quantum processor. In this
mapping, fixing the total number of electrons is tantamount to
fixing the total number of qubits that are in the excited state 1j i.
Thus, the Jordan-Wigner mapping relates fixed-particle-number
subspaces to fixed-excitation subspaces in the qubit Hilbert space.
Formally, we can define the qubit subspace corresponding to m

electrons occupying n spin-orbitals as

Hn;m ¼ span s1; s2; :::; snj ijsi 2 f0; 1g;
Xn
i¼1

si ¼ m

( )
: (1)

This is the subspace of multi-qubit states containing m qubits in
the 1j i state and n�m qubits in the 0j i state, so that
dim ðHn;mÞ ¼ n

m

� �
. A general state in this subspace can be

represented as an arbitrary superposition of these basis states
with complex coefficients and is thus characterized by
2 dim ðHn;mÞ � 2 real parameters, where we have removed two
parameters by fixing the normalization and neglecting a global
phase. In the absence of any other symmetries, 2 dim ðHn;mÞ � 2 is
the minimal number of real variational parameters needed to
prepare arbitrary trial states describing the correct number of
electrons.

An additional symmetry that often arises in chemistry problems
is time-reversal symmetry. This symmetry is typically present, for
example, when one wants to solve the stationary Schrödinger
equation in the absence of any applied magnetic field. In this case,
one can always choose the energy eigenstates to be strictly real
functions. Under the Jordan-Wigner mapping, this means that the
coefficients appearing in the multi-qubit superposition states we
prepare as trial states for the VQE algorithm should be restricted
to real values. This will reduce the dimensionality of the target
symmetry subspace by a factor of two down to dim ðHn;mÞ � 1.
Imposing this restriction on the trial states will prevent the
classical optimizer from wasting time exploring a large portion of
Hilbert space that does not contain any of the desired energy
eigenstates. When we introduce our state preparation circuits
below, we will see that time-reversal symmetry can be imposed
easily after other symmetries are already built into the circuits,
essentially just by fixing half of the variational parameters in the
circuits in such a way that the resulting states are strictly real.
Before we introduce our general scheme for constructing

particle-number-conserving state preparation circuits, we first
present a few simple examples that may provide some intuition
about the general structure of such circuits. First note that the
cases m ¼ 0 and m ¼ n are trivial since in each case, there is only
a single state spanning the subspace. Therefore, we restrict our
attention to 0 <m < n throughout this work. The simplest
nontrivial example is the case of m ¼ 1 electron in n ¼ 2 orbitals.
(Since we are presently only concerned with particle-number
symmetry, these could be spin-orbitals or spatial orbitals in the
case of spinless fermions. Spin symmetries will be incorporated in
the next section). A circuit that spans the corresponding subspace
H2;1 is shown in Fig. 1.
This circuit requires only two parameters to span the single-

excitation (one-electron) subspace, which is comprised of states of
the form α 01j i þ β 10j i. Here, although α and β are complex, they
contribute only two real parameters after we impose normal-
ization jαj2 þ jβj2 ¼ 1 and discard a global phase. The key
ingredient in this circuit is a two-qubit entangling gate that we
have denoted as Aðθ;ϕÞ. In the basis 00j i, 01j i, 10j i, 11j i, it is
defined as15

Aðθ;ϕÞ ¼

1 0 0 0

0 cos θ eiϕsin θ 0

0 e�iϕsin θ �cos θ 0

0 0 0 1

0
BBB@

1
CCCA: (2)

It is clear from the form of this exchange-type gate that it
preserves particle number since it mixes 01j i and 10j i but does
nothing to the 00j i; 11j i subspace. The initial X gate on the first
qubit in Fig. 1 brings the two-qubit state into the one-excitation
subspace, while the subsequent A gate generates all possible
superpositions within this subspace, as can be seen by inspection
in this case. If we wish to also impose time-reversal symmetry,
then it suffices to set ϕ ¼ 0 in each of the A gates. This removes
the phase from each coefficient in the resulting superposition
state without restricting the magnitude, thus ensuring that the
resulting state is an arbitrary real state. The A gate plays a central
role in our state preparation circuits. It can be decomposed into a
sequence of two single-qubit gates and three CNOT gates, as

Fig. 1 2-Qubit A circuit. A simple example of a 2 qubit circuit which
exactly spans the subspace defined by 1 excitation, α 01j i þ β 10j i,
with two parameters ðθ;ϕÞ. This circuit saturates the lower bound
on the number of real parameters required to construct arbitrary
states in H2;1.
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shown in Fig. 2. This decomposition is minimal in the number of
CNOT gates. In operator form, the A gate is

