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Magnetoelectronics at Edges in Semiconductor
Structures: Helical Aharonov-Casher Edge States
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Virginia Tech, Department of Physics, Blacksburg, VA 24061, USA

It is shown that an Aharonov-Casher vector potential in a two-dimensional geometry can
lead to helical edge states, and initial experimental results are presented. The Aharonov-
Casher vector potential is the electromagnetic dual of the magnetic vector potential,
and leads to traveling states at the sample edge in analogy to the integer quantum Hall
effect. The helical edge states are predicted to appear in a narrow channel geometry with
parabolic or sufficiently symmetric confinement potential. The present work discusses
implications of the helical Aharonov-Casher edge states, experimental considerations
in specific materials systems, and experimental quantum transport results in mesoscopic
geometries.

The quantum Hall effects, both fractional and integer, occur in two-dimensional (2D)
carrier systems upon application of a magnetic field B normal to the carrier plane [1, 2].
A description of the integer quantum Hall effect (IQHE) starts with the introduction of
a magnetic vector potential, describing the interaction between a charge and a magnetic
field. We consider here the physical phenomena generated by replacing the magnetic
vector potential by the Aharonov-Casher (AC) vector potential (defined below) describing
the interaction between a magnetic moment or spin and an electric field. The AC vector
potential is an expression of spin-orbit interaction (SOI) and, linking magnetic moments
and electric fields, is of deep but relatively unexplored importance in the quest for electrical
manipulation of electron spin states (spintronics) and in magnetoelectronics. The present
work studies one fundamental aspect of the AC vector potential. A sample edge necessarily
is defined by an electric field, and one can ask what phenomena are induced on spins or
magnetic moments at a sample edge by the AC vector potential. We find that in a narrow
channel geometry the AC vector potential creates edge states that are electromagnetically
dual to the IQHE edge states. The AC states are helical, akin, but not necessarily identical,
to those characterizing the quantum spin Hall effect (QSHE) state [3–8]. In a thought
experiment, we construct the following situation. The IQHE effect requires an applied
magnetic field. Let us consider an observer in a moving inertial frame, with a velocity
relative to the 2D carrier system such that the applied magnetic field is in this frame
reduced to zero, according to the Lorentz transformation for electromagnetic fields. If
the observed magnetic field is zero, what then is observed from the moving frame? We
derive below that from a moving frame, in a mesoscopic narrow-channel geometry one can
observe the helical AC edge states.
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Helical Aharonov-Casher Edge States 37

The IQHE can be described as arising from one-dimensional (1D) states at the edges of a
2D system, in which backscattering is forbidden [9, 10]. The edge states arise from a broken
translational invariance induced by the edge, lifting the Landau level degeneracy and leading
to propagating chiral edge states. The chirality implies that states propagating in opposite
directions are found at opposite sample sides, with the spatial separation protecting the states
from backscattering. The protection results in quantization of the Hall conductivity σ xy and
vanishing longitudinal resistance. The QSHE state and its three-dimensional topological
insulator analogs [3–8] have attracted considerable attention for the implications of their
topologically protected states. As the IQHE, the QSHE occurs at the edge of a 2D system,
but its 1D edge states show a spin structure [3, 5]. Unlike in the IQHE where spin polarity
does not affect edge state propagation direction, in the QSHE opposite spin polarities at
the same edge propagate in opposite directions (helical edge states). The spin-polarized
channels are protected from scattering unless time-reversal symmetry is broken, flipping
the spin and leading to backscattering within one edge [3]. We will see that, substituting
spin for magnetic moments, such structure is also realized in a thought experiment whereby
a moving witness observes the IQHE in a narrow channel.

