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Abstract
Low-temperature Aharonov–Bohm oscillations in the magnetoresistance of mesoscopic
interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their
dependence on excitation current and temperature. The rings have an average radius of
650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference
oscillations over a wide range of magnetic fields. Apart from a current and temperature
dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied
magnetic field. The phase coherence length is extracted by analysis of the fundamental and
higher Fourier components of the oscillations, and by direct analysis of the amplitude and its
dependence on parameters. It is concluded that the Thouless energy forms the measure of
excitation energies for quantum decoherence. The amplitude modulation finds an explanation
in the effect of the magnetic flux threading the finite width of the interferometer arms.

(Some figures may appear in colour only in the online journal)

1. Introduction

The study of quantum phase decoherence in solid-state
systems yields insights into the fundamental properties of
mesoscopic systems, which are large compared to the atomic
scale but still of a length scale preserving quantum phenom-
ena. Understanding quantum decoherence is also important
in the field of quantum information processing. Electron
quantum interference has become an important method to
explore mesoscopic physics and quantum decoherence, using
phenomena such as weak-localization and using lithographi-
cally fabricated interferometers of a length scale comparable
to the phase coherence length lφ at low temperatures (T). In
the solid-state, several types of interferometers have proved
amenable to fabrication at the mesoscopic scale using ad-
vanced nanolithographic techniques, such as Mach–Zehnder
interferometers, Fabry–Perot-type interferometers, and, the
type used in this work, Aharonov–Bohm ring interferometers.

One of the more remarkable manifestations of quantum
interference is the Aharonov–Bohm (AB) effect [1, 2], not
only because it has proved experimentally accessible if care
is taken in the preparation of samples, but also, among others,
because it forms a main ingredient of magnetoresistance due
to localization and mesoscopic phenomena in the solid-state
[3, 4] and because it illustrates non-local phenomena in
quantum physics and the consequences of gauge invariance.
Our measurements are performed in two-dimensional semi-
conductor heterostructure AB ring electron interferometers,
where the magnetoresistance (MR) of the ring exhibits the AB
effect: the ring resistance R shows a periodicity in the applied
magnetic field B applied normal to the ring. The period of the
oscillations in R(B) coincides with the magnetic flux through
the ring changing by one flux quantum 80 =

h
e , where h is

Planck’s constant and e is the electron charge [5]. Since B is
uniform over the ring area, for our rings of mean radius r the

10953-8984/13/435301+07$33.00 c© 2013 IOP Publishing Ltd Printed in the UK & the USA

http://dx.doi.org/10.1088/0953-8984/25/43/435301
mailto:heremans@vt.edu
http://stacks.iop.org/JPhysCM/25/435301


J. Phys.: Condens. Matter 25 (2013) 435301 S L Ren et al

flux threading the ring is8(B) = Bπr2, and the period in B of
R(B) can be predicted from lithographic sizes.

The phase coherence length lφ is defined as the distance
electrons travel before their quantum phase is randomized
by inelastic scattering processes, and, at low T, lφ can
reach a few micrometers [6]. The amplitude A of the AB
oscillations observed in an electron interferometer decays
exponentially [7, 8] with the electron path length l, as:

A(l) = A0 exp(−l/lφ) (1)

where A0 is a prefactor dependent on energy smearing via
the thermal energy kBT (where kB is the Boltzmann constant)
and via a voltage or current bias. For an AB ring, the h

e
oscillation period corresponds to a path length l = πr and
is the strongest component in the frequency spectrum in
R(B). A weaker component at h

2e often exists, corresponding
to a path length l = 2πr. Rarely a component at h

3e is
observed, corresponding to a path length l = 3πr. From
the experimentally observed amplitudes in the frequency
spectrum and using the correspondence between the h

ne
mode and the path length l = nπr, equation (1) allows
lφ to be deduced [9]. The mobility mean free path forms
another important length scale, limited by elastic momentum
scattering processes, and defined as le = vFτe, where vF is the
Fermi velocity, τe = µm∗e/e is the momentum relaxation time
derived from the mobility µ, and m∗e represents the electron
effective mass (m∗e = 0.035me at the 0-point in our system,
where me represents the free-electron mass). Our rings are in
the quasi-ballistic regime, where le approximately equals the
path length πr, and ballistic, rather than diffusive, expressions
are used to describe mesoscopic transport phenomena.