A ¼ e�
i
2ðπ2�ϕÞZ2e�

i
2ðθX1X2 þ θY1Y2 þ π

2Z1Z2Þe�
i
2ðπ2Z1 �ϕZ2Þ;

up to an irrelevant global phase.30

Building upon the example of Fig. 1, we find that we can
generate trial states corresponding to other particle and orbital
numbers using a similar construction.
Figure 3 shows another example circuit for the case of m ¼ 2

electrons in n ¼ 4 orbitals. In this case, we start with two X gates
to bring the state into the two-excitation subspace, and we then
apply a series of A gates between neighboring qubits to create
arbitrary superpositions within this subspace. In this example, an
arbitrary complex two-electron state is specified by 2 4

2

� �� 2 ¼ 10
real parameters. Since each A gate introduces two parameters,
one might expect that only five A gates would be needed to
generate an arbitrary state. However, we find that at least six A
gates are needed to do this, although two of the parameters can
be fixed to reduce the total parameter count back down to 10. We
can again impose time-reversal symmetry by setting all the ϕi
parameters to zero in the A gates, which reduces the parameter
count down to 6—one more than the minimal number of 5. To
remove this extra parameter, we find numerically that it works to
set either θ4 or θ5 to zero. Note that setting both θi and ϕi to zero
does not remove the ith A gate completely but instead reduces it
to a CZ gate, as is evident from Eq. (2).
To confirm that this and all other circuits presented in this

section indeed span the target subspace, we compute the fidelity
F ¼ 1

N

PN
i¼1jhΨijψiij2, where Ψij i is a random state within the

chosen subspace, and ψij i is the state output by our circuit after
we maximize jhΨi jψiij2 with respect to the variational parameters.
We check numerically that F ¼ 1 can be achieved using the
minimal number of parameters, 2 dimðHn;mÞ � 2. We choose
enough random states, N � dimðHn;mÞ, to ensure that the
subspace is adequately represented. This is how we determine
that, in the case of Fig. 3 with time-reversal symmetry, it works to
set θ4 or θ5 to zero, but setting other θ parameters to zero instead
does not achieve unit fidelity (although the fidelity still remains
very high). Further details about the numerical verification of our
circuits are given in the supplementary information.31

Although we have found a circuit that prepares all states in the
two-excitation subspace using the minimal number of variational
parameters (Fig. 3), this solution is neither unique nor optimal in
terms of the number of CNOT gates. To illustrate these points, we
present another circuit that accomplishes the same task in Fig. 4.
In addition to the A gate, this circuit also makes use of single-qubit
gates beyond just X gates. This example is quite different from the
one shown in Fig. 3 in that it does not first apply X gates to two

qubits in order to bring the quantum processor into the
appropriate particle-number subspace. Instead, the appropriate
subspace is approached gradually as the circuit is performed,
making it more challenging to understand and generalize the
circuit. Since each A requires three CNOT gates to implement, we
see that the circuit in Fig. 4 requires only 9 CNOT gates, while the
one in Fig. 3 requires twice as many. However, it should be noted
that the circuit of Fig. 3 requires only nearest-neighbor qubit
coupling, which is not true of the one in Fig. 4. This example
highlights the fact that further reductions in circuit depth are
possible even if the circuit contains the minimal number of
parameters, although this may require an increase in the qubit
connectivity.
An efficient circuit for the general case of n orbitals and m

fermions is shown in Fig. 5. This circuit builds on the approach of
Fig. 3, where X gates are applied to m qubits to bring the system
into the correct particle-number subspace, and then a sequence of
A gates is performed to create different superpositions. Through
trial and error, we find that the total number of A gates needed to
produce all possible superpositions is n

m

� �
. Since each A gate

contributes two parameters, we have a total of 2 n
m

� �
parameters;

the ϕ parameters in the last two A gates can be fixed to reduce
the number of parameters down to the minimal number,
2 n

m

� �� 2, while still fully spanning the subspace. Our general
recipe for constructing circuits for any n;m like that shown in Fig.
5 can be summarized into the following steps:

1. Apply X gates to m qubits. For an efficient circuit, avoid
placing X gates on neighboring qubits.

2. Apply a “first layer” of A gates on all adjacent pairs of qubits
on which either X � 1 or 1� X has been applied.

3. Apply a “second layer” of A gates on adjacent pairs of qubits,
where each pair includes one qubit acted on by an A gate
from the previous step and a qubit free of A gates. Continue

Fig. 2 A gate decomposition. Decomposition of the A gate in terms
of elementary single and two-qubit gates. Rðθ;ϕÞ ¼ Rzðϕþ πÞ
Ryðθþ π=2Þ, where RzðθÞ ¼ expð�iθσz=2Þ, RyðϕÞ ¼ expð�iϕσy=2Þ.

Fig. 3 4-Qubit A circuit. An example circuit for the case of n ¼ 4,
m ¼ 2 which exactly spans the subspace defined by six basis states
using the minimal number (10) of parameters. Note that ϕ1 is used
three times.

Fig. 4 Alternate 4-qubit circuit. Another example circuit for the
case of n ¼ 4;m ¼ 2, which also spans the desired subspace with
the minimal 10 parameters, but with fewer two-qubit gates than the
circuit shown in Fig. 3. The single-qubit gates Rðθ;ϕÞ are as defined
in Fig. 2.