As depicted in Fig. 1a, an observer in the frame O(x,y,z) performs an IQHE experiment
by applying B = (0,0,B) along the z-axis, normal to a 2D system situated in the x-y plane. To
derive IQHE edge states in O, a potential describing the sample edges must be introduced
[10, 11]. With the edge parallel to the x-axis, we use a parabolic confinement [11–13],
V(x,y) = 1

2 mω2
py2. Hence a confinement electric field ε = (0,ε,0) is present on both sides

of the sample, with a y-component linear in y, ε = −(m/q) ωp
2 y (carrier charge and mass

are represented by q and m). The observer in O solves for HAB �(x,y) = E�(x,y) with:

HAB = 1

2m
( p − q A)2 + 1

2
mω2

py2 (1)

where A denotes the vector potential, for instance in the gauge A = 1
2 B × r with

r in the x-y plane. The �(x,y) solving HAB describe the known magnetic edge states

Figure 1. (a) The narrow wire in which the IQHE is set up, with parabolic potential at the edges, and
coordinate frame O. (b) The coordinate frame O′, and the schematic trajectory with velocity v followed
by the moving observer in the thought experiment. (c) The duality between the AB effect induced by
qA and the AC effect induced by (1/c2) µ × ε, illustrated by interferometric ring geometries.
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38 L. L. Xu et al.

[10, 11]. In a thought experiment (in free space), another observer, attached to frame
O′(x′,y′,z′), moves at velocity v = c2(ε × B)/ε2 relative to O along the x-axis (Fig. 1b),
where c is the speed of light. Assuming q > 0, in the thought experiment O′ follows the
edges defined by ε in a counter-clockwise path, since v = −c2 B/ε for y > 0 and v = c2 B/ε
for y < 0 (the small segments parallel to the x-axis at the sample ends can be readily included
without altering the conclusions below). Using the Lorentz transformation with the given
v, the observer in O′ finds for B′ and ε′ in frame O′, the following values: B′ = (0,0,0) and
ε′ = (0, ε

√(1 − (v/c)2), 0). If B′ = 0, what then does O′ observe concerning the IQHE
edge states observed in O? The question is not trivial since the quantization of σ xy in the
IQHE can be expressed in terms of a topologically protected Chern number [14, 15, 8], and
one may reasonably expect the Lorentz transformation to preserve topological protection
in some form. It is thus expected that the moving observer still notices edge phenomena.
We note that the presence of the edge, with its confinement ε, plays an important role
and that ε ⊥ B. We will see that the IQHE edge states are perceived by O′ as edge states
of magnetic moments (in a semiclassical thought experiment, since spin is distinct from
classical moments, and specific phenomena arise from spin, such as the helicity of states in
the QSHE). We point out that, notwithstanding classical limitations, thought-experiments
using the Lorentz transformation point to a mapping that may help in the description of
other edge phenomena, since in principle the transformation converts between different
types of topologically non-trivial edge states. As example, beyond the scope of this paper,
one may ask what a moving observer will conclude about the fractional quantum Hall effect
[16]. Returning to the thought experiment, classically, the moving observer O′ will perceive
a magnetic moment µ = 1

2 qr × v, generated by the charges q moving at velocity v. Using
B = (1/c2) ν × ε, observer O′ then experiences qA as qA = (1/c2) µ × ε. Observer O′

hence solves for HAC �(x,y) = E�(x,y) with:

HAC = 1

2m

(
p − 1

c2
µ × ε

)2

+ 1

2
mω2

py2 (2)

where we henceforth drop the primes for ease of notation. We notice the appearance in Eq.
2 of the Aharonov-Casher (AC) vector potential (1/c2) µ × ε, generated by a pure electric
field. Whereas the Aharonov-Bohm (AB) effect [17] describes the phase accumulated by a
charged particle along a trajectory that encloses a magnetic field flux, its electromagnetic
dual, the AC effect [18] describes the phase accumulated by a magnetic moment along a
trajectory in an electric field. The duality [19] is schematically illustrated in the interfer-
ometric ring geometries of Fig. 1c, as would be used to detect the effects in mesoscopic
experiments. Figure 2 shows an experimental realization of a ring for the measurement of
the AB effect. The ring, in this sample of diameter 700 nm, was fabricated by electron-
beam lithography and reactive ion etching on a two-dimensional electron system (2DES)
contained in the InGaAs quantum well of an InGaAs/InAlAs semiconductor heterostruc-
ture. In the darker areas the InGaAs quantum well is etched away, and these areas form
inaccessible barriers for the electrons. The electronically conducting path through the ring
is schematically indicated by fine lines in Fig. 2, illustrating the correspondence with Fig.
1c (right). Application of B creates a magnetic flux threading the ring and generates the AB
quantum phase, with a resulting interference effect measurable by low-temperature (<5 K)
quantum transport. Experimental examples will be presented below. The AC effect itself
was experimentally confirmed using neutron beam interferometry [20]. In the solid-state its
similarity to the materials property of SOI has led to experiments [21–23] and theoretical
work [24–26]. Expressions of the duality based on the Dirac equation were presented in
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Helical Aharonov-Casher Edge States 39

