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Abstract

We investigate the low temperature spin and phase coherence times in Te-doped InSb thin
films through measurements of antilocalization. It is found that the extracted spin coherence
times range from as long as ∼73 ps in films with carrier density n ≈ 0.6 x 1022 m−3 down to
∼6 ps for n ≈ 8.9 x 1022 m−3. The dependence on n indicates that the Elliott-Yafet mechanism
is responsible for spin decoherence. The measured spin coherence times are in agreement with
theoretical predictions when an appropriately weighed momentum scattering time is used. Ex-
tracted phase coherence times are inversely proportional to temperature, consistent with phase
decoherence via the Nyquist mechanism.
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1. INTRODUCTION

We examine the spin coherence time τso and phase coherence time τϕ in thin films of n-
InSb with different electron densities (n) at temperatures T≤10 K. Values for τso and τϕ are
obtained by analyzing the low-field magnetoresistance in antilocalization theory [1, 2, 3, 4, 5,
6]. In materials with strong spin-orbit interactions, quantum interference between electrons on
exact time reversed trajectories leads to antilocalization (AL), and results in a sharp positive
magnetoresistance around zero applied magnetic field (H=0), which crosses over to negative
magnetoresistance at higher H. The crossover field is largely determined by 1/τso, whereas the
magnitude of the positive magnetoresistance is related to the ratio τϕ/τso. This allows quantitative
information about τso and τϕ to be extracted from the magnetoresistance [1, 2, 3, 4, 5, 6] and
AL has become a valuable tool for examining both τso [4, 5, 6, 7, 8, 9, 10, 11, 12] and τϕ
[6, 7, 8, 9, 13] in semiconducting systems.
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Table 1: Layer structure and transport properties at T = 0.4 K for the different InSb film types: buffer layer thickness
(tBu f f er) and Te doping (ND,Bu f f er , UD=undoped); active layer thickness (t) and Te doping (ND); cap layer thickness
(tCap) and Te doping (ND,Cap); electron density (n); mobility (μ); Fermi energy (EF ).

A B C

tBu f f er (μm) 0.2 0.15 0.2

ND,Bu f f er (1022m−3) UD UD 4

t(active) (μm) 1.3 0.6 1.3

ND(active) (1022m−3) 2 3 10

tCap (μm) 0.05 0.05 0.05

ND,Cap (1022m−3) 15 15 30

n (1022m−3) 0.6 - 0.7 2.8 - 3.1 8.8 - 9.0

μ (m2/V s) 4.0 - 4.4 3.4 - 3.5 4.4 - 4.5

EF (meV) 8.3 - 9.2 22.0 - 23.4 43.5 - 44.1

2. EXPERIMENT

Low-field magnetoresistance measurements were performed on high mobility (μ) Te-doped
InSb thin films. Each MOCVD-grown film is composed of three distinct InSb layers. Electrical
transport through the film is dominated by the high μ active layer which is positioned between
a buffer and cap layer. The buffer layer allows for higher μ in the active layer by mitigating the
effects arising from the 14% lattice mismatch between the GaAs 〈100〉 substrate and InSb. A low
μ, heavily doped 0.05 μm cap layer facilitates Ohmic contacts to the active layer. The thickness
and doping level of the buffer, active, and cap layers for the different InSb films are summarized
in Table 1. Further details about the structure and transport properties of these films are presented
and discussed elsewhere [7, 14, 15]. These previous studies have revealed that the active layer
has much larger average μ as compared to either the buffer or cap layer and that scattering by
charged impurities limits μ at low T [14, 15]. Based on the relative doping, thickness, and
average μ of the different layers, a multilayer in-plane magnetotransport analysis suggests that
the active layer conducts ∼95% of the overall current [7, 16]. Thus, the magnetotransport is
assumed to be dominated by the active layer only, and contributions from the buffer and cap
layers are neglected. Hall and zero field resistivity (ρ0) measurements were performed in order
to characterize the electron mobility μ and electron density n at low T , as collected in Table 1.