Fig. 5 General A circuit. General construction of an efficient circuit
which also enforces number symmetry for any number of qubits
(orbitals) n and excitations (electrons) m and is constructed using
the logic discussed in the text. Each A gate contributes two
variational parameters θi ;ϕi to the ansatz, except the last two A
gates, which each contribute one (see text). This general structure
only requires single-qubit X gates and a cascade of two-qubit A
gates and always generates circuits with the minimal number of
required parameters 2 n

m

� �� 2.
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to place A gates on adjacent qubits as necessary until all
neighboring qubits are connected with A gates. The first and
second layers define a primitive pattern.

4. Repeat the primitive pattern until n
m

� �
A gates are placed.

Any two A gates have ϕ as a free parameter and therefore
the full circuit contains exactly 2 n

m

� �� 2 parameters, the
minimum required to span the subspace Hn;m.

In Step 1 above, we can see that this step simply places the full
system into the proper m excitation subspace. The following two
steps, which only involve applications of A gates, do not change
the excitation number of the system but instead mix the 01j i and
10j i basis states of the two qubits on which they act, producing
the desired subspace spanned by m, dependent on the

parameters ð θ!; ϕ
!Þ. Although we do not have an analytical

argument for why this particular arrangement of A gates works,
we have confirmed this through extensive numerical testing. We
conjecture that this circuit pattern will continue to work for
arbitrarily many fermions and orbitals. Another key point is
contained in Step 4, specifically that this general construction
always uses the minimal number of required parameters to span
the desired space; increasing the gate depth any further is
unnecessary, as unit fidelity is achievable at this gate depth. Time-
reversal symmetry can be imposed by setting all the ϕ parameters
and one θ parameter in the A gates to zero as before. This yields a
purely real ansatz with the minimal number of parameters
needed. Numerical calculations of the fidelity as a function of
the number of variational parameters for several different values
of n and m are given in Fig. S4 of the supplement.31 We have
numerically verified all cases for which (n) and all permutations of
n ¼ f2; 3; 4; 5; 6g;m ¼ f1; 2; 3; 4; 5g. In all cases, the fidelity
increases monotonically with the number of parameters and
saturates at unity once this number equals the dimension of the
symmetry subspace, confirming that the circuits fully span the
subspace.
While this construction is not necessarily the most resource

efficient in terms of the required number of gates, it is
straightforward to extend to any desired subspace defined by n
andm and only requires nearest-neighbor qubit coupling, which is
typically more straightforward to engineer. This should be
contrasted with the circuit of Fig. 4, where two-qubit gates
between non-neighboring qubits are required. We also note that
our general construction naturally exhibits the symmetries of
binomial functions. For example, the number of gates used for the

case of n
p

� �
and n

n�p

� �
for 0<p< n are identical, which is a

reflection of particle-hole symmetry. This in turn means that we
can focus on the case where m � n=2 without loss of generality,
so that in Step 1 above, we can always avoid applying X gates on
two adjacent qubits.
It is worth comparing our general construction with existing

state preparation algorithms in terms of gate counts. If we wished
to span the full Hilbert space, then this would require Oð2nÞ CNOT
gates.32,33 Some previous state preparation algorithms involve
transforming one arbitrary n�qubit state into another arbitrary
state, which requires 2nþ1 � 2n� 2 CNOT gates.34 However, since
we are interested in only spanning a subspace of the full Hilbert
space, namely Hn;m, we can span this subspace with significantly
fewer CNOT gates. Wang et al.24 and Ortiz et al.35 also considered
this restricted subspace, requiring no more than 2mþ1nm=m! and
n
m

� �2
n2 CNOT gates, respectively. In the case of our general

construction for n qubits and m excitations, we find that our
algorithm requires at most NCNOTðn;mÞ ¼ 3 n

m

� �
CNOT gates. Since

we always consider a fixed input state (the state with all qubits in
0j i), simplifications of our required gates are always possible,
which reduces the number of required CNOT gates. Specifically, if
we eliminate the unnecessary CNOT gates, then the actual

number of CNOT gates in the general circuit is

NCNOTðn;mÞ ¼
3 n

m

� �� 3mþ 1 0=2

3 n
m

� �� 2m� 2 m ¼ n=2

3 n
m

� �� 3nþ 3mþ 1 n=2:

8><
>:

(3)

Figure 6 shows how our approach to constructing state
preparation circuits compares to existing works. We see that our
scheme significantly decreases the required number of CNOT
gates.
We noted earlier that our example of Fig. 4 contains only 9

CNOT gates, while our general construction uses NCNOTð4; 2Þ ¼ 18
CNOT gates in this case. However, our general construction in
terms of A gates is relatively straightforward for arbitrary Hn;m,
while it is not clear how to generalize the construction of Fig. 4.
We stress that on a case by case basis, it may be possible to find
circuits that more efficiently span a reduced Hilbert space, but
finding a general procedure for constructing such circuits for
arbitrary numbers of orbitals and electrons can be challenging,
and it may require a more complicated qubit connectivity beyond
just nearest-neighbor coupling. Further investigation of these
differences and tradeoffs is an interesting topic for future work but
beyond the scope of this paper.