The thermal energy kBT leads to an uncertainty 1E
in a quantum state’s eigenenergy (thermal smearing) and
will lead to phase decoherence between electrons, due to
a phase difference accumulated over a finite path length L.
Equivalently, the excitation voltage Vexc generated across a
system of resistance R and traversed by an excitation current
I, will also lead to an energy smearing 1E = eVexc = eIR.
The critical energy scale for phase decoherence by energy
smearing in a finite system is quantified by the Thouless
energy [10] Ec, expressing the eigenenergy change that would
cause a phase shift of 1 over a path length L:

Ec =
h̄

τ
=

h̄2kF

m∗eL
(2)

where h̄ = h/2π, τ = L/vF is the traversal time, and kF is the
Fermi wavevector. For an AB ring, more specifically L = πr.
If1E > Ec then1E/Ec independent and incoherent channels
contribute to transport, averaging out the interference signal
proportionally to

√
Ec/1E [5, 11]. For AB oscillations,

a reduction in the amplitude prefactor A0 is expected
∼
√

Ec/1E. 1E can be determined either by the excitation
voltage across the system, using1E = eVexc = eIR, or by the
temperature T , using 1E = κkBT . A value κ > 1 is expected
since averaging occurs if the thermally accessible energy
range 1E is sufficiently wide to give rise to a significant
number of statistically independent Thouless energy intervals
Ec. We adopt κ ≈ 3, as suggested in [7, p 102].

Figure 1. SEM micrograph of a representative Aharonov–Bohm
ring, with a schematic of the four-terminal measurement setup. The
darker gray areas (delineated by white borders) are etched trenches
depleted of electrons, and function as barriers, forcing the electrons
to travel into the lighter gray ring-shaped areas.

A modulation of the AB oscillation amplitude with B
in mesoscopic systems has been a generally observed phe-
nomenon in experiments [5, 12–20], sometimes ascribed to
spin-dependent processes [13–15], or dynamic processes [20].
Recently [12] used an autocorrelation function in B to analyze
the modulation, based on the fact that when the magnetic flux
through the finite width of the interferometer arms changes
by ∼80, a new realization of the mesoscopic system occurs
and the oscillation amplitude and phase are modified. Our
modulation data is in good accordance with this view, and
this work hence adopts the method in [12]. We also offer an
alternative explanation, where different oscillation periods in
R(B) occur due to different paths allowed by the finite width
of the interferometer arms.

2. Experiments

Figure 1 shows a scanning electron microscope (SEM)
micrograph of a representative AB ring fabricated on an
In0.64Ga0.36As/In0.45Al0.55As heterostructure by electron-
beam lithography and inductively coupled plasma reactive
ion etching (ICP-RIE). The heterostructure contains a
two-dimensional electron system (2DES) in a 10 nm
wide In0.64Ga0.36As quantum well located 50 nm from
the surface. The 2DES density NS = 9.4 × 1011 cm−2

(yielding a Fermi wavelength λF = 26 nm) and the mobility
µ = 5.9 × 104 cm2 (V s)−1 at 0.4 K, resulting in a 2DES
resistivity ρ2D = 110 �/�. Taking non-parabolicity of the
conduction band into account, the 2DES has le = 1.7 µm,
placing the AB rings in the quasi-ballistic regime. The
micrograph depicts a different AB ring from those used in
the experiments, but equivalent in layout. Lithographically,
the rings in the experiments feature an average radius
r = 650 nm, arm width w = 300 nm (the central antidot has
radius 500 nm). The average radius yields an expected AB
oscillation period of 31 G. We performed low-frequency ac
lock-in four-terminal measurements as indicated in figure 1,
applying the ac excitation current I through the AB ring,
and detecting the voltage across the AB ring under variable
B applied normal to the heterostructure area. The excitation
currents I varied from 10 to 300 nA (rms values), with
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Figure 2. Measured Aharonov–Bohm magnetoresistance
oscillations, as ring resistance R(B) versus B. Panels (a) and (b)
show the ring magnetoresistance over smaller ranges of B than
panel (c), which emphasizes a view of the modulation with B.

T from 0.390 to 3.00 K. Two samples were measured,
of nominally identical lithographic design and identically
processed, and for each sample several cooldowns and
measurements were performed. For a given sample the
usual variations were encountered between measurements
from different cooldowns, since the magnetotransport
fingerprint of mesoscopic systems is delicately dependent
on the specific unintentional impurity configuration achieved
during the cooldown (via universal conductance fluctuation
backgrounds). While the data from each cooldown bears a
unique fingerprint, our analysis of the bias and T dependence
and of the modulation is not sensitive to such variations,
and consistent behavior with respect to our conclusions
was observed. For the following discussion, most of the
data presented originates from one sample with different

cooldowns. Use of data from the second sample is specifically
indicated. The typical resistance of an AB ring is 2.5 k� at
0.4 K, a value consistently encountered, with variations within
10%.

