Localization on twisted spheres and supersymmetric GLSMs

Cyril Closset
SCGP, SUNY Stony Brook

Southeastern regional string theory meeting, Duke University Oct 25, 2015

Based on: arXiv:1504.06308 with S. Cremonesi and D. S. Park
To appear, with W. Gu, B. Jia and E. Sharpe

Supersymmetric gauge theories in two dimensions

Two-dimensional supersymmetric gauge theories-a.k.a. GLSM—are an interesting playground for the quantum field theorist.

- They exhibit many of the qualitative behaviors of their higher-dimensional cousins.
- Supersymmetry allows us to perform exact computations.
- They provide useful UV completions of non-linear σ-models, including conformal ones, and of other interesting 2d SCFTs.
- Consequently, they are useful tools for string theory and enumerative geometry:
- $\mathcal{N}=(2,2)$ susy: IIB string theory compactifications.
- $\mathcal{N}=(0,2)$ susy: heterotic compactifications.

GLSM Observables

Consider a GLSM with at least one $U(1)$ factor. We have the complexified FI parameter

$$
\tau=\frac{\theta}{2 \pi}+i \xi
$$

which is classically marginal in 2d.
Schematically, expectation values of appropriately supersymmetric local operators \mathcal{O} have the expansion

$$
\langle\mathcal{O}\rangle \sim \sum_{k} q^{k} Z_{k}(\mathcal{O}), \quad q=e^{2 \pi i \tau} .
$$

The 2d instantons are gauge vortices.

GLSM supersymmetric observables

We consider half-BPS local operators.
In the $\mathcal{N}=(2,2)$ case, we have two choices (up to charge conjugation):

- $\left[\tilde{Q}_{-}, \mathcal{O}\right]=\left[\tilde{Q}_{+}, \mathcal{O}\right]=0, \quad$ chiral ring.
- $\left[Q_{-}, \mathcal{O}\right]=\left[\tilde{Q}_{+}, \mathcal{O}\right]=0, \quad$ twisted chiral ring.

The so-called "twisted" theories [Witten, 1988] efficiently isolate these subsectors: B - and A-twist, respectively. We will focus on the latter.

In the $(0,2)$ case, half-BPS operators commute with a single supercharge and there is no chiral ring, in general. However, some interesting models share properties with the $(2,2)$ case. We will discuss them in the second part of the talk.

$S_{\epsilon_{\Omega}}^{2}$ correlators for $(2,2)$ theories

We will consider correlations of twisted chiral ring operators on the Ω-deformed sphere,

$$
\langle\mathcal{O}\rangle_{S_{\Omega}^{2}}
$$

This Ω-background constitutes a one-parameter deformation of the A-twist at genus zero.

We will derive a formula for GLSM supersymmetric observables on S_{Ω}^{2} of the schematic form:

$$
\langle\mathcal{O}\rangle=\sum_{k} q^{k} \oint_{\mathcal{C}} d^{r} \sigma Z_{k}^{1-\mathrm{loop}}(\sigma) \mathcal{O}(\sigma)
$$

valid for any standard GLSM. This results simplifies previous computations [Morrison, Plesser, 1994; Szenes, Vergne, 2003] and generalizes them to non-Abelian theories.

Some further motivations

In field theory:

- These $2 \mathrm{~d} \mathcal{N}=(2,2)$ theories appear on the worldvolume of surface operators in 4d $\mathcal{N}=2$ theories.
- Our 2d setup can also be uplifted to $4 \mathrm{~d} \mathcal{N}=1$ on $S^{2} \times T^{2}$. [C.C., Shamir, 2013, Benini, Zaffaroni, 2015, Gadde, Razamat, Willett, 2015]

In string theory or "quantum geometry":

- Think in terms of a target space X_{d} with $\xi \sim \operatorname{vol}\left(X_{d}\right)$. New localization results can give new tools for enumerative geometry. [Jockers, Kumar, Lapan, Morrison, Romo, 2012]
- The $(0,2)$ results are relevant for heterotic string compactifications.

Outline

Curved-space supersymmetry in 2d

$(2,2)$ GLSM and supersymmetric observables
 Localization on the Coulomb branch

Examples and applications

Generalization to (some) $(0,2)$ theories with a Coulomb branch

Conclusion

Outline

Curved-space supersymmetry in 2d

$(2,2)$ GLSM and supersymmetric observables
Localization on the Coulomb branch

Examples and applications

Generalization to (some) $(0,2)$ theories with a Coulomb branch

Conclusion

Outline

Curved-space supersymmetry in 2d
$(2,2)$ GLSM and supersymmetric observables
Localization on the Coulomb branch

Examples and applications

Generalization to (some) $(0,2)$ theories with a Coulomb branch

Conclusion

Outline

Curved-space supersymmetry in 2d
$(2,2)$ GLSM and supersymmetric observables

Localization on the Coulomb branch

Examples and applications

Generalization to (some) $(0,2)$ theories with a Coulomb branch Conclusion

Outline

Curved-space supersymmetry in 2d
$(2,2)$ GLSM and supersymmetric observables

Localization on the Coulomb branch

Examples and applications

Generalization to (some) $(0,2)$ theories with a Coulomb branch

Conclusion

Outline

Curved-space supersymmetry in 2d
$(2,2)$ GLSM and supersymmetric observables

Localization on the Coulomb branch

Examples and applications

Generalization to (some) $(0,2)$ theories with a Coulomb branch

Conclusion

Curved-space (2, 2) supersymmetry

The first step is to define the theory of interest in curved space, while preserving some supersymmetry. A systematic way to do this is by coupling to background supergravity. [Festuccia, Seiberg, 2011]

Assumption: The theory possesses a vector-like R-symmetry, $R_{V}=R$.
In that case, we have:

$$
\begin{array}{rllll}
j_{\mu}^{(R)}, & S_{\mu}, & T_{\mu \nu}, & j_{\mu}^{Z}, & j_{\mu}^{Z} \\
A_{\mu}^{(R)}, & \Psi_{\mu}, & g_{\mu \nu}, & C_{\mu}, & \tilde{C}_{\mu}
\end{array}
$$

A supersymmetric background corresponds to a non-trivial solution of the generalized Killing spinor equations, $\delta_{\zeta} \Psi_{\mu}=0$.