Examples of the observed magnetoresistance are shown in Fig. 1. The component antisym-
metric with respect to H has been subtracted from the raw data in order to remove contributions
from the Hall effect and any slight electronic drifts. Antilocalization is observed in all the mea-
sured films. The field at which the positive to negative magnetoresistance crossover occurs is
lower for films with smaller density, indicating that τso is largest in the lower doped films. In
addition, it is noted that in each of the films the crossover field remains relatively constant as a
function of T . However, the magnitude of the positive magnetoresistance rapidly decreases with
increasing T . This suggests that in this range of T , τso exhibits little or no T -dependence and
that the T -dependence of the low-field magnetoresistance is dominated by the behavior of τϕ.
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Figure 1: Examples of the measured low H magnetoresistance at variable T , along with theoretical models based on
Eq. (1) (black lines), for the InSb film types A, B, C.

3. ANALYSIS

In order to obtain quantitative information about τso and τϕ, the magnetoresistance traces
were fit to an AL theory that includes the effects of spin-orbit interactions. The quantum cor-
rections to the conductivity arising from AL are sensitive to the mobilitiy scattering time τp,
diffusion constant D, magnetic scattering time τs, spin coherence time τso, and phase coherence
time τϕ. However, since the InSb films are free from magnetic impurities, τs is neglected in the
analysis of the magnetoresistance curves. Using values of n and μ obtained from ρ0 and Hall
measurements, we calculate τp=m∗μ/e and D= 1

3 v2
Fτp, taking the nonparabolicity of the InSb

conduction band into account for the effective mass m∗ and Fermi velocity vF [17].
In thin films of thickness t, phase coherent phenomena, such as AL, display two-dimensional

behavior when the phase coherence length Lϕ=
√

Dτϕ > t [18]. We find that fitting the data with
AL theory self-consistently yields an Lϕ > t for all T at which AL was experimentally observed.
Therefore, the magnetoresistance curves are modeled with a two-dimensional localization theory
[3]. For isotropic spin-orbit scattering, the corrections to the resistivity in perpendicular H are
given by [2, 3, 18]:
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)
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)
and Hso = �/ (4eDτso).

With τp and D predetermined, the magnetoresistance traces at each T were independently fit to
Eq. (1) in order to determine both τso and τϕ. The results of these fits are plotted along with the
experimental data in Fig. 1. Extracted values for τso and τϕ are presented and discussed below.

4. RESULTS

4.1. Spin coherence time

Extracted values of τso for the three different film types are displayed in Fig. 2. Similar to
τp, it is observed that τso displays an only weak dependence on T for 0.4 K<T<10 K. τso does,
however, exhibit a strong dependence on n, with τso varying from ∼ 6 ps for n ≈ 8.9 x 1022 m−3

to ∼ 73 ps for n ≈ 0.6 x 1022 m−3. The corresponding spin coherence lengths Lso=
√

Dτso are
also illustrated in Fig. 2. We find Lso ≥ 0.9 μm, with Lso as long as 1.5 μm in sample type A.
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Figure 2: Spin coherence times τso vs T , obtained from
the fits of Eq. (1) to the data in Fig. 1. Dashed horizontal
lines indicate average values of τso, also in parentheses
with the spin coherence length Lso.

Figure 3: Logarithmic plot of the spin decoherence rate,
1/τso (normalized to 1/τp, see text). The dashed line
shows that the experimental 1/τso is 9 times larger than
1/τEY

so as predicted from Eq. (2) using τp.

The spin-orbit scattering mechanisms which determine spin decoherence in n-type InSb thin
films are the D’yakonov-Perel (DP) mechanism [19, 20, 21, 22] and the Elliott-Yafet (EY) mech-
anism [19, 20, 21, 23, 24]. For degenerate bulk semiconductors, the spin relaxation rates under
the EY and DP mechanisms depend on the semiconductor’s band gap EG, spin-orbit splitting of
its valence bands Δ, and Fermi energy EF . Theoretically these rates are given by [19, 20, 21, 25]:
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where m0 represents the free electron mass, and γ = Δ/(Δ + EG) (Δ = 810 meV and EG =

236 meV in InSb at low T [26]). αEY,DP are constants which depend on the dominant scattering
mechanism [19, 20, 21]. Because 1/τso ∼ EF

ν for both EY (ν = 2) and DP (ν = 3) mechanisms,
a logarithmic plot of 1/τso vs EF can distinguish which mechanism dominates spin decoherence.
Although the DP mechanism dominates spin decoherence in many other n-type III-V materials
and heterostructures [27, 28], the EY mechanism can be relevant in InSb systems [19, 20, 21, 25,
29].