Spin symmetries
Many systems that we are interested in simulating possess not
only particle-number and time-reversal symmetries, but also spin
symmetries. This can include both the net spin magnetization sz
and also total spin s. To our knowledge, it remains an open
problem to find state preparation circuits that respect all these
symmetries at the same time. Here, we introduce a protocol for
constructing circuits that achieve this.
We begin by first showing how our general scheme for

conserving particle number described in the previous section
can be extended to conserve sz as well with only minor
modifications. The first step is to choose our fermion-qubit
mapping such that the first n=2 qubits represent spin-up orbitals
while the remaining n=2 represent spin-down orbitals. We follow
the same general steps of forming a cascade of A gates as before,
but now with the added constraint that the parameters of any A
gate that bridges the two spin subspaces (those that entangle the
n=2 qubit with the n=2þ 1 qubit) are set to zero (θi ¼ ϕi ¼ 0). This
prevents any mixing of the two spin subspaces. Therefore, if we
start with the proper number of spin-up and spin-down orbitals
occupied, then this sequence of gates guarantees that the final
state also has the correct spin occupation numbers. We also
require that these parameter-free A gates do not appear in the

Fig. 6 CNOT scaling. Number of required CNOT gates as a function
of particle number m for a fixed number of qubits n ¼ 40. Our
general state preparation circuits that respect particle-number
symmetry are shown in blue, while the results of Wang et al.24 are
shown in yellow, Bergholm et al.34 in green and Ortiz et al.35 in red.
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first layer. This can effectively swap the first and second layers as
outlined in the previous general protocol. For example, in the case
of Fig. 3 and with our spin assignment, we only need to set the
four parameters contained within the A gates that act between
qubits 2; 3 to zero along with ϕ5 ¼ ϕ4. This assignment then
generates all states with n ¼ 4;m ¼ 2; sz ¼ 0 and with the
minimal number of parameters (6) for this space.
We now move on to the case where total spin s is also a good

quantum number. If we impose conservation of s, sz and particle
number, then the size of the relevant symmetry subspace for a
chosen n;m; s; sz is given by

dimðHn;m;s;sz Þ ¼
Pm=2�s

k¼0

n=2
k

� �
n=2 � k
m � 2k

� �

´ ð2s þ 1Þðm � 2kÞ!
ðm=2 � k � sÞ!ðm=2 � k þ s þ 1Þ! :

(4)

Here, we maintain the notation from the previous section where n
is the number of qubits and m is the number of particles, but now
we focus on the case in which each qubit encodes the occupancy
of a particular spin-orbital. (In the previous section each qubit
could correspond to either a spin-orbital or a spatial orbital in the
case of spinless fermions.) Therefore, the n qubits encode n=2
spatial orbitals, and we omit the case of odd values for n. The first
binomial coefficient in Eq. (4) counts the number of ways to assign
doubly occupied spatial orbitals in the system, the second counts
the number of ways to assign singly occupied orbitals, and the last
factor is the number of s irreducible representations in a tensor
product of m spin-12 particles. We show in Fig. 7 that exploiting all
the symmetries may significantly reduce the dimension of the
Hilbert space. For example, already for n ¼ 28 spin-orbitals, the
relevant subspace when all symmetries are imposed is at least two
orders of magnitude smaller than the full Hilbert space of 28
qubits. Taking advantage of this reduction can significantly reduce
the demands on the quantum processor and improve the speed
and accuracy of the classical optimization step of the VQE
algorithm. We note that, while this reduction is significant, this
scaling always remains exponential even when symmetries are
imposed. Nevertheless, use of symmetries can simplify ansätze
and thus reduce the required CNOT and parameter counts.
The problem of constructing circuits that also conserve total

spin s is much more challenging compared to the symmetries we
have discussed thus far. In the remainder of this section, we
address this problem by developing a completely different
approach to obtaining symmetry-preserving circuits. In addition

to allowing for conservation of s, this approach also provides an
alternative method for building circuits that respect particle-
number symmetry. In this new approach, we adopt the conven-
tion that the qubits alternate between spin-up and spin-down
orbitals such that the first, third, fifth, etc. qubits encode spin up,
while the second, fourth, sixth, etc. encode spin down. This choice
of spin encoding leads to an efficient scaling in terms of number
of gates, as we will see.
The starting point for this alternative circuit-building scheme is

to find an n-qubit unitary that transforms the state �n
i¼1 0j i into an

arbitrary superposition of states that share the same value of m.
This is of course exactly the problem of finding a circuit that
respects particle-number symmetry that we discussed extensively
in the previous section. The key idea here is that by starting with
the explicit n-qubit unitary upfront instead of a decomposition of
it in terms of A gates, we can control how circuit parameters
appear in the coefficients of the final superposition states. If the
circuit parameters appear in a sufficiently simple way, then it
would be straightforward to impose constraints on them so that
spin symmetries are also respected. We could attempt to use the
particle-number circuits from the previous section and impose
constraints on the circuit parameters to enforce total spin
symmetry, but this would lead to complicated, highly non-linear
conditions on the parameters that would be difficult to solve.
It is straightforward to construct an n-qubit unitary that

transforms �n
i¼1 0j i into an arbitrary state in a particular particle-

number subspace. In the simplest case of only two spin-orbitals
and a single fermion, this unitary is just the A gate multiplied by
a single X gate (see Fig. 1). In the case of four spin-orbitals and
two fermions, the desired unitary should generate arbitrary
superposition states formed from a total of 4