Figure 2. SEM micrograph of an experimental realization, by electron-beam lithography and reactive
ion etching, of a ring for the measurement of the AB effect in an InGaAs/InAlAs semiconductor
heterostructure. The electronically conducting path through the ring is schematically indicated by
fine lines. The darker areas represent etched regions, forming barriers for the electrons. The ring has
average diameter of 700 nm, and lithographic arm width of 300 nm.

Ref. 27. The Landau-like levels induced by the AC vector potential for various profiles of
ε were described in Ref. 28.

We can now ask about the generality of the thought experiment, since both the flight
path and velocity of O′ seem specific. Concerning the path, all edges yield the same HAC if
one or several independent observers O′ (one for each edge) consistently adhere to v. The
conclusions below will hence be valid over all edges along the entire sample perimeter.
Concerning the magnitude v = c2 B/ε, in the thought experiment it was chosen to yield a
pure electric field in frame O′, whereas v = 0 yields a pure magnetic field. We thus have
two endpoints of a series of relativistically correspondent phenomena: HAB describing q in
applied B, and HAC describing µ in applied ε. Once O and O′ are established as inertial
frames, we can of course disregard the origin of HAB and HAC from the thought experiment
and solve HAB and HAC in the local frame. Intermediate velocities will yield various ratios
of perpendicular ε and B. It follows that applied mixed ε and B likely also yield non-trivial
edge phenomena, although the resulting states are not the topic of this paper. We now turn
our attention to solving HAC.

In Eq. 2 and in Fig. 1a-c, we consider for now µ//z, such that µ = (0,0,µz). We will be
able to relax this requirement later, since only the product µ × ε is involved. We introduce
ωA = µzω

2
p/(qc)2 = 1

2 ωp (µz/µB) (h̄ωp/mc2) with µB the Bohr magneton. Here ωA holds the
same role in HAC as the cyclotron frequency ωC = qB/m holds in HAB. Using a wave function
localized in y and with plane-wave nature along x over a sample of length L, �(x,y) =
(1/L)1/2 eikxζ (y), we obtain for the transverse function ζ (y):

[
1

2m
(�k − mωAy)2 + p2

y

2m
+ 1

2
mω2

py2

]
ζ(y) = Eζ(y) (3)

which, using a procedure identical to that yielding edge states in the IQHE [10, 11], can be
rewritten as a harmonic oscillator shifted in y:
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40 L. L. Xu et al.

Figure 3. (a) Schematic depiction of the helical edge states induced by the AC vector potential. If at
a given edge the signs of k and µz are changed simultaneously, the location of the edge state does not
change. Counterpropagating states of opposite µz but same n are in fact superposed. (b) Schematic
depiction of En,k as function of the wave function center point yc. As in the IQHE, propagating states
(labeled by n, k and here also µz) exist at y-coordinates where EF intersects En,k.

[
λ

�
2k2

2m
+ p2

y

2m
+ 1

2
m�2 (y − ηk)2

]
ζ(y) = Eζ(y) (4)