Supersymmetric backgrounds in 2d

The allowed supersymmetric background are easily classified.
[C.C., Cremonesi, 2014]

For Σ a closed orientable Riemann surface of genus g :

- If $g>1$, we need to identify $A_{\mu}^{(R)}= \pm \frac{1}{2} \omega_{\mu}$. Witten's A-twist.
- If $g=1$, this is flat space.
- If $g=0$, we have two possibilities, depending on

$$
\frac{1}{2 \pi} \int_{\Sigma} d A^{R}=0, \pm 1
$$

Supersymmetric backgrounds on S^{2}

On the sphere, we can have:

$$
\frac{1}{2 \pi} \int_{S^{2}} d A^{R}=0, \quad \frac{1}{2 \pi} \int_{S^{2}} d C=\frac{1}{2 \pi} \int_{S^{2}} d \tilde{C}=1
$$

This was studied in detail in [Doroud, Le Floch, Gomis, Lee, 2012; Benini, Cremonesi, 2012]. In this case, the R-charge can be arbitrary but the real part of the central charge, $Z+\tilde{Z}$, is constrained by Dirac quantization.

The second possibility is

$$
\frac{1}{2 \pi} \int_{S^{2}} d A^{R}=1, \quad \frac{1}{2 \pi} \int_{S^{2}} d C=\frac{1}{2 \pi} \int_{S^{2}} d \tilde{C}=0
$$

This is the case of interest to us. Note that the R-charges must be integers, while Z, \tilde{Z} can be arbitrary.

Equivariant A-twist, a.k.a. Ω-deformation

Consider this latter case. We preserve two supercharges if the metric on S^{2} has a $U(1)$ isometry with Killing vector V^{μ}. This gives a one-parameter deformation of the A-twist:

$$
\mathcal{Q}^{2}=0, \quad \tilde{\mathcal{Q}}^{2}=0, \quad\{\mathcal{Q}, \tilde{\mathcal{Q}}\}=Z+\epsilon_{\Omega} \mathcal{L}_{V}
$$

The supergravity background reads:

$$
d s^{2}=\sqrt{g}\left(|z|^{2}\right) d z d \bar{z}, \quad A_{\mu}^{(R)}=\frac{1}{2} \omega_{\mu}, \quad C_{\mu}=\frac{1}{2} \epsilon_{\Omega} V_{\mu}, \quad \tilde{C}_{\mu}=0 .
$$

Using the general results of [c.c., Cremonesi, 2014], we can write down any supersymmetric Lagrangian we want.

GLSMs: Lightning review

Let us consider 2d $\mathcal{N}=(2,2)$ supersymmetric GLSM on this S_{Ω}^{2}.
We have the following field content:

- Vector multiplets \mathcal{V}_{a} for a gauge group G, with Lie algebra \mathfrak{g}.
- Chiral multiplets Φ_{i} in representations \Re_{i} of \mathfrak{g}.

We also have interactions dictated by:

- A superpotential $W(\Phi)$
- A twisted superpotential $\hat{W}(\sigma)$, where $\sigma \subset \mathcal{V}$.

Assumption: The classical twisted superpotential is linear in σ :

$$
\hat{W}=\tau^{I} \operatorname{Tr}_{I}(\sigma)
$$

That is, we turn on one FI parameter for each $U(1)_{I}$ factor in G.

The FI term often runs at one-loop:

$$
\tau(\mu)=\tau\left(\mu_{0}\right)-\frac{b_{0}}{2 \pi i} \log \left(\frac{\mu}{\mu_{0}}\right)
$$

If $b_{0}=0$, we expect an SCFT in infrared.
This \hat{W} preserves a $U(1)_{A}$ axial R-symmetry, broken to $\mathbb{Z}_{2 b_{0}}$ by an anomaly if $b_{0} \neq 0$.

Examples with $G=U(1)$

Example 1: $\mathbb{C} P^{n-1}$ model. With n chirals with $Q_{i}=1, r_{i}=0$. τ runs at one-loop $\left(b_{0}=n\right)$, and there is a dynamical scale:

$$
\Lambda=\mu q^{\frac{1}{n}}
$$

For $\xi \gg 0$, target space is $\mathbb{C} P^{n-1}$.

Example 2: The quintic model. 5 chirals x_{i} with $Q_{i}=1, r_{i}=0$, and one chiral p with $Q_{p}=-5, r_{p}=2$, with a superpotential

$$
W=p F\left(x_{i}\right)
$$

F is homogeneous of degree 5 .
$b_{0}=0$. For $\xi \gg 0$: quintic $C Y_{3}$ in $\mathbb{C} P^{4}$.