3. Results and discussion

Pronounced AB oscillations were observed over a wide range
of B up to 0.6 T. Below 0.3 T the oscillations are stronger and,
as figure 2 shows, display a quasi-periodic modulation with
B. Figure 2(c) provides data from −0.3 to 0.3 T, from which
the modulation is apparent. Higher resolution is provided in
figures 2(a) and (b). Next, we will focus on the lower range of
B.

3.1. AB oscillations in low magnetic fields

The low B measurements are performed below 0.06 T. A
typical measurement around B = 0 is presented in figure 3.
Figure 3(a) contains the data as-taken, figure 3(b) shows the
same data after background MR subtraction, and figure 3(c)
presents the Fourier transform. The Fourier transform displays
a maximum at ∼400 1/T , labeled as h

e , corresponding to
the AB oscillations visible in figures 3(a) and (b), and
corresponding to the h

e component of the spectrum. A smaller
maximum appears at ∼800 1/T , corresponding to the h

2e
component. The Fourier transform indicates a period in B
of 25 G for the h

e component. For a path following the
average radius of 650 nm, a period of 31 G is expected for
the h

e component. The observed period of 25 G corresponds
to a preferred path having an average radius of 730 nm.
Accounting for the arm width, such a preferred path lies
within expectations, as discussed later in this section.

Figures 3(a) and (b) show that the AB oscillation
amplitude varies with a quasi-period of ∼200 G, a variation

Figure 3. Aharonov–Bohm magnetoresistance oscillations around B = 0 at 0.4 K. Panel (a) shows the raw data. Panel (b) shows the data
after background removal. Panel (c) contains the Fourier transform of (b), where h

e and h
2e modes are indicated in the frequency spectrum.
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Figure 4. Black solid oscillatory line: the autocorrelation function
in B of the Aharonov–Bohm oscillations in figure 3(b). Red open
circles©: the maxima of the autocorrelation function, as a guide to
the autocorrelation function envelope. Blue line with open squares
�: the fit to the autocorrelation function envelope [21], using the red
open circles. The use of a finite range of B leads to deviations
between the fit and the data at higher 1B, as discussed in the text.

recurrently observed as described above, and recently
addressed in detail in [12]. In the following we provide two
frameworks to understand the modulation of the oscillation
amplitude.

Interferometer arms have a finite width w (lithographi-
cally in the present study, w = 300 nm, while the conducting
width is narrower due to the existence of a depletion
layer). The conducting arms form a mesoscopic system with
properties, such as the complex transmission coefficient, that
depend sensitively on the specific realization of the system.
When the magnetic flux threading through the interferometer
arms 8c = 2πrwB varies by ∼80, a different realization
is achieved and the ring’s oscillation amplitude and phase
are expected to be modified [12, 21]. The autocorrelation
function in B of R(B), expressed as C(1B) = 〈R(B)R(B +
1B)〉/R(B)2, decays according to the accumulated differences
in realizations as the applied B varies. Its decay over 1B,
quantified by a correlation field Bc, is expected to form a
measure of the magnetic flux necessary to delete correlations
between realizations of the interferometer. Figure 4 presents
the experimental C(1B) from the data in figure 3(b).
Small-period oscillations in C(1B) should agree with the
AB oscillation period [21], and indeed the fine oscillations
in figure 4(a) show a period of 25 G. When performed on
an infinite range of B, the envelope of C(1B) is expected to
monotonically reach 0 as 1B increases. Yet, when performed
on data necessarily finite over B, the envelope of the
experimental C(1B) is non-monotonic, as figure 4 shows.
The envelope [21] is expressed as C(1B/Bc) ∼ (

1
(2π)2

+

1
4
√

2π
1B
Bc
+

1
24 (

1B
Bc
)2) exp(− π

√
2
1B
Bc
). Only the h

e component is
considered in this expression, further valid for T → 0. From
figure 4 we deduce a fitted correlation field Bc = 70 G. The
actual electrically conducting width we of the interferometer
arms can then be estimated from we = 80/(2πrBc), yielding
we ≈ 150 nm. A depletion layer of 75 nm on each side
of the arms lies within expectations for ICP-RIE etched

Figure 5. Modulation in the amplitude of Aharonov–Bohm
oscillations simulated by using the three discrete frequencies
deduced from the Fourier transform in figure 3(c): 376 1/T ,
408 1/T, 447 1/T , with intensities 13.2 �, 21.6 �, 5.89 �
respectively.