Figure 3 depicts the dependence of 1/τso on EF , with τso given in units of τp in order to
allow for the different μ in each of the films. The logarithmic plot shows τso∼E−2

F , consistent
with spin decoherence via the EY mechanism. For scattering by charged impurities, αEY=32/27
[19, 20, 21, 25]. Thus, with τp as the measure of the timescale over which itinerant electrons
are scattered, Eq. (2) would predict a decoherence rate 1/τEY

so that is a factor ∼ 9 smaller than
what is experimentally observed. This indicates that the appropriate scattering timescale for spin
decoherence under the EY mechanism is different than the timescale governing momentum re-
laxation. Predictions based on τp, which is disproportionately sensitive to backscattering, can
thus underestimate the spin decoherence rate. We note that for calculations of spin relaxation
resulting from the cubic Dresselhaus spin-orbit term in bulk semiconductors [28], τ3 is the rel-
evant scattering timescale, where τ3 is defined by: τ−1

3 =
∫ 1

−1
W (θ) [1 − P3 (cos (θ))] d cos (θ).

Here W(θ) denotes the θ-dependent scattering probability, and P3 the 3rd Legendre polynomial.
Calculations show that τ3/τp ≈ 1/6 for charged impurity scattering [7, 19, 20, 21] and thus sub-
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Figure 4: Extracted phase coherence times τϕ vs T , obtained from the fits of Eq. (1) to the data in Fig. 1. Dashed line
indicates a fit to a 1/T dependence for sample B.

stituting τ3→τp in Eq. (2) brings theoretical predictions of τEY
so within a factor 1.5 of experimental

observations.

4.2. Phase coherence time
As compared to τso, a strong T -dependence of τϕ is observed (Fig. 4). For samples B and

C, τϕ is found to decrease by more than an order of magnitude as T is increased from 0.4 K to
∼ 8 K. With a constant τso, the changes in τϕ are responsible for the observed T -dependence of
the low-field magnetoresistance, as the magnitude of the AL corrections are related to the ratio
of τϕ/τso. Thus, as τϕ decreases with increasing T , the magnitude of the AL corrections diminish
and as a consequence AL is observed over a larger range of T in films with small values of τso. It
is found that τϕ ∼ 1/T in samples B and C. The T -dependence of sample A is not independently
evaluated as the long τso limits the range of T over which AL is observed. The 1/T dependence
of τϕ is characteristic of phase decoherence via the Nyquist electron-electron dephasing mech-
anism [8, 30, 31, 32]. The dashed line in Fig. 4 explicity depicts the 1/T dependence of τϕ in
sample B. The data follow this 1/T behavior except at the lowest T = 0.4 K where saturation of
τϕ is observed. The tendency for τϕ to saturate towards a constant value as T → 0 is often ob-
served in experimental studies of τϕ [32] and indicates the presence of additional phase-breaking
mechanisms [2, 8, 32, 33].

5. CONCLUSIONS

In summary, we have examined spin and phase coherence in high quality Te-doped InSb
thin films through measurements of AL. It is observed that 1/τso ∼ E2

F indicating that the spin
decoherence is dominated by the EY mechanism. Even though the experimental spin coherence
times are shorter than predicted by the EY model, the inherently large μ in InSb allows for
considerable spin coherence lengths; Lso≥0.9 μm is observed. Phase coherence times follow τϕ ∼
1/T , typical of the Nyquist electron-electron dephasing mechanism. This work was supported
by DOE through grant DE-FG02-08ER46532 and NSF through grant DMR-0618235.
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