Non-Abelian examples

Example 3: Grassmanian models. Consider a $U\left(N_{c}\right)$ vector multiplet with N_{f} chirals in the fundamental.
This non-Abelian GLSM flows to the $\mathrm{NL} \sigma \mathrm{M}$ on the Grassmanian $\operatorname{Gr}\left(N_{c}, N_{f}\right)$.
The Grassmanian duality

$$
G r\left(N_{c}, N_{f}\right) \cong G r\left(N_{f}-N_{c}, N_{f}\right)
$$

corresponds to a Seiberg-like duality of the GLSMs.

We can also study new classes of CY manifolds inside Grassmanians (and generalizations thereof). [Hori, Tong, 2006; Jockers, Kumar, Morrison, Lapan, Romo, 2012]

Example 4: The Rødland CY_{3} model. Consider $G=U(2)$ with 7 chirals Φ_{i} in the fundamental with $r_{i}=0$ and 7 chirals P_{α} in the det^{-1} rep. with $r_{\alpha}=2$. We have the baryons

$$
B_{i j}=\epsilon_{a_{1} a_{2}} \Phi_{i}^{a_{1}} \Phi_{j}^{a_{2}},
$$

charged under the diagonal $U(1) \subset U(2)$. Let $G^{\alpha}(B)$ be polynomials of degree one in $B_{i j}$. We have a superpotential

$$
W=\sum_{\alpha=1}^{7} P_{\alpha} G^{\alpha}(B)
$$

The target space for $\xi \gg 0$ is a complete intersection in the Grassmanian $G(2,7)$ known as the Rødland CY_{3}.

Supersymmetric observables

When $\epsilon_{\Omega}=0$, the only local operators (built from elementary fields) which are Q-closed and not Q-exact are

$$
\mathcal{O}(\sigma)
$$

the gauge-invariant polynomials in σ. Supersymmetry also ensures that the theory is topological. In particular:

$$
\partial_{\mu}\left\langle\mathcal{O}_{x} \cdots\right\rangle=\langle\{Q, \cdots\}\rangle=0
$$

When $\epsilon_{\Omega} \neq 0$, instead:

$$
[Q, \sigma] \sim \epsilon_{\Omega} V^{\mu} \Lambda_{\mu}
$$

Thus σ is only Q-closed at the fixed points of V.

Supersymmetric observables

We can insert $\mathcal{O}(\sigma)$ at the north or south poles of S_{Ω}^{2} :

$$
\left\langle\mathcal{O}_{N}(\sigma) \mathcal{O}_{S}(\sigma)\right\rangle
$$

This is what we shall compute explicitly, as a function of q and ϵ_{Ω}.
Note: One can write down a supersymmetric local term:

$$
S=\int d^{2} x(F(\omega) R+\cdots) \sim F(\omega)
$$

Thus, correlators $\langle\mathcal{O}\rangle$ are only defined up to an overall holomorphic function.

Localizations

Localization principle: For any \mathcal{O} which is Q-closed,

$$
\langle\mathcal{O}\rangle=\left\langle e^{t S_{\text {loc }}} \mathcal{O}\right\rangle \quad \text { if } \quad S_{\text {loc }}=\left\{Q, \Psi_{\text {loc }}\right\} .
$$

Therefore, we can take $t \rightarrow \infty$ and localize the path integral on the saddle point configurations of $S_{\text {loc }}$. The question is how to choose $S_{\text {loc }}$.

We can consider two distinct localizations:

- "Higgs branch" localization: Sum over vortices.
[Morrison, Plesser, 1994]
- "Coulomb branch" localization: Contour integral.

We will discuss the latter. The contour picks 'poles' on the Coulomb branch corresponding to the vortices.

"Coulomb branch" localization

Choose:

$$
\mathscr{L}_{\text {loc }}=\mathscr{L}_{\mathrm{YM}} .
$$

Note: We also localize the matter sector with its standard kinetic term.

The saddles are on the Coulomb branch:

$$
\sigma=\operatorname{diag}\left(\sigma_{a}\right), \quad G \rightarrow H=\prod_{a=1}^{\operatorname{rank}(G)} U(1)_{a}
$$

There is a family of gauge field saddles for each allowed (GNO) flux:

$$
k=\left(k_{a}\right) \in \Gamma_{\mathbf{G}^{\vee}}
$$

When $\epsilon_{\Omega} \neq 0$, there is a non-trivial profile for σ

$$
\sigma=\sigma\left(|z|^{2}\right),
$$

related to the gauge flux by supersymmetry:

$$
f_{1 \overline{1}}=-\frac{1}{\epsilon_{\Omega \sqrt{g}}} \partial_{|z|^{2}} \sigma .
$$

The important feature is that:

$$
\sigma_{N}=\hat{\sigma}-\epsilon_{\Omega} \frac{k}{2}, \quad \sigma_{S}=\hat{\sigma}+\epsilon_{\Omega} \frac{k}{2}
$$

with $\hat{\sigma}$ a constant mode, over which we need to integrate.

In this localization scheme, we also have gaugino zero modes,
$\lambda, \tilde{\lambda}=$ constant.
The path integral reduces to a supersymmetric ordinary integral:

$$
\left\langle\mathcal{O}_{N, S}(\sigma)\right\rangle \sim \sum_{k} \int d \lambda d \tilde{\lambda} \int d D \int d^{2} \hat{\sigma} \mathcal{Z}_{k}(\hat{\sigma}, \hat{\bar{\sigma}}, \lambda, \tilde{\lambda}, D) \mathcal{O}_{N, S}\left(\sigma_{N, S}\right)
$$

We refrained from integrating over the constant mode of the auxiliary field D in the vector multiplet.

