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The magnetoresistance at temperatures below 20 K in an n-InSb / In0.85Al0.15Sb two-dimensional electron
system is studied and described in terms of antilocalization due to quantum interference under strong spin-orbit
interaction. The spin-orbit interaction coefficients are extracted by fitting the magnetoresistance data to an
antilocalization theory distinguishing the Rashba and Dresselhaus contributions. A good agreement between
magnetoresistance data and theory suggests a Rashba coefficient ����0.03 eV Å and a Dresselhaus coefficient
��490 eV Å3. A strong contribution from the Dresselhaus term leads to pronounced anisotropy in the energy
splitting induced by spin-orbit interaction in the two-dimensional electron dispersion.
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I. INTRODUCTION

In the study of materials where spin-dependent phenom-
ena are prevalent, InSb stands out due to characteristics such
as a strong spin-orbit interaction �SOI�, a high effective g
factor, and a high electron mobility. InSb and InSb quantum
wells �QWs� have drawn attention in several developments,
ranging from the quest for new electronic devices,1,2 to mag-
netoresistive devices3,4 and spin-based electronics.5 Here we
present low-temperature measurements of the spin-
dependent quantum-interference effect of antilocalization
�AL� in InSb quantum wells. The measurements allow a
comparison with theory and a determination of the SOI
parameters.

Quantum interference between partial electron waves on
exact time-reversed trajectories leads to the phenomena of
AL �Refs. 6–11� and weak localization �WL� �Refs. 6, 7, and
12� in low-temperature electronic transport. WL is character-
istic of constructive interference of wave functions at low
applied magnetic fields H, and AL of destructive
interference.6–12 The interference is governed by SOI and the
phase coherence time ��, which determines the time scale
available for interference. AL, in particular, can be pictured
as resulting from destructive interference of spin-1/2 carriers
locked onto a closed path by SOI.7 AL magnetotransport
measurements thus form a valuable experimental tool to ac-
cess SOI parameters and �� in semiconductor
systems.9–11,13–27 In this context, we present low-field mag-
netotransport measurements on an InSb two-dimensional
electron system �2DES� in an InSb / In0.85Al0.15Sb hetero-
structure at temperatures T�20 K. The observed depen-
dence of the conductivity on H is discussed in terms of AL,
and enables us to determine the dominant SOI terms, and to
compare our findings with the literature on n-type InSb quan-
tum wells.

SOI in �001�-grown III-V 2DESs is described by the
Hamiltonian HSO=�� ·��k�,10,19,25–32 where �
= ��x ,�y ,�z� is the vector of Pauli spin matrices and k rep-
resents the wave vector. Following Ref. 10, we introduce the
wave vector in the 2DES plane, kp=�kx

2+ky
2 and �

=tan−1�kx /ky�, where �=0 corresponds to k � �100�. ��k� is
composed of a sum,

��k� = �R + ��
D + �3�

D ,

where10,19,25–27,29–32

��R = �kp	 sin �

− cos �

 , �1a�

���
D = �kp	�kz

2� −
kp

2

4

	− cos �

sin �

 , �1b�

��3�
D = − �

kp
3

4
	cos 3�

sin 3�

 . �1c�

Here � represents the Rashba coefficient, � the Dresselhaus
coefficient, and �kz

2� the square of the quantized wave vector
in the direction perpendicular to the 2DES plane. The Rashba
term, �R, arises from the structural asymmetry of the
heterostructure.10,19,25–32 The coefficient � varies with the av-
erage electric field across the well and with contributions
from the interfaces between quantum well and barrier
layers.10,25–33 Theoretical studies of asymmetric
n-InSb / InAlSb quantum wells indicate that interface contri-
butions to � dominate.28 The Dresselhaus term ��D=��

D

+�3�
D � arises from the lack of inversion symmetry in the

zinc-blende crystal structure.34 Compared to other III-V
semiconductors, bulk InSb has a high value for �bulk, theo-
retically predicted to be in the range 560	�bulk
	760 eV Å.28,35,36 Therefore, �D may show a substantial
impact on AL in InSb-based systems, and in turn AL can
provide experimental insight in �D and provide values for �.

II. EXPERIMENT

The InSb 2DES studied in this work, schematically de-
picted in Fig. 1, was grown by molecular-beam epitaxy on
semi-insulating GaAs �001� substrate. From the substrate up-
ward, the heterostructure consists of a 215-nm-thick AlSb
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buffer, a 4.1-
m-thick In0.85Al0.15Sb layer, the 25-nm-thick
InSb quantum well, a 150 nm In0.85Al0.15Sb layer, and a 13
nm undoped InSb cap layer. Electrons are provided to the
well by two Si �-doped layers, at 40 nm below and 40 nm
above the well. A third �-doped layer, 23 nm below the sur-
face, passivates surface states. The strength of the Rashba
term �Eq. �1a��, defined by �, depends on band
parameters35,37 and on several sources of asymmetry in the
heterostructure, and can vary substantially between hetero-
structures. In the present structure, Fermi-level pinning at the
surface as well as the presence of two �-doped layers above
the quantum well contribute to asymmetry, and contribute to
a sizable � via the large SOI in InSb. Spin-dependent meso-
scopic transport experiments allowed an approximate value
��0.1 eV Å to be deduced in similar heterostructures.5

Measurements on n-InSb / InAlSb 2DESs which are remotely
doped from only one side of the well have determined 0.07
	 ���	0.14 eV Å.38,39 In the sections below the AL data
will be analyzed to obtain the magnitude of � in the hetero-
structure shown in Fig. 1.