2

� � ¼ 6 basis states.
While many different unitaries transform �n

i¼1 0j i into such
superposition states, here we desire a unitary which generates
these states with specific coefficients that are easily adjusted to
respect the appropriate spin symmetries. The unitary we choose
to use, referred to as the E4 gate, is based on hyperspherical
coordinates:

E4 0000j i ¼ sin u1 sin u2 sin u3 sin u4 sin u5 0101j i
þsin u1 sin u2 sin u3 sin u4 cos u5 1001j i
þsin u1 sin u2 sin u3 cos u4 0011j i
þsin u1 sin u2 cos u3 0110j i
þsin u1 cos u2 1010j i
þcos u1 1100j i:

(5)

The E4 gate clearly generates any two-particle state in a system
with four spin-orbitals. Notice that we have also imposed time-
reversal symmetry by purposely choosing the coefficients to be
real. This can be easily generalized to problems without time-
reversal symmetry by inserting additional arbitrary phase factors
on any five of the six terms in Eq. (5). The use of hyperspherical
coordinates provides a simple parameterization that automati-
cally ensures normalization and facilitates the incorporation of
spin symmetries. For example, if we want to restrict to the
subspace with s ¼ 1; sz ¼ 0, then there is only one state:

s ¼ 1; sz ¼ 0j i ¼ 1ffiffiffi
2

p ð 1001j i þ 0110j iÞ:

This state can be created from the E4 gate by setting
u1 ¼ u2 ¼ u4 ¼ π=2; u3 ¼ π=4; u5 ¼ 0. We summarize this case
and the other spin subspace of interest s ¼ 0; sz ¼ 0, which is
given by the general superposition

s ¼ 0; sz ¼ 0j i ¼ γffiffiffi
2

p ð 1001j i � 0110j iÞ þ α 1100j i þ β 0011j i;
(6)

in Table 1.

Fig. 7 Hilbert space scaling. Hilbert space dimension as a function
of number of qubits, n, when relevant symmetries are enforced. We
show the dimension of the full Hilbert space (blue), the largest
particle-number subspace with m ¼ n=2 (yellow), the subspace with
m ¼ n=2 and sz ¼ 0 (red), and the subspace with m ¼ n=2 and s ¼ 0
(green). Lines are included only as a guide. All cases remain an
exponential scaling Hilbert space, where use of symmetries reduces
the exponential factor.
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The advantage of this construction is that we can easily fix
parameters in the E4 gate to generate any desired spin subspace
in this n ¼ 4;m ¼ 2 space. There are of course many unitaries that
satisfy Eq. (5). Once we have settled on a particular choice for E4,
we can then decompose it into more elementary gates. Note that
in Eq. (5) we have chosen a basis ordering which leads to an
efficient Gray code decomposition36 (there are only two bit
changes from term to term). A specific choice for E4 and its
corresponding decomposition are shown in the appendix.
The case of n> 4 spin-orbitals can be treated in a similar fashion.

We begin by constructing a unitary En that transforms �n
i¼1 0j i into

an arbitrary superposition of n
m

� �
fixed-particle-number basis

states. For example, in the case n ¼ 6;m ¼ 3, we have

E6 000000j i ¼
X1
j¼20

cos uj
Yj�1

i¼1

sin ui pj1;pj2; :::;pj6

�� �
; (7)

where pjk 2 f0; 1g, P6
k¼1pjk ¼ 3, u20 ¼ 0, and the order of the

basis states is given by

000111j i; 001011j i; 001110j i; 001101j i; 011001j i; 011010j i
011100j i; 010110j i; 010101j i; 010011j i; 100011j i; 100101j i
100110j i; 101010j i; 101100j i; 101001j i; 110001j i; 110010j i
110100j i; 111000j i:

(8)

This ordering results in minimal (2) bit changes per step of the
Gray code, which facilitates the decomposition of E6. We list the
specific spin subspaces and summarize how to generate them by
fixing the parameters of E6 in Table 2.
An example of a gate decomposition for a specific choice of

E6 is given in the appendix along with explicit gate counts for E4,
E6, and E8.
Extrapolating from these examples, we can then form a general

procedure for constructing symmetry-preserving state preparation
circuits for any valid choice of the quantum numbers n;m; s; sz for
a time-reversal-symmetric system as follows:

1. For a given choice of n, m, there are n
m

� �
basis states

ðjpj1; pj2; :::; pjniÞ that span the corresponding particle-

number subspace, such that
Pn

k¼1pjk ¼ m. Assign hyper-
spherical coefficients to these basis states according toP1

j¼ n
mð Þcos uj

Qj�1
i¼1sin ui pj1; pj2; :::; pjn

�� �
, where u n

mð Þ ¼ 0, and

the basis states are ordered such that there are only two bit
changes per step in the Gray code.