We have

$$
\mathcal{Z}_{k}=e^{-S_{\mathrm{cl}}} \mathcal{Z}_{k}^{1-\mathrm{loop}}
$$

The one-loop term results from integrating out the chiral multiplets and the W-bosons. It can be computed explicitly by standard techniques.

The integration over the gaugino zero-modes can be performed implicitly by using the residual supersymmetry of \mathcal{Z}_{k}. We have

$$
\delta \sigma=0, \quad \delta \tilde{\sigma}=\tilde{\lambda}, \quad \delta \tilde{\lambda}=0, \quad \delta \lambda=D, \quad \delta D=0
$$

and therefore

$$
\delta \mathcal{Z}_{k}=\left(\tilde{\lambda} \partial_{\tilde{\sigma}}+D \partial_{\lambda}\right) \mathcal{Z}_{k}=\left.0 \quad \Rightarrow \quad D \partial_{\lambda} \partial_{\tilde{\lambda}} \mathcal{Z}_{k}\right|_{\lambda=\tilde{\lambda}=0}=\left.\partial_{\tilde{\sigma}} \mathcal{Z}_{k}\right|_{\lambda=\tilde{\lambda}=0}
$$

This crucial step leads to a contour integral on the σ-plane:

$$
\int d^{2} \lambda d^{2} \sigma \mathcal{Z} \sim \int d^{2} \sigma \frac{1}{D} \partial_{\tilde{\sigma}} \mathcal{Z} \sim \oint d \sigma \frac{1}{D} \mathcal{Z} .
$$

This is like in case of the flavored elliptic genus. [Benini, Eager, Hori, Tachikawa, 2013]

The Coulomb branch formula

The remaining steps are similar to previous works [Benini, Eager, Hori, Tachikawa, 2013; Hori, Kim, Yi, 2014]. We find:

$$
\left\langle\mathcal{O}_{N, S}(\sigma)\right\rangle=\frac{1}{|W|} \sum_{k} \oint_{\mathrm{JK}} \prod_{a=1}^{\operatorname{rank}(G)}\left[d \hat{\sigma}_{a} q_{a}^{k_{a}}\right] Z_{k}^{1-\mathrm{loop}}(\hat{\sigma}) \mathcal{O}_{N, S}\left(\hat{\sigma} \mp \frac{1}{2} \epsilon_{\Omega} k\right)
$$

- $|W|$ denotes the order of the Weyl group.
- The contour is determined by a Jeffrey-Kirwan residue.
- The result depends on the FI parameters explicitly and through the definition of the contour.
- The sum is over all fluxes k 's. However, only some chambers in $\left\{k_{a}\right\}$ effectively contribute residues.

The Coulomb branch formula

$$
\left\langle\mathcal{O}_{N, S}(\sigma)\right\rangle=\frac{1}{|W|} \sum_{k} \oint_{\mathrm{JK}} \prod_{a=1}^{\operatorname{rank}(G)}\left[d \hat{\sigma}_{a} q_{a}^{k_{a}}\right] Z_{k}^{1-\mathrm{loop}}(\hat{\sigma}) \mathcal{O}_{N, S}\left(\hat{\sigma} \mp \frac{1}{2} \epsilon_{\Omega} k\right)
$$

- The distinct q_{a} 's are a formal device. We have as many actual q 's as the number of $U(1)$ factors in \mathfrak{g}.
For instance, for $G=U(N)$ we have $q_{a}=q$ for $a=1, \cdots, N$.
- The one-loop term reads

$$
Z_{k}^{1-\text { loop }}(\hat{\sigma})=\prod_{\alpha \in \mathfrak{g}} Z_{k}^{W}(\alpha(\hat{\sigma})) \prod_{\rho \in \mathfrak{R}} Z_{k}^{\Phi}(\rho(\hat{\sigma}))
$$

from the W-bosons and chiral multiplets.

The Coulomb branch formula

$$
\left\langle\mathcal{O}_{N, S}(\sigma)\right\rangle=\frac{1}{|W|} \sum_{k} \oint_{\mathrm{JK}} \prod_{a=1}^{\operatorname{rank}(G)}\left[d \hat{\sigma}_{a} q_{a}^{k_{a}}\right] Z_{k}^{1-\text { loop }}(\hat{\sigma}) \mathcal{O}_{N, S}\left(\hat{\sigma} \mp \frac{1}{2} \epsilon_{\Omega} k\right)
$$

- For chiral multiplet of $U(1)$ charge Q and R-charge r, we have

$$
Z_{k}^{\Phi}(\hat{\sigma})=\epsilon_{\Omega}^{Q k+1-r} \frac{\Gamma\left(Q \frac{\hat{\sigma}}{\epsilon_{\Omega}}-Q_{\hat{2}}^{\frac{k}{2}}+\frac{r}{2}\right)}{\Gamma\left(Q \frac{\hat{\sigma}}{\epsilon_{\Omega}}+Q \frac{k}{2}-\frac{r}{2}+1\right)}=\frac{\epsilon_{\Omega}^{Q k+1-r}}{\left(Q \frac{\hat{\sigma}}{\epsilon_{\Omega}}-Q_{2}^{k}+\frac{r}{2}\right)_{Q k-r+1}}
$$

- The W-boson W^{α} contributes exactly like a chiral of R-charge $r=2$ and gauge charges α.
- Twisted masses m_{i} for global symmetries can be introduced in the obvious way.