Magnetotransport was measured using standard low-
frequency lock-in techniques between 0.4 and 20 K. The data
and analysis presented here were obtained on a 100
�20 
m Hall bar fabricated by photolithography and wet
etching. Other samples fabricated from the same wafer yield
similar results. Resistivity and Hall-effect measurements in-
dicate that the electron areal density Ns�5.5�1015 m−2 and
the electron mobility 
�8.9 m2 /V s at 0.4 K. Hall-effect
measurements do not show evidence of two-band transport
and single-subband occupancy is thus assumed. The param-
eter �kz

2� for the first quantized level can be obtained from
finite square-well solutions40 while accounting for nonpara-
bolicity in the InSb conduction band and using the respective
band-edge offsets of the well and barrier materials.28,41,42 The
calculation yields �kz

2�=8�1015 m−2, the value used in the
remainder of this work. Allowing for nonparabolicity, the
effective mass m�, �kz

2�, Ns, and 
 are used to calculate other
transport parameters, such as the mobility scattering time �p
and the two-dimensional diffusion constant D. From �kz

2� and
Ns we can estimate the strength of �D at the Fermi energy

EF, using kp
2 =kF

2 =2
Ns, with kF the Fermi wave vector. For
the present heterostructure, the values for �kz

2� and Ns lead to
���kz

2�− �
Ns /2���� ��
Ns /2��, and hence from Eqs. �1b� and
�1c� we conclude that ���

D�� ��3�
D �. Since the term �3�

D

dominates, the term ��
D will be neglected in the AL analysis.

Figure 2 contains an example of the low-field magnetore-
sistance obtained at T=1.2 K. In order to account for slight
Hall-effect contributions to the data due to inevitable contact
misalignment, the component antisymmetric in H has been
subtracted from the data. For 0	H	30 mT the sample ex-
hibits the positive magnetoresistance transitioning to nega-
tive magnetoresistance characteristic of AL. At higher
H�H�30 mT� an 
H2 dependence of the magnetoresis-
tance is observed, typical of geometric magnetoresistance in
high-
 materials,3 and is accounted for in order to ensure
accuracy of the AL analysis.

AL �Refs. 6, 8–11, 19, 25, 26, and 43� is expressed as a
change in longitudinal conductivity, �xx. Ignoring electron-
electron interactions, the H dependence of �xx is contained in
the sum of a classical term and the AL correction term,12

�xx�H� =
�0

1 + �
H�2 + ���H� , �2�

where �0=Nse
2�p /m� denotes the zero-H Drude conductivity

and ���H� the AL correction. The experiment measures the
longitudinal resistivity �xx�H�, and the following steps are
followed to determine ���H� from �xx�H�. First a purely
quadratic term 
H2 is fit to the high-field data �Fig. 2�, and
the H2 term is subtracted from the measured �xx to determine
���H�. ���H� denotes the AL correction to �xx. Then ���H�
is determined using ���H��−���H��0

−2, where �0��0
−1.

Examples of ���H� are displayed in Fig. 3. The data
exhibits the characteristic shape of AL, with an initial de-
crease in conductivity from H=0, reaching a minimum at
H=Hmin�1.1 mT, after which positive magnetoconductiv-
ity is observed. The ���H� curves are parametrized in terms
of �p, the phase coherence time ��, and in terms of the vari-
ous contributions to ��k�. Specifically, ���H� was fit to an

FIG. 1. Left: Schematic of the InSb/InAlSb 2DES heterostruc-
ture. The �-doped layers are located at the following positions: 40
nm below, 40 nm above, and 140 nm above the quantum well
�QW�. Right: Measured carrier concentration Ns and momentum
scattering time �p as a function of T. Dashed lines are guides to the
eyes.

FIG. 2. Low-field changes in resistivity at T=1.2 K. The dashed
line indicates the parabolic background. The inset shows positive
magnetoresistance around H=0 characteristic of AL.
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AL expression which separately accounts for �R and
�3�

D ,10,26 and which allows us to examine their respective
magnitudes and dependence on T.