with λ=ωp
2/(ωp

2 +ωA
2), �= (ωp

2 +ωA
2)1/2 and η = hωA / [m(ωp

2 +ωA
2)]. We find that the

energy, En,k = λ(h̄2k2)/(2m) + h̄� (n + 1/2), and that ζ n,k(y) = e−q2/2 Hn(q) with q = y − ηk
and with Hn(q) the nth Hermite polynomial. The transverse wave function is hence centered
at yc = η k. A similar spatial separation was derived in the context of spin accumulation at
the boundaries under confinement-induced SOI [12, 29, 30] (cfr below) or in the context
of quantized magnetization transport [31]. However, given the mapping of Eqs. 2–4 on
IQHE equivalents, an analysis in terms of edge states is compelling. The velocity of the
state is (1/h̄)(dEn,k/dk) = λ (h̄k/m). The position yc = ηk and the velocity are hence both
proportional to k. Yet, yc also depends on µz, via ωA. To conclude the same position yc and
same energy En,k for given states, the signs of k and µz must be changed simultaneously.
Hence at the same edge, states with µz > 0 propagate in a direction opposite to states with
µz < 0, as illustrated in Fig. 3a. Figure 3b schematically depicts the energy dispersion close
to the edge. At the edge, the Fermi level EF cuts through a finite number of dispersion
curves En,k, labeled by n, at their respective locations yc, with higher n corresponding to
locations further removed from the edge. In the bulk the En,k develop a gap, in analogy with
Landau levels generating edge states in the IQHE. Equations 2–4 apply for an arbitrary µ,
and in particular applies for the moment from a particle of spin 1/2. In that case, µz > 0 and
µz < 0 are naturally identified with the two projections of the spin along the quantization
axis [26, 32]. In the case of spin 1/2, after solving Eqs. 2–4, an observer will hence conclude
to the existence of helical edge states, as depicted in Fig. 3a. Helical edge states (based on
the projection of spin in the z-direction) are also found in the QSHE [3, 5]. Backscattering
at one edge in Fig. 3a requires µ to be flipped, µz → −µz, an operation which, involving a
magnetic quantity, requires time reversal symmetry to be broken. Hence, unless scattering
potentials are present whereby time reversal symmetry is broken, an incident electron will be
transmitted across disordered regions, and backscattering is suppressed as the temperature
T → 0. Thus the physical picture closely parallels the QSHE, and a similar reasoning
emerges regarding measurable quantities [3]. The helical edge states here arise in a simple
mesoscopic wire with parabolic confinement potential, under the action of the AC vector
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Helical Aharonov-Casher Edge States 41

potential, and do not require the special band structure under which the QSHE was so far
described [3–8].

The electric field ε assumes two roles: the linearity of ε in y over the width of the
sample leads to an AC vector potential equivalent to the magnetic vector potential of a
homogeneous B, and, the resulting parabolic V(x,y) defines the sample’s edges. The double
role is illustrated by � = (ω2

p + ω2
A)1/2, where both ωp and ωA depend on the existence of

the parabolic potential, whereas ωC is independently created by B in the IQHE equivalent
� = (ω2

p + ω2
C)1/2. The need in Eq. 2 to maintain ε across the sample width indicates a

particular relevance for narrow channels, such as encountered in mesoscopic experiments
and point-contacts. The energy gap h̄� yields an insulating bulk when EF lies within this
gap, while the edges remain metallic (Fig. 3b). The gap isolates the edge states and plays
an important role in the IQHE and QSHE. We should thus ascertain how deviations from
parabolicity in V(x,y) affect the isolation of the helical edge states. To first order, we find
that a perturbation symmetric in y alters the magnitude of the gap but does not qualitatively
affect the isolation of edge states. A perturbation asymmetric in y leads to a shift in En,k (yc)
and can affect the isolation if of sufficient strength, establishing the benefits of a symmetric
V(x,y).

With a vector potential at hand in Eq. 2, we can now apply the Laughlin gauge-
invariance argument for quantization of σ xy = ne2/h (n an integer), in the IQHE [33,
10]. The argument can be appreciated in the light of the Maxwell-Faraday expression in
Maxwell’s equations: a temporal change in magnetic flux by the flux quantum h/e creates
a current corresponding to the transport of a unit charge e. This results in a conductance
quantized in e2/h. Assuming constant µ, we find that now the AC cross line integral of ε

(“AC flux”) through Laughlin’s cylinder (also in the rings of Fig. 1c) is quantized as:

1

c2
µ ·

∮
ε × dl = n2π� (5)

with n an integer. The role of e is assumed by the projection of µ normal to the plane of
ε (cfr Fig 1c), µn. As can be seen from Eq. 5, the cross line integral of ε is quantized in
units of c2 h/µn and hence the role of the flux quantum h/e goes to c2 h/µn. The force on a
magnetic moment can be expressed as [34]:

Fµ = ∇ (µ · B) − 1

c2

d

dt
(µ × ε) (6)

After integrating over a contour, the second term expresses the additional force on µ due to
a temporal change in the cross line integral of ε in Eq. 5, in analogy to the Maxwell-Faraday
expression. Hence, we expect a transport of a magnetic moment µn in response to a temporal
change in the cross line integral by the quantum c2 h/µn. This results in a magnetization
conductance quantized in µn

2/h. The quantization of σ xy = n e2/h in the IQHE is in the
dual effect replaced by quantized magnetization transport (see also Refs. 3 and 31). Unlike
e however, µn is not a universal constant, since values for µ, in the solid-state as well
as for elementary particles, depend on interactions. Furthermore, in contrast to charge,
magnetization is not a strictly conserved quantity. Thus, while the quantization is expected
to occur, universal values are not anticipated. In the broadest terms, we recognize that
the AC vector potential, when transformed from the magnetic vector potential, introduces
phenomena at the edge of a narrow channel.

We now compare the results from Eqs. 2–4 to confinement-induced SOI. The SOI term
in the Hamiltonian can be written as HSO = β σ ·(k × ε), where σ is the vector of Pauli
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42 L. L. Xu et al.

matrices, and where ε is identified with the in-plane confinement electric field [12, 29, 35].
With the y-component of ε as ε = −(m/q) ω2

p y, with k//x and considering the projection of
spin along z, we can write HSO = −h̄ k ωS y. This defines ωS, with a role equivalent to ωA

above. In analogy to Eq. 3 we find that the transverse function ζ (y) follows:

[
�

2k2

2m
− �kωSy + p2

y

2m
+ 1

2
mω2

py2

]
ζ (y) = Eζ (y) (7)

We rescale the potential term in Eq. 7 to a weaker confinement potential 1
2 m ω′2

p y2 with

ω
′2
p = (ω2

p − ω2
S) and recover a form identical to Eq. 3 with the substitution of ωp → ω

′
p

(rescaling of the potential does not affect the physical conclusions). After rewriting Eq. 7 as a
shifted harmonic oscillator, the energy is expressed as En,k = λ′ (h̄2k2)/(2m) + h̄�′ (n + 1/2),
with λ′ = ω′2

p/(ω′2
p + ω2

S), and �′ = (ω′2
p + ω2

S)1/2. The transverse wave function becomes
ζ n,k(y) = e−q2/2 Hn(q) with q = y − η′ k where η′ = h̄ωS/[m(ω′2

p + ω2
S)]. Hence ζ n,k(y) is

now centered at yc = η′ k. Equation 7, in complete analogy to Eq. 3, will then indeed yield
spatially-separated helical edge states, counterpropagating for opposite spins. The helical
edge states induced by HSO are thus equivalent to the AC edge states. Such SOI states are
of interest in mesoscopic geometries, particularly in split-gate point-contacts. A parabolic
V(x,y) with an in-plane ε however only approximates the complex three-dimensional ε

encountered in split-gate point-contacts [13, 36]. For instance, a y-dependent z-component
of ε, εz(y), likely exists in these systems, in addition to the in-plane component of ε. As
mentioned above however, only µ × ε matters, and with Bychkov-Rashba SOI [37, 38]
aligning spin perpendicular to k and to z, εz(y) can then lead to a term analogous to −h̄ k
ωS y. We conclude that in point-contacts, either the y- or inhomogeneous z-component of
ε can yield helical edge states, with implications for transport phenomena [39].