A-model Coulomb branch formula $\left(\epsilon_{\Omega}=0\right)$

For $\epsilon_{\Omega}=0$, the Coulomb branch formula simplifies to:

$$
\langle\mathcal{O}(\sigma)\rangle_{0}=\frac{1}{|W|} \sum_{k} \oint_{\mathrm{JK}} \prod_{a=1}^{\operatorname{rank}(G)}\left[d \hat{\sigma}_{a} q_{a}^{k_{a}}\right] Z_{k}^{1-\mathrm{loop}}(\hat{\sigma}) \mathcal{O}(\hat{\sigma})
$$

with

$$
Z_{k}^{1-\operatorname{loop}}(\hat{\sigma})=(-1)^{\sum_{\alpha>0}(\alpha(k)+1)} \prod_{\alpha>0} \alpha(\hat{\sigma})^{2} \prod_{i} \prod_{\rho_{i} \in \mathfrak{R}_{i}} \rho_{i}(\hat{\sigma})^{r_{i}-1-\rho_{i}(k)}
$$

In the Abelian case, this is a known mathematical result by [Szenes, Vergne, 2003] about volumes of vortex moduli spaces. Our physical derivation generalizes it to non-Abelian GLSMs.

A-model Coulomb branch formula ($\epsilon_{\Omega}=0$)

In favorable cases, one can do the sum over fluxes explicitly:

$$
\langle\mathcal{O}(\sigma)\rangle_{0}=\frac{1}{|W|} \oint_{\mathrm{JK}} \prod_{a=1}^{\operatorname{rank}(G)}\left[d \hat{\sigma}_{a} \frac{1}{\left.\left.1-e^{2 \pi i \partial_{\sigma_{a}} \hat{W}_{\mathrm{eff}}}\right] Z_{0}^{1-\operatorname{loop}}(\hat{\sigma}) \mathcal{O}(\hat{\sigma}),{ }^{2}\right)}\right.
$$

Here $\hat{W}_{\text {eff }}$ is the one-loop effective twisted superpotential. Finally, if the critical locus

$$
e^{2 \pi i \partial_{a} \hat{W}_{\text {eff }}}=1, \quad \sigma_{a} \neq \sigma_{b}(\text { if } a \neq b)
$$

consists of isolated points (such as typically happens for massive theories), we can write the contour integral as

$$
\langle\mathcal{O}(\sigma)\rangle_{0}=\sum_{\hat{\sigma}^{*} \mid d \hat{W}=0} \frac{Z_{0}^{1-\text { loop }}\left(\hat{\sigma}^{*}\right) \mathcal{O}\left(\hat{\sigma}^{*}\right)}{H\left(\hat{\sigma}^{*}\right)}, \quad H=\operatorname{det} \partial_{\sigma_{a}} \partial_{\sigma_{b}} \hat{W}
$$

This same formula appeared in [Nekrasov, Shatashvili, 2014] and also in [Melnikov, Plesser, 2005].

$U(1)$ examples

Example 1. In the $\mathbb{C} P^{n-1}$ model, we have

$$
\left\langle\mathcal{O}_{N, S}(\sigma)\right\rangle=\sum_{k=0}^{\infty} q^{k} \oint d \hat{\sigma} \prod_{p=0}^{k} \prod_{i=1}^{n} \frac{1}{\hat{\sigma}-m_{i}-k / 2+p} \mathcal{O}\left(\hat{\sigma} \mp \frac{k}{2}\right)
$$

with m_{i} the twisted masses coupling to the $\operatorname{SU}(n)$ flavor symmetry. In the A-model limit and with $m_{i}=0$, this simplifies to

$$
\langle\mathcal{O}(\sigma)\rangle_{\epsilon_{\Omega}=0}=\oint d \hat{\sigma}\left(\frac{1}{1-q \hat{\sigma}^{-n}}\right) \frac{\mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{n}}=\oint d \hat{\sigma} \frac{\mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{n}-q}
$$

This reproduces known results.

Example 2. For the quintic model, we have

$$
\left\langle\mathcal{O}_{N}(\sigma)\right\rangle=\frac{1}{\epsilon_{\Omega}^{3}} \sum_{k=0}^{\infty} q^{k} \oint d s \frac{\prod_{l=0}^{5 k}(-5 s-l)}{\prod_{p=0}^{k}(s+p)^{5}} \mathcal{O}\left(\epsilon_{\Omega} s\right)
$$

In the A-model limit, we obtain

$$
\langle\mathcal{O}(\sigma)\rangle_{\epsilon_{\Omega}=0}=\sum_{k=0}^{\infty}\left(-5^{5} q\right)^{k} \oint d \hat{\sigma} \frac{5 \hat{\sigma} \mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{5}}=\frac{5}{1+5^{5} q} \oint d \hat{\sigma} \frac{\mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{4}}
$$

For any ϵ_{Ω}, we find $\left\langle\sigma^{n}\right\rangle=0$ if $n=0,1,2$, and

$$
\left\langle\sigma^{3}\right\rangle=\frac{5}{1+5^{5} q}, \quad\left\langle\sigma^{4}\right\rangle=10 \epsilon_{\Omega} \frac{5^{5} q}{\left(1+5^{5} q\right)^{2}}, \cdots
$$

in perfect agreement with [Morrison, Plesser, 1994].

Non-Abelian examples

For simplicitly, let us focus on $\epsilon_{\Omega}=0$, the A-model.