InGaAs 2DESs at the NS of the measurements. The view of
the modulation as resulting from progressively uncorrelated
realizations under varying B is hence in accordance with our
data.

We now explore whether the quasi-periodic modulation
can also be caused by the existence of more than one preferred
trajectory through the interferometer arms. In figure 3(c),
two minor satellite peaks are noticed around the major
h
e Fourier component. The satellites can be interpreted as
originating from trajectories deviating from the geometric
center of the arms, hence resulting in differing AB fluxes
and periods. Careful analysis shows that the central major
h
e Fourier component occurs at a frequency 408 1/T ,
while the minor satellite peaks occur at 376 and 447 1/T .
Using these frequencies and their corresponding intensities, a
simplified three-component model is simulated as in figure 5.
Comparing figure 5 with 3(b), we note the resemblance,
quantified by the observation that the local minimum and
local maximum points of the two curves’ envelopes almost
coincide. Corresponding to 408 1/T, 376 1/T and 447 1/T ,
the approximate radii are 734 nm, 704 nm and 768 nm
respectively. These radii lie within the ring design. From this
approach and using the observation that the fringes to the h

e
component in the frequency spectrum extend over a wider
range than considered in the simplified calculation, we can
deduce that the electrically conducting width we must exceed
60 nm. The estimate we > 60 nm is consistent with the value
we ≈ 150 nm deduced from C(1B). While the use of C(1B)
provides more quantitative information, both approaches to
the amplitude modulation agree that the finite arm width
and the resulting variation in magnetic flux can cause the
modulation.

3.2. AB oscillations in higher magnetic fields

AB oscillations are observed over a wide range of B. Figure 6
shows a typical measurement with B over −0.6 to 0.6 T.
The AB oscillation period is too fine to be resolved on this
scale. The AB oscillations occur on a background of universal
conductance fluctuations, as well as MR caused by classical
size effects. The inset of figure 6 shows a magnified view
around 0.57 T, resolving the AB oscillations. At higher B,
Shubnikov–de Haas oscillations gradually appear.
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Figure 6. The ring magnetoresistance at 0.4 K over B from −0.6 to
0.6 T. The Aharonov–Bohm magnetoresistance oscillations (not
fully resolved on the scale of the graph) are superimposed on
universal conductance fluctuations. The inset shows a selected
narrow range of B around 0.57 T to resolve the oscillations.

3.3. The phase coherence length in AB rings

The Fourier spectrum of R(B) can be used to deduce lφ
by applying equation (1), as outlined in section 1. Figure 7
demonstrates the process, yielding the value lφ = 3 µm at
T = 0.4 K. The low excitation current (I = 20 nA rms) and
low T used to obtain the data for the fit to equation (1)
ensures that distortion of the value of lφ by energy smearing
is minimized. The value lφ > le = 1.7 µm shows that, at low
T , inelastic phase breaking scattering events will indeed be
rarer than elastic momentum scattering events. We note that
the phase coherence in our samples is mostly maintained over
a length greater than πr, explaining the observation of a strong
AB effect. The data from the sample and cooldown depicted
in figure 7 show high Fourier components up to h

4e . Such high
components are not observed in all samples and cooldowns,
due to the delicate dependence on unintentional impurity
configurations in the mesoscopic sample, as mentioned above.
As a contrast, the Fourier transform in figure 3(c) represents
data from another sample and cooldown, and shows just two
components.

3.4. Current and temperature dependence of the AB
oscillations

Transport measurements over the AB rings were performed
under constant rms values of the ac excitation currents I and
under constant T . To ascertain the bias dependence of the
AB oscillation amplitudes, the excitation voltage Vexc was
calculated for each given I using the known ring resistance
(≈2.5 k�). For the bias dependence study, T was fixed to
0.4 K. For the study of the dependence on T, I was fixed at
20 nA, sufficiently low to achieve a saturation of the measured
amplitudes, thereby ensuring that the finite excitation did not
distort the results.