2. Determine the constraints that must be imposed on the ui
such that the appropriate spin subspace labled by s and sz is
obtained.

3. Construct a unitary En such that the first column contains
the coefficients in Step 1. The remaining columns can be
chosen as desired so long as they respect unitarity.

4. Decompose En using a Gray code scheme or alternative gate
decomposition technique.

Following this procedure, we can enforce arbitrary spin and
particle-number symmetries for any choice of n;m; s; sz . Step 2 is
facilitated by the use of hyperspherical coordinates because
various basis states are easily eliminated from the final super-
position by setting the corresponding uj to π=2, yielding another
hypersphere parameterization of lower dimension. This recursive
structure in the coefficients maintains regularity and simplicity as
the effective Hilbert space dimension is reduced. Note that in
cases where it is necessary to fix some of the uj in terms of the
others (see e.g., the case of s ¼ sz ¼ 0 in Table 1 or s ¼ 1=2 ¼ ± sz
in Table 2), use of inverse functions without a restricted real-
domain (e.g. tan�1; cot�1) are desirable for optimization stability
and enforcement of time-reversal symmetry, while the use of
other inverse trigonometric functions could yield complex-valued
coefficients in the trial states. Finally, we emphasize that here it is
not necessary to numerically compute fidelities to confirm that the
resulting circuits indeed span the appropriate symmetry subspace
as in the previous section because this is guaranteed by
construction in the present approach.
To demonstrate the efficiency of our state preparation circuits,

we use them in a VQE simulation to compute the ground state
energy of the H2 molecule. We work in the STO-3G basis and map
to qubits using the Jordan-Wigner transform.
We note that there are many choices of qubit mappings and

unitary transformations that can be used to reduce the complexity
of molecular simulations.37 However, we have formulated our
ansätze to preserve symmetries in the natural basis where each
qubit represents a physical spin orbital. There are also several
techniques to tailor an ansatz to efficiently describe the allowed
transitions in H2, but here we are concerned with constructing
general ansätze, applicable to any molecule, which only utilize
particle number and spin symmetries, to reduce the complexity of
the resulting circuits. Incorporation of particle number, spin
projection and total spin symmetries in conjuction with other qubit
mappings and reduction methods is an interesting topic, but
beyond the scope of the present work. The results are given in Fig. 8,
which shows the difference between the computed ground state
energy and the exact ground state energy. For comparison, we also
show the results obtained from standard ansätze (SWAPRZ, RY,
RYRZ, and UCCSD) included in IBM’s Qiskit software package.38

Table 1. Two particle spin symmetry.

s; sz u1 u2 u3 u4 u5

1, 0 π=2 π=2 π=4 π=2 0

0, 0 u1 π=2 �tan�1ðcsc u4Þ u4 0

By fixing the coefficients of Eq. 5, we can generate the two spin subspaces
defined by their quantum numbers for the n ¼ 4;m ¼ 2 space. In the case
of s ¼ 1, sz ¼ 0, the subspace is spanned by a single state, so all the ui are
fixed. The subspace with s ¼ sz ¼ 0 is three-dimensional, and so two of the
ui are left unspecified

Table 2. Three particle Spin Symmetry.

s; sz u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19

3
2 ;

1
2

π
2

π
2

π
2

π
2 cot�1ð 1ffiffi

2
p Þ π

2
π
2

π
4

π
2

π
2

π
2

π
2

π
2

π
2 0 π

2
π
2

π
2

π
2

3
2 ;� 1

2
π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2 cot�1ð 1ffiffi

2
p Þ π

2
π
2

π
2

π
4

π
2

π
2 0 π

2
π
2

π
2

1
2 ;

1
2 u1 π

2 u3 π
2 �cot�1ðδÞ u6 π

2 u8 π
2 u10 π

2
π
2

π
2

π
2 u15 π

2
π
2 u18 0

1
2 ;� 1

2
π
2 u2 π

2 u4 π
2

π
2

π
2

π
2 �cot�1ðκÞ π

2 u11 π
2 u13 u14 π

2 u16 u17 π
2

π
2

By fixing the coefficients of Eq. 7, we can generate the four spin subspaces defined by their spin quantum numbers for the n ¼ 6; m ¼ 3 space. Here
δ ¼ fsin ðu10Þ cos ðu15Þ sin ðu6Þ sin ðu8Þ þ sin ðu6Þ cos ðu8Þg; κ ¼ fsin ðu11Þ sin ðu13Þ sin ðu14Þ cos ðu16Þ þ sin ðu11Þ cos ðu13Þg. The order of basis states for this space
is defined in the text
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Furthermore, we show the variational parameter and CNOT gate
counts in Table 3, accompanying Fig. 8 for all ansätze considered. It
is clear that our proposed circuits obtain the ground state energy
with high accuracy using the minimal number of variational
parameters and a low number of CNOT gates. For the RY, RYRZ,
and SWAPRZ ansätze, we choose a circuit depth of three, while for
UCCSD, we use a circuit depth of one. In all cases, we use the BFGS
optimizer (run several times with random initial conditions) included
in Qiskit and consider an ideal, noiseless simulation.
Figure 9 shows the results of a similar simulation, but this time