Example 3. For the Grassmanian model, the residue formula gives

$$
\langle\mathcal{O}\rangle_{0}=\sum_{\mathbf{k} \in \mathbb{Z}_{\geq 0}} q^{\mathbf{k}} \mathcal{Z}_{k}(\mathcal{O})
$$

with

$$
\mathcal{Z}_{\mathbf{k}}=\frac{1}{N_{c}!} \sum_{k_{a} \mid \sum_{a} k_{a}=\mathbf{k}} \frac{(-1)^{2 \rho_{W}(k)}}{(2 \pi i)^{N_{c}}} \oint d^{N_{c}} \sigma \frac{\prod_{a, b=1}^{N_{c}}\left(\sigma_{a}-\sigma_{b}\right)}{\prod_{a=1}^{N_{c}} \prod_{i=1}^{N_{f}}\left(\sigma_{a}-m_{i}\right)^{1+k_{a}}} \mathcal{O}(\sigma) .
$$

Here m_{i} are twisted masses, corresponding to a $S U\left(N_{f}\right)$-equivariant deformation of $G r\left(N_{c}, N_{f}\right)$.
For $m_{i}=0$, the numbers $\mathcal{Z}_{\mathbf{k}}$ are the $g=0$ Gromov-Witten invariants.

Example 3, continued. This simplifies explicit formulas found in the math literature. For instance, one finds [C.C., N. Mekareeya, work in progress]

$$
\left\langle u_{1}(\sigma)^{p}\right\rangle_{0}=\delta_{p,\left(N_{f}-N_{c}\right) N_{c}+\mathbf{k} N_{f}} q^{\mathbf{k}} \operatorname{deg}\left(K_{N_{f}-N_{c}, N_{c}}^{\mathbf{k}}\right)
$$

with $\operatorname{deg}\left(K_{N_{f}-N_{c}, N_{c}}^{\mathrm{k}}\right)$ given by
[Ravi, Rosenthal, Wang, 1996]

$$
(-1)^{k\left(N_{c}+1\right)+\frac{1}{2} N_{c}\left(N_{c}-1\right)}\left[N_{c}\left(N_{f}-N_{c}+\mathbf{k} N_{f}\right)\right]!\sum_{k_{a} \mid \sum_{a} k_{a}=\mathbf{k}} \sum_{\sigma \in S_{N_{c}}} \prod_{j=1}^{N_{c}} \frac{1}{\left(N_{f}-2 N_{c}-1+j+\sigma(j)+k_{j} N_{f}\right)!},
$$

Example: for $N_{c}=2, N_{f}=5$, we have the non-vanishing correlators:

$$
\left\langle u_{1}^{6}\right\rangle_{0}=5, \quad\left\langle u_{1}^{11}\right\rangle_{0}=55 q, \quad\left\langle u_{1}^{16}\right\rangle_{0}=610 q^{2}, \quad\left\langle u_{1}^{21}\right\rangle_{0}=6765 q^{3}, \quad \cdots
$$

This generalizes to the computation of GW invariants of non-CY target space, and is thus complementary of the techniques of [Jockers, Kumar, Lapan, Morrison, Romo, 2012] valid for conformal models.

Example 4. For the Rødland CY_{3} model, our formula reads

$$
\frac{1}{2} \sum_{k_{1}, k_{2}=0}^{\infty} q^{k_{1}+k_{2}} \oint_{\left(\hat{\sigma}_{a}=0\right)} d \hat{\sigma}_{1} d \hat{\sigma}_{2}\left(\hat{\sigma}_{1}-\hat{\sigma}_{2}\right)^{2} \frac{\left(-\hat{\sigma}_{1}-\hat{\sigma}_{2}\right)^{7\left(1+k_{1}+k_{2}\right)}}{\hat{\sigma}_{1}^{7\left(1+k_{1}\right)} \hat{\sigma}_{2}^{7\left(1+k_{2}\right)}} \mathcal{O}(\hat{\sigma}) .
$$

The observables are polynomials in the gauge invariants

$$
u_{1}(\sigma)=\operatorname{Tr}(\sigma)=\sigma_{1}+\sigma_{2}, \quad u_{2}(\sigma)=\operatorname{Tr}\left(\sigma^{2}\right)=\sigma_{1}^{2}+\sigma_{2}^{2} .
$$

The only non-vanishing correlators are given by:

$$
\begin{aligned}
\left\langle u_{1}(\sigma)^{3}\right\rangle & =\frac{42-14 q}{1-57 q-289 q^{2}+q^{3}}, \\
\left\langle u_{2}(\sigma) u_{1}(\sigma)\right\rangle & =\frac{14+126 q}{1-57 q-289 q^{2}+q^{3}} .
\end{aligned}
$$

Note:

- The Yukawa $\left\langle u_{1}(\sigma)^{3}\right\rangle$ was computed by mirror symmetry in [Batyrev et al., 1998]. The second correlator is a new result.
- More generally, the correlators

$$
\left\langle u_{n}(\sigma) \cdots\right\rangle, \quad n>1
$$

in any non-Abelian GLSM are new results which could not be obtained by previous methods (to the best of my knowledge).

- Many more examples can be considered. In particular, one can study the PAX/PAXY models of [Jockers, Kumar, Morrison, Lapan, Romo, 2012] for determinantal $C Y$ varieties.