Figure 8 shows that the oscillations weaken as I increases.
For a detailed study of the relationship between I and the
AB oscillation amplitude, we selected a group of ten adjacent
periods from 0.01 to 0.04 T, and calculated their mean
amplitude. Results using this mean amplitude are depicted in

Figure 7. The fit to equation (1) to extract the phase coherence
length lφ of the Aharonov–Bohm ring (data from the second sample
at 0.4 K). The inset shows the Aharonov–Bohm magnetoresistance
oscillations used for the Fourier transform, itself depicted as the
black solid line in the main graph. The red line with open circles©
depicts the fit to equation (1).

Figure 8. The excitation current dependence of the
Aharonov–Bohm magnetoresistance oscillations at 0.4 K (data from
the first sample, but with a different cooldown from that for
figures 2, 3 and 6). From top to bottom, the excitation current (rms
values) is 5 nA, 10 nA, 20 nA, 50 nA, 100 nA, 200 nA and 500 nA
respectively. Curves are offset, actual R(B = 0) ≈ 2.5 k�.

figure 9(a). As I increases beyond a threshold, the amplitude
overall decreases, but shows a local maximum at ∼50 nA.
Such non-monotonic behavior was also observed in other
experiments [22], is called the lobe structure, and has been
theoretically attributed to electron–electron interactions.

The T dependence is depicted in figure 10, showing
a weakening of amplitudes with increasing T . For the
analysis the same averaging method was applied as for the
dependence on I, with the results contained in figure 9(b).
Within experimental uncertainty, the figure shows a mostly
monotonic decrease with T .

We notice that variations in I and T do not modify
the modulation in B, as can be ascertained from figures 8
and 10. Unlike B, the parameters I and T hence do not
induce new realizations of the entire mesoscopic system,
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Figure 9. The excitation current and T dependence of the amplitude of the Aharonov–Bohm magnetoresistance oscillations (open squares
� and filled circles • represent data from the first sample at different cooldowns). Panel (a) shows the excitation current dependence at
0.4 K, with a logarithmic scale on both axes. Panel (b) shows the T dependence at 20 nA, with a logarithmic scale on the vertical axis.

Figure 10. The T dependence of the Aharonov–Bohm
magnetoresistance oscillations at 20 nA (data as in figure 8 from the
first sample, but with a different cooldown from that for figures 2, 3
and 6). From top to bottom T is 0.4 K, 0.6 K, 0.8 K, 1.0 K, 1.2 K,
1.4 K and 1.6 K respectively. Curves are offset, actual
R(B = 0) ≈ 2.5 k�.

at least not in the range used in this work. The AB
oscillation amplitude decreases caused by I and T can be
imputed to energy smearing, discussed above in the context
of equation (2), expressing the Thouless energy scale Ec.
Using L = πr and the 2DES properties, equation (2) predicts
an estimate of Ec = 2.4 × 10−4 eV. A critical excitation
current Ic can then be estimated by letting 1E(Ic) = Ec
(with R = R(B = 0)), and a critical temperature Tc by letting
1E(Tc) = Ec (with κ = 3). The estimates yield Ic ≈ 100 nA
and Tc ≈ 1.0 K. When I or T exceed these critical values,
averaging over incoherent channels gains in importance and
the AB amplitude weakens proportionally to

√
Ec/1E. The

data in figure 9 is in accordance with the estimates of
the critical values and with the I−1/2 and T−1/2 behavior
predicted by equation (2). For finite mesoscopic systems
relying on quantum coherence, such as the interferometric
rings studied here, the Thouless energy hence serves as a
predictor for loss of coherence.

4. Conclusions

Pronounced Aharonov–Bohm oscillations are observed
in the magnetoresistance of mesoscopic interferometric
rings patterned on an InGaAs/InAlAs two-dimensional
electron system, with observations spanning a range of
magnetic fields, excitation currents and temperatures. The
period in the magnetic field of the oscillations matches
the Aharonov–Bohm prediction for the design. Fourier
transformation is used to discuss the observed modulation of
the oscillation amplitude with magnetic field, and to deduce
the phase coherence length. The autocorrelation function is
used to derive the quasi-period of the amplitude modulation,
and both the Fourier transform and autocorrelation function
point to the finite width of the interferometer arms as the
origin of the modulation. The dependences of the oscillation
amplitude on the excitation current and temperature show
the existence of critical excitation energies consistent with
the Thouless energy scale. Quantum coherence in the
mesoscopic interferometers is reduced for thermally or
electrically induced excitations beyond the system’s Thouless
energy, with a concomitant decrease in the Aharonov–Bohm
oscillation amplitude.
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