with noise included. This noise is characterized by the physical
parameters of IBM’s Poughkeepsie device. Here we only take the
standard ansatz that has reasonable parameter and CNOT scaling,
RY, and compare it to our ansätze. Contrary to the noiseless case,
the RY ansatz here is chosen to have linear connectivity (nearest-
neighbor CNOT connectivity) and a circuit depth of one as this
configuration performs best under these noisy conditions. With
these settings, the RY ansatz has 8 parameters and 3 CNOT gates.
The CNOT and parameter counts for our ansätze are the same as
in Fig. 8 since these are determined by the ground state
symmetries of the molecule. Even though the RY ansatz has
fewer costly CNOT gates than our A gate ansatz and is over
parameterized for the target ground state, it is outperformed by
the A gate ansatz. This is due to the fact that at this low depth, the
RY ansatz does not have sufficient coverage of the target Hilbert
space. Increasing the depth of the RY ansatz will increase its

coverage of the target space, but also increases the number of
CNOT gates. This is not an equivalent trade-off and actually
decreases the ability of the ansatz to approximate the ground
state. In the case of both E gate ansätze, their relatively larger
number of CNOT gates can be seen to hinder their performance.
However, as these gates are constructed in terms of arbitrary state
generation, these gate counts could be improved with more
efficient state generation algorithms. In addition, mitigation of
CNOT errors may be possible with the use of Richardson
extrapolation,39,40 a technique we will pursue in future work.
An interesting feature in Fig. 9a) can be seen where the E4;2

ansatz crosses the E4;2;s¼0;sz¼0 ansatz. In principle, the spin
symmetry ansatz should always have a better ability to target
the ground state in a VQE algorithm. This is explained in Fig. 9b),
where as we see that the E4;2 ansatz abruptly changes the total
spin value of its lowest energy state. Indeed, the triplet states
(s ¼ 1) are nearly degenerate with the singlet state (s ¼ 0, Eq. 6) at
large bound distances. At an interatomic distance near two
Angstroms, the energy difference between the lowest energy
singlet and triplet states is Oð10�2Þ Hartree. The optimization
landscape becomes much more difficult to navigate when there
are many nearly equal local minima, as is the case here at large
bond distances. Therefore since the algorithm attempts to find the
lowest energy eigenvalue and the singlet and triplet states are
nearly degenerate at longer bond distances, the optimizer will
frequently return a minimum (triplet state) rather than the global
minimum (singlet state). In the presence of noise, this issue is
blurred further as both energies are not exactly attainable, but a
triplet state is trivial to produce (e.g. s ¼ 1; sz ¼ 1, 1010j i), so
finding the triplet state as the lowest energy state is frequently
encountered. Additionally, this issue grows more difficult to
navigate with larger molecules and strongly correlated systems,
which have many more nearly degenerate ground states.
Naturally one could also enforce a spin eigenvalue constraint on
the optimizer by modifying the objective function, but this places
stricter requirements on the optimizer and requires a physical
measurement of spin eigenvalues, through tomography or
additional circuit elements. However, enforcing symmetry in the
ansätze lessens the burden on the optimizer and does not directly
require spin measurements.
We also perform similar noisy simulations on LiH. LiH in the STO-

3G basis maps to 12 qubits but we follow the same methods as
ref., 8 removing two non-interacting orbitals and freezing the core
orbital, reducing LiH to 6 qubits. We show in Fig. 10 and Table 4
that our ansätze perform comparably for LiH as they do for H2 with
notably more error for the E gate ansatz as it requires significantly
more CNOTs. As in the noisy H2 case, the RY ansatz is chosen to
have a fixed depth (one) and connectivity (nearest-neighbor).
These settings give the best performance under these noisy
conditions but the same coverage-CNOT trade off issue arises as
before. From both the H2 and LiH results we can see that the
A-gate circuit finds a middle-ground in terms of CNOT and
parameter count and has good performance, while the E-gate
circuit exactly minimizes parameter count based on particle
number, spin projection, and total spin, but its performance
suffers due to a large CNOT count. Thus, in the presence of noise,
we find that it can be favorable to relax some of the symmetry
constraints to reduce the circuit depth at the expense of more
variational parameters.
Since our constructions maintain number and spin symmetries,

potentially any noise sources which violate these symmetries can
be mitigated through post-selection or symmetry verifica-
tion.13,14,27 This will be a topic of future work. Another interesting
question for future work is whether it is possible to find circuits
that minimize the number of CNOT gates while respecting spin
symmetries and while using the minimal number of parameters
necessary to span the symmetry subspace.