Next we outline experimental challenges to observe the helical states from Eqs. 2–4.
We assume that the observer uses the electron spin for µ and the confinement field for ε.
As described above for SOI, the term µ × ε can in mesoscopic geometries either arise from
the projections of spin along z (via εy) or along y (via εz(y)). To maximize µ and minimize
the effective c, we consider the quasi-relativistic [40] narrow-gap semiconductors with
large electron g-factors (g), InGaAs [32], InAs [41] or InSb [42–44]. The band structure
implies a momentum vs energy response differing from that in vacuum, determining the
electron dynamics under electromagnetic fields. Non-parabolicity in the conduction band
can be expressed in terms of an effective c ≈ (Eg/2m∗)1/2, where Eg denotes the bandgap
and m∗ the effective mass at the �-point [40]. For InGaAs, InAs and InSb it is found that
c ≈ 1.2×106 m/s, about 250 times lower than the vacuum value. The magnetic moment
is considered as µ = 1

2 g µB. As all three materials yield similar estimates, we consider
a 2D system in InAs (�-point m∗ = 0.024 me with me the free electron mass, and g =
−15). At a 2D density 1012 cm−2, taking non-parabolicity into account, EF = 83 meV.
To derive a value for ωp, we use EF as the approximate classical turning point of V(x,y),
and assume a depletion layer width of 0.15 µm at the edge, within the range of values
encountered in 2D system (depletion layers in InSb 2DESs [44, 45] are wider than in InAs
2DESs [23], likely due to the accumulation layer present at InAs surfaces [46]). We find
ε ≈ 106 V/m (similar values of ε, about an order of magnitude below breakdown, are
typical in semiconductor heterostructures, justifying the approach). With these values we
find h̄ωA ≈ 0.01 meV, corresponding to 0.13 K. It is enlightening to cast this estimate in
an IQHE equivalent: h̄ωA corresponds to ∼ 7 mT in a GaAs 2DES IQHE experiment. The
small energy gaps point to experimental challenges for experiments closely copying the
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Helical Aharonov-Casher Edge States 43

Figure 4. Magnetoresistance �R(B) at T = 0.4 K due to AB oscillations in a single ring fabricated
on an InGaAs 2DES. The low-B inset shows the h/e period at higher resolution. Universal conduction
fluctuations are responsible for the quasi-periodic broad maxima.

standard IQHE geometries, and suggest the interferometric mesoscopic ring experiments
mentioned above, with their excellent spectroscopic resolution. Also, the dual effect predicts
quantized magnetization transport (rather than charge, and not to fundamental constants).
Direct measurement of magnetization transport creates experimental difficulties, partially
avoidable by a conversion to electrical measurements. Equation 2 also predicts Shubnikov-
De Haas-like oscillations in magnetotransport, from density-of-states effects. In the edge
state regime, one can also envision measurements based on altering the edge state structure
via side gates, or using applied magnetic fields to align µ parallel to ε.

The interest in spin control and spin edge phenomena renders experiments to test the
reality of the AC edge states compelling, and we thus now turn to experimental efforts.
As an illustration of interferometric measurements of quantum phase effects, Fig. 4 shows
AB oscillations observed in an InGaAs 2DES single ring of average diameter of 1.4 µm
and lithographic arm width 300 nm (the sample fabrication and layout follow Fig. 2). The
10 nm wide InGaAs quantum well containing the 2DES forms part of an InGaAs/InAlAs
heterostructure, with electron density of 9.0×1015 m−2 and mobility 5.9 m2/Vs at T =
0.4 K. The heterostructure is asymmetrically doped with resulting dominant Bychkov-
Rashba SOI [37, 38]. The electron quantum phase coherence length reaches several µm at
T = 0.4 K, allowing phase-coherent experiments. The measurement consists of a sensitive 4-
contact resistance measurement over the ring, at T = 0.4 K. The ring resistance oscillates as
function of perpendicularly applied B, with a periodicity corresponding to one magnetic flux
quantum h/e threading the ring. The main figure indicates a magnetoresistance with a short-
period oscillatory signal persisting with variable amplitude up to high B, and riding on a
quasi-periodic background. The inset magnifies the short-period signal, showing the period
of 2.9 mT in close agreement with the expected h/e flux periodicity. The quasi-periodic
background is representative of universal conductance fluctuations in quantum-coherent
mesoscopic devices. Similar but electromagnetically dual interferometric measurements in
semiconductor devices form the basis for the experimental pursuit of AC phases and AC
edge states.