$\mathcal{N}=(0,2)$ observables

A priori, the above would not generalize to $(0,2)$ theories with only two right-moving supercharges:

$$
\left\{Q_{+}, \tilde{Q}_{+}\right\}=-4 P_{\bar{z}} .
$$

Half-BPS operators are \tilde{Q}_{+}-closed, and generally do not form a ring but a chiral algebra:

$$
\mathcal{O}_{a}(z) \mathcal{O}_{b}(0) \sim \sum_{c} \frac{f_{a b c}}{z^{s_{a}+s_{b}-s_{c}}} \mathcal{O}_{c}(z),
$$

In some favorable cases with an extra $U(1)_{L}$ symmetry, there exists a subset of the \mathcal{O}_{a}, of spin $s=0$, with trivial OPE. These pseudo-chiral rings are known as "topological heterotic rings".
[Adams, Distler, Ernebjerg, 2006]

Theories with a $(2,2)$ locus and $A / 2$-twist

 In this talk, I will focus on $(0,2)$ supersymmetric GLSMs with a $(2,2)$ locus. Schematically, they are determined by the following $(0,2)$ matter content:- A vector multiplet \mathcal{V} and a chiral Σ in the adjoint of the gauge group G, with $\mathfrak{g}=\operatorname{Lie}(G)$.
- Pairs of chiral and Fermi multiplets Φ_{i} and Λ_{i}, in representations \mathfrak{R}_{i} of \mathfrak{g}.
The interactions are encoded in two sets of holomorphic functions of the chiral multiplets:

$$
\mathcal{E}_{i}(\Sigma, \Phi)=\Sigma E_{i}(\Phi), \quad J_{i}=J_{i}(\Phi)
$$

By assumption, we preserve an additional $U(1)_{L}$ symmetry classically, which leads to \mathcal{E}_{i} linear in Σ

We also turn on an FI term τ^{I} for each $U(1)_{I}$ in G.

Theories with a $(2,2)$ locus and $A / 2$-twist

We assign the R-charges:

$$
R_{A / 2}[\Sigma]=0, \quad R_{A / 2}\left[\Phi_{i}\right]=r_{i}, \quad R_{A / 2}\left[\Lambda_{i}\right]=r_{i}-1,
$$

which is always anomaly-free.
We can define the theory on S^{2} (with any metric) by a so-called half-twist:

$$
S=S_{0}+\frac{1}{2} R_{A / 2}
$$

preserving one supercharge $\tilde{\mathcal{Q}} \sim \tilde{Q}_{+}$. The R-charges r_{i} must be integers (typically, $r_{i}=0$ or 2).

Incidentally, half-twisting is the only way to preserve supersymmetry on the sphere, unlike for $(2,2)$ GLSM.

The Coulomb branch of theories with a $(2,2)$ locus

 If we have a generic \mathcal{E}_{i} potentials, there is a Coulomb branch spanned by the scalar σ in Σ :$$
\sigma=\operatorname{diag}\left(\sigma_{a}\right) .
$$

The matter fields obtain a mass

$$
M_{i j}=\left.\partial_{j} \mathcal{E}_{i}\right|_{\phi=0}=\left.\sigma_{a} \partial_{j} E_{i}^{a}\right|_{\phi=0} .
$$

By gauge invariance, $M_{i j}$ is block-diagonal, with each block spanned by fields with the same gauge charges. We denote these blocks by M_{γ}. (On the $(2,2)$ locus, $M_{i j}=\delta_{i j} Q_{i}(\sigma)$.)

Let us introduce the notation

$$
P_{\gamma}(\sigma)=\operatorname{det} M_{\gamma} \in \mathbb{C}\left[\sigma_{1}, \cdots, \sigma_{r}\right], \quad(r=\operatorname{rank}(G))
$$

which is a homogeneous polynomial of degree $n_{\gamma} \geq 1$ in σ.

A residue formula for $A / 2$-model correlators on S^{2}

All the fields are massive on the Coulomb branch, and the localization argument can be carried out similarly to the $(2,2)$ case, allowing us to compute the $A / 2$-twisted correlators on S^{2} with an half-twist:

$$
\langle\mathcal{O}(\sigma)\rangle_{A / 2}=\sum_{k} \frac{1}{|W|} \sum_{k} \oint_{\mathrm{JKG}} \prod_{a=1}^{\mathrm{rank}(G)}\left[d \sigma_{a} q_{a}^{k_{a}}\right] Z_{k}^{1-\mathrm{loop}}(\sigma) \mathcal{O}(\sigma),
$$

with
$Z_{k}^{1-\text { loop }}(\sigma)=(-1)^{\Sigma_{\alpha>0}(\alpha(k)+1)} \prod_{\alpha>0} \alpha(\sigma)^{2} \prod_{\gamma} \prod_{\rho_{\gamma} \in \Re_{\gamma}}\left(\operatorname{det} M_{\left(\gamma, \rho_{\gamma}\right)}\right)^{r_{\gamma}-1-\rho_{\gamma}(k)}$
Here we have a new residue prescription generalizing the Jeffrey-Kirwan residue relevant on the $(2,2)$ locus.

In the Abelian case, this reproduces previous results of [McOrist, Melnikov, 2007].

The Jeffrey-Kirwan-Grothendieck residue

In the $(2,2)$ case, the Jeffrey-Kirwan residue determined a way to pick a middle-dimensional contour in

$$
\mathbb{C}^{r}-\cup_{i \in I} H_{i}, \quad I=\left\{i_{1}, \cdots, i_{s}\right\}(s \geq r), \quad H_{i}=\left\{\sigma_{a} \mid Q_{i}(\sigma)=0\right\},
$$

when the integrand has poles on H_{i} only.
For generic $(0,2)$ deformations, we have an integrand with singularities on more general divisors of \mathbb{C}^{r} :

$$
D_{\gamma}=\left\{\sigma_{a} \mid P_{\gamma}(\sigma)=0\right\},
$$

which intersect at the origin only.