Fig. 8 H2 Noiseless VQE. Energy difference from the exact ground
state of H2 for various ansätze. All ansätze perform well below
chemical accuracy, but vary significantly in their number of required
parameters and CNOT gates (shown in the accompanying table).
Our proposed ansätze (A4;2 and E4;2) achieve very small energy
differences and have low to modest CNOT counts. The UCCSD
ansatz also performs very well with low parameters (3), but has a
fairly large CNOT count in this example.

Table 3. 4-qubit ansätze comparison.

Ansätze # CNOT # Parameter

A4;2;sz¼0 6 3

E4;2 14 5

E4;2;s¼0;sz¼0 20 2

UCCSD 56 3

SWAPRZ 34 72

RYRZ 18 32

RY 18 16

In the ideal, noiseless case, we compare many standard ansätze to our new
proposed ansätze and find that our proposed ansätze are more compact in
terms of CNOT count and parameter count
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DISCUSSION
In this work, we presented general schemes to construct state
preparation circuits for quantum simulation that respect a number
of symmetries that commonly arise in systems of interest, including
particle number, time-reversal, total spin, and spin magnetization.
In each case, we provide general construction procedures, explicit
examples of circuits, and gate counts. In the case of particle-
number symmetry, for which state preparation circuits have been

proposed previously by other authors, our circuits outperform
existing methods in terms of the number of two-qubit entangling
gates they contain. Enforcing spin symmetries in addition to
particle number can significantly enhance the performance of the
VQE by preventing the algorithm from wasting time exploring vast,
irrelevant regions of Hilbert space. Also, our ansätze are guaranteed
to contain the ground state of interest, with the minimal number of
parameters defined by the symmetry subspace. It is important to
emphasize, however, that the number of variational parameters
still grow exponentially with system size even when all symmetries
are imposed. Thus, spanning the entire symmetry subspace will
become impractical as the size of the quantum processor is
increased beyond a few tens of qubits. However, we expect that
our symmetry preservation techniques will continue to play an
important role for larger NISQ devices as systematic methods to
further reduce the search to still smaller regions of Hilbert space
are developed. This could be done, for example, by looking for
ways to freeze large sets of the variational parameters appearing in
our circuits without sacrificing the accuracy of the ansatz. In
addition, as a general state creation circuit with a particular
symmetry, one can imagine applications for these circuits in the
Phase Estimation Algorithm (PEA).

METHODS
Confirmation of circuit compilation was performed in Mathematica
software as well as numerical optimization to confirm that the proposed
circuits span any state in the desired Hilbert space. In numerical
optimization testing, we find that Mathematica’s NMaximize method
“Simulated Annealing” performs best for our purposes, when run over
many samples of a randomly chosen state in the Hilbert space. Gate
decomposition was performed using the method of Gray codes, was done
“by hand” and confirmed in Mathematica.
Our VQE simulations were done using IBM’s Qiskit software, coding in our

own proposed ansätze, which enforce relevant symmetries. Noisy simulations
were simulated using the noise parameters of IBM’s Poughkeepsie device.

DATA AVAILABILITY
The data that support the findings of this study are available from the authors upon
request.

CODE AVAILABILITY
A custom Mathematica code to reproduce our results is available on GitHub.41

Fig. 10 LiH Noisy VQE. Energy difference from the exact ground
state of LiH in the presence of noise characterized by IBM's
Poughkeepsie device. With appropriate orbital reductions, LiH is
run on 6 qubits and has two excitations. The A-gate ansatz continues
to perform well utilizing particle number and spin projection
symmetries and relatively low CNOT count for this dimension.

Fig. 9 H2 Noisy VQE. a) Energy difference from the exact ground state of H2 in the presence of noise characterized by IBM's Poughkeepsie
device. Included is Qiskit’s state preperation and measurement error mitigation for all ansätze. b) Total spin eigenvalues for the same
dissociation curve (left axis). The total spin values indicate that some ansätze drift outside the singlet subspace (s ¼ 0) and begin to instead
find a (nearly degenerate) triplet state (s ¼ 1) at large bond distances. Since the E4;2;s¼0;sz¼0 ansatz is restricted to a fixed total spin, it is the only
displayed ansätze which always attempts to find the true ground state across the full dissociation curve. The energy difference between this
triplet state and the true singlet ground state as a function of interatomic distance is also shown for comparison (orange dashed line,
right axis).

Table 4. 6-qubit ansätze comparison.

Ansätze # CNOT # Parameter

A6;2;sz¼0 25 8

E6;2;s¼0;sz¼0 48 5

RY 5 12

CNOT and parameter count for the case of estimating the ground state of
LiH in the presence of typical device noise
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