Figure 5 describes a sample structure to experimentally access AC phases and AC edge
states. The sample was fabricated on the same material as the sample in Fig. 4, and was
measured at T = 1.2 K in a B tilted at an angle to the 2DES normal. The geometry is a
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Figure 5. Top: Angular dependence of the magnetoresistance vs B⊥ of a narrow InGaAs channel
(1 µm width) with a quantum antidot (ø 300 nm) at 1.2 K (insert: θ values). Bottom right: Schematic
of quantum antidot samples. Etched regions are dark. Voltage measurement arms and current leads are
connected to electrical contacts. Bottom left: Horizontal cross-section through the sample, schemat-
ically showing conducting 2DES regions and in-plane confinement ε. A ∼ linear profile of ε in the
channels implies a ∼ parabolic potential.

quantum antidot (QAD, an etched disc inaccessible for electrons, diameter 300 nm) in a
narrow and short channel (width and length 1.0 µm) [47–52]. Samples did not have side-
or top gates. The approximate profile of ε for the QAD sample is depicted in Fig. 5 (bottom
left): we can assume a parabolic confinement potential (linear ε) in the channels on the sides
of the QAD, and a decaying ε in the direction of the current leads (Fig. 5, bottom right). The
angle θ between B and the 2DES plane was varied from θ = 0o (in-plane, B // measurement
current) to θ = 90o (B ⊥ 2DES), and the measured magnetoresistance plotted vs the normal
component of B, Bn = B sin[θ ]. AB-type oscillations appear at low B, with multiple Bn

periodicities (Fig. 5), due to closed paths less well defined than on ring geometries. When
varying θ , fine structure appears in the magnetoresistance when the in-plane component of
B, B// = B cos[θ ], is appreciable (e.g. θ < 48o, Fig. 5), in the moderate range of Bn studied
(0.5 T). A low but non-zero B// results in time-reversal symmetry breaking via Zeeman
splitting and coupling to the orbital motion in finite thickness quantum wells [53–55]. The
effects are small here due to the comparatively strong Bychkov-Rashba SOI [37, 38] in
our samples. Indeed, Bychkov-Rashba SOI corresponds to an in-plane effective B ≈ 3 T,
while B// < 0.5 T. Varying θ results in a rotation of the total B experienced by the electrons
(applied B plus effective in-plane B from Bychkov-Rashba SOI) and hence a rotation
in the spin precession axis. This leads to a rotation in µ at each point along the paths
and a change in (1/c2) µ × ε, integrated over the interfering paths. The rotation is small
(<< tan−1[0.5/3] ≈ 10o) at any point along the path, limited by the mostly in-plane spin
direction and the moderate B//. Effects of the AC phase are hence expected to be moderate
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and smoothly varying in θ . Indeed, a moderate amplitude change is observed in Fig. 5. Yet,
the fine structure at θ = 12o cannot be ascribed to the AC phase and a more likely origin can
be found in resonant tunneling effects [51, 52] between AC edge states formed on opposite
edges of each of the two narrow side channels formed between the channel walls and the
QAD. When the resonant tunneling condition is fulfilled, communication is established
between AC edge states on opposite sides of the channel, resulting in a breakdown in the
absence of backscattering and a measurable resistance change. The mT spacing for the fine
structure in Fig. 5 is consistent with the expected approximate energy spacing between AC
edge states, as derived above. Moreover, samples without the central QAD do not show fine
structure, in agreement with the hypothesis that the QAD forms a resonant island which
allows detection of AC edge states. We have also investigated channels with 5 QADs in
series, and could not identify fine structure, as expected if averaging over variations in QAD
diameter reduces the resonance peaks.

Beyond the preliminary QAD data presented here, samples are being designed to
strengthen the demonstration of interferometric detection of Aharonov-Casher edge states.
In conclusion, we address Aharonov-Casher edge states in a narrow channel. Helical
edge states are predicted, which possess several features akin to the edge states in the
recently-described QSHE. The vector potential transformation used in this work raises the
possibility that other sets of closely-related effects may exist. Beyond fundamental interest,
the Aharonov-Casher phenomena may also present avenues for electrical control of spin
and magnetic moments in magnetoelectronics.
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