Physics 5714 - Problem set 1

$(\mathrm{AWH}=$ Arfken-Weber-Harris, 7 th edition $)$

1. Verify the expansion of the triple vector product

$$
\vec{A} \times(\vec{B} \times \vec{C})=\vec{B}(\vec{A} \cdot \vec{C})-\vec{C}(\vec{A} \cdot \vec{B})
$$

2. (AWH 3.5.1) If $S(x, y, z)=\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}$, find
(a) ∇S at the point $(1,2,3)$
(b) the magnitude of the gradient of $S,|\nabla S|$, at $(1,2,3)$
(c) the direction cosines of ∇S at $(1,2,3)$
3. (AWH 3.5.2)
(a) Find a unit vector perpendicular to the surface

$$
x^{2}+y^{2}+z^{2}=3
$$

at the point $(1,1,1)$
(b) Derive the equation of the plane tangent to the surface at $(1,1,1)$
4. (AWH 3.5.6) For a particle moving in a circular orbit $\vec{r}=\hat{x} r \cos (\omega t)+\hat{y} r \sin (\omega t),(r$, ω constant)
(a) evaluate $\vec{r} \times \dot{\vec{r}}$
(b) Show that

$$
\frac{d^{2}}{d t^{2}} \vec{r}+\omega^{2} \vec{r}=0
$$

5. (AWH 3.5.9) Show

$$
\nabla \cdot(\vec{A} \times \vec{B})=\vec{B} \cdot(\nabla \times \vec{A})-\vec{A} \cdot(\nabla \times \vec{B})
$$

(Hint: treat as a triple scalar product.)
6. (AWH 3.6.5) Verify the vector identity

$$
\nabla \times(\vec{A} \times \vec{B})=(\vec{B} \cdot \nabla) \vec{A}-(\vec{A} \cdot \nabla) \vec{B}-\vec{B}(\nabla \cdot \vec{A})+\vec{A}(\nabla \cdot \vec{B})
$$