The Jeffrey-Kirwan-Grothendieck residue

To define the relevant Jeffrey-Kirwan-Grothendieck (JKG) residue, we introduce the data $\mathbf{P}=\left\{P_{\gamma}\right\}$ and $\mathbf{Q}=\left\{Q_{\gamma}\right\}$ of divisors D_{γ} and associated gauge charges Q_{γ}. The residue is defined by its action on the holomorphic forms:

$$
\omega_{S}=d \sigma_{1} \wedge \cdots \wedge d \sigma_{r} P_{0} \prod_{b \in S} \frac{1}{P_{b}}
$$

with $S=\left\{\gamma_{1}, \cdots, \gamma_{r}\right\}$, which is

$$
J K G-R e s[\eta] \omega_{S}= \begin{cases}\operatorname{sign}\left(\operatorname{det}\left(Q_{S}\right)\right) \operatorname{Res}_{(0)} \omega_{S} & \text { if } \eta \in \operatorname{Cone}\left(Q_{S}\right), \\ 0 & \text { if } \eta \notin \operatorname{Cone}\left(Q_{S}\right)\end{cases}
$$

with $\operatorname{Res}_{(0)}$ the (local) Grothendieck residue at the origin.

The Jeffrey-Kirwan-Grothendieck residue

The Grothendieck residue itself is defined as:

$$
\operatorname{Res}_{(0)} \omega_{S}=\frac{1}{(2 \pi i)^{r}} \oint_{\Gamma_{\varepsilon}} d \sigma_{1} \wedge \cdots \wedge d \sigma_{r} \frac{P_{0}}{P_{\gamma_{1}} \cdots P_{\gamma_{r}}}
$$

with the real r-dimensional contour:

$$
\Gamma_{\varepsilon}=\left\{\sigma \in \mathbb{C}^{r}| | P_{\gamma_{1}}\left|=\varepsilon_{1}, \cdots,\left|P_{\gamma_{r}}\right|=\varepsilon_{r}\right\}\right.
$$

and it is eminently computable.
Finally, we should take $\eta=\xi_{\text {eff }}^{\mathrm{UV}}$ to cancel the "boundary contributions" from infinity on the Coulomb branch.

Example: $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$ with deformed tangent bundle

Consider a theory with gauge group $U(1)^{2}$, two neutral chiral multiplets Σ_{1}, Σ_{2} and four pairs of chiral and Fermi multiplets:

$$
\Phi_{i}, \Lambda_{i}, i=1,2 \quad Q_{i}=(1,0), \quad \Phi_{j}, \Lambda_{j}, j=1,2 \quad Q_{j}=(0,1),
$$

with holomorphic potentials $J_{i}=J_{j}=0$ and

$$
\mathcal{E}_{i}=\sigma_{1}(A \phi)_{i}+\sigma_{2}(B \phi)_{i}, \quad \mathcal{E}_{j}=\sigma_{1}(C \phi)_{j}+\sigma_{2}(D \phi)_{j} .
$$

with A, B, C, D arbitrary 2×2 constant matrices. This realizes a deformation of the tangent bundle to the holomorphic bundle \mathbf{E} described by the cokernel:

$$
0 \longrightarrow \mathcal{O}^{2} \xrightarrow{\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)} \mathcal{O}(1,0)^{2} \oplus \mathcal{O}(0,1)^{2} \longrightarrow \mathbf{E} \longrightarrow 0
$$

$\mathbb{C} P^{1} \times \mathbb{C} P^{1}$, continued.
We have two sets $\gamma=1,2$:

$$
\operatorname{det} M_{1}=\operatorname{det}\left(A \sigma_{1}+B \sigma_{2}\right), \quad \operatorname{det} M_{2}=\operatorname{det}\left(C \sigma_{1}+D \sigma_{2}\right)
$$

The Coulomb branch residue formula gives

$$
\left\langle\sigma_{1}^{p_{1}} \sigma_{2}^{p_{2}}\right\rangle=\sum_{k_{1}, k_{2} \in \mathbb{Z}} q_{1}^{k_{1}} q_{2}^{k_{2}} \oint_{\mathrm{JKG}} d \sigma_{1} d \sigma_{2} \frac{\sigma_{1}^{p_{1}} \sigma_{2}^{p_{2}}}{\left(\operatorname{det} M_{1}\right)^{1+k_{1}}\left(\operatorname{det} M_{2}\right)^{1+k_{2}}}
$$

This can be checked against independent mathematical computations of sheaf cohomology groups.

This result also implies the "quantum sheaf cohomology relations":

$$
\operatorname{det} M_{1}=q_{1}, \quad \operatorname{det} M_{2}=q_{2}
$$

in the $A / 2$-ring. This can also be derived from a standard argument on the Coulomb branch. [McOrist, Melnikov, 2008]

Conclusions

- We studied $\mathcal{N}=(2,2)$ supersymmetric GLSMs on the Ω-deformed sphere, S_{Ω}^{2}.
- We derived a simple Coulomb branch formula for the S_{Ω}^{2} observables.
- When $\epsilon_{\Omega}=0$, this gives a simple, general formula for A-twisted GLSM correlation functions.
- Some correlators could not be computed with other methods, such as the ones involving $\operatorname{Tr}\left(\sigma^{n}\right)$ in a non-Abelian theory.
- Even when other methods are possible (e.g. mirror symmetry), the Coulomb branch formula is much simpler.
- The formula is valid in any phase in FI parameter space (away from boundaries), geometric or not.
- Surprisingly, it generalizes off the $(2,2)$ locus, leading to very interesting new results for some $(0,2)$ models and the corresponding heterotic geometries.