III. ANALYSIS

In 2DESs where ��
D can be neglected, the AL correction

to the conductivity in perpendicular H can be expressed
as10,26

���H� =
− e2

4
2�
�3C +

1

a0
+

2a0 + 1 + bs

a1�a0 + bs� − 2bs�
− �

n=1

�
3

n

−
3an

2 + 2bsan − 1 − 2�2n + 1�bs�

�an + bs�an−1an+1 − 2bs���2n + 1�an − 1�

+ 2 ln�btr� + �	1

2
+ b�
� , �3�

where � represents the digamma function; C is Euler’s con-
stant; an=b�+bs+n+ �1 /2�; btr= �� /4eD�pH�; bs�
= �2���R�2�1 /4eDH�; bs=bs�+ �2����3��

D �2�3� /4eDH; and b�

= �� /4eD��H�. The relaxation times �n�n=1,3� are ex-
pressed as10,30,44

1

�n
=� W����1 − cos�n���d� , �4�

where W��� denotes the scattering probability, dependent on
the scattering angle �. We note that for degenerate systems
�1=�p.31 The value of ��1 /�3�= ��p /�3� in 2DESs ranges from
��1 /�3�=1 for isotropic scattering to ��1 /�3�=9 for small-
angle scattering.10,30,44 Although Eq. �3� is derived for the
diffusive regime �btr�1�, previous AL experiments demon-
strate that nominally diffusive formalisms accurately de-
scribe SOI in high-
 2DES.15 Equally satisfactory fits to our
experimental data were, in fact, not obtained with theories
aiming beyond the diffusive regime.9,11

With btr determined from Ns and �0, the experimental
���H�−���0� for �H��6.5 mT at different T were fit to Eq.
�3�, allowing us to separately assess �R and �3�

D �neglecting
��

D�. Fits to Eq. �3� were performed while varying bs, bs�, and

b�, and the total error in the values thus obtained are esti-
mated at 
10%. From bs and bs� we can deduce 2��R�2�1 and
2��3�

D �2�3, and hence, with knowledge of �1=�p and �3, we
obtain ��R� and ��3�

D �. The results are presented below.

IV. RESULTS AND DISCUSSION

Examples of the fits of Eq. �3� to the experimental
���H�−���0� are displayed along with the corresponding
data in Fig. 3. Equation �3� accurately models ���H�
−���0� at all T, with a slight deviation at an oscillatory
structure occurring at H� �3 mT in our data. The strong T
dependence of the oscillatory structure, which becomes quite
weak above �5 K, suggests a phase coherence phenomenon
is responsible. Although the exact origin of the observed os-
cillatory structure forms the subject of future study, here we
offer one possible explanation. One expects universal con-
duction fluctuations to be averaged out due to the size of the
device. However, the heterostructure shows a low density of
pyramidal structural defects �associated with threading dislo-
cations� which are not expected to affect mobility due to
their low density and extended mesoscopic size.45 A hypo-
thetical origin for the oscillatory magnetoresistance lies in
Altshuler-Aronov-Spivak oscillations46 occurring for elec-
tron trajectories encompassing such mesoscopic defects, as
also observed in lithographic antidot lattices.47 In the present
case the irregular defect size and spacing preclude well-
developed oscillations while still allowing for magnetoresis-
tance effects associated with orbits of defined enclosed mag-
netic flux. AL phenomena do not encompass such oscillatory
structure, and hence the structure is ignored for the remain-
der of the present work.

Figure 4 depicts the terms in Eq. �3� originating from
different SOI contributions, 2��R�2�1 and 2��3�

D �2�3 as ob-
tained from the fits to the data. The magnitude of 2��R�2�1
=4
Ns�

2�−2�p exceeds 2��3�
D �2�3= �
Ns�3�2�−2�3, indicat-

ing that Rashba SOI provides the largest contribution to
���H�−���0�. However, accounting for the contribution
from �3�

D is necessary for correct modeling of ���H�
−���0�, with increased relevance at higher T. Moreover, as
indicated below, both �3�

D and �R play important roles in the
energy dispersion of the 2DES. We extract ����0.03 eV Å

FIG. 3. Changes in conductivity derived from the data at differ-
ent T, along with the fits obtained from Eq. �3�. The curves have
been offset for clarity.

FIG. 4. The terms 2�2�n extracted from fits of ���H�−���0�
to Eq. �3�. From the 2�2�n corresponding contributions to � can be
deduced. Dashed lines form guides to the eyes.
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from the observed value of 2��R�2�1�4.8�1012 s−1. This
value for ��� lies within the expected range, and bears com-
parison with recent theoretical calculations predicting ��th�
�0.04 eV Å for n-InSb / InAlSb 2DESs with equal barrier
heights on both sides of the well.28

Interpretation of 2��3�
D �2�3 requires a discussion of

��1 /�3�. The ratio ��1 /�3� depends on the scattering
mechanism.10,30,44 In accordance with previous studies of
electronic transport in 30-nm-wide n-InSb / InAlSb 2DESs
with high 
,48 remote-ionized impurity scattering from Si
ions in the �-doped layers is expected to dominate electron
scattering at low T. For 2DESs under remote-ionized impu-
rity scattering, the angular dependence of W��� can be ap-
proximated by40,48

W��� �
exp�− 2qd�
�q + qTF�2 , �5�

where the scattering wave vector q= �2kF sin�� /2��, and d
=40 nm denotes the distance separating the 2DES from the
ionized impurities. With an effective Bohr radius aB
=67 nm, the Thomas-Fermi screening wave vector qTF
= �2 /aB�=2.9�107 m−1. Figure 5 contains the angular de-
pendences of W���, W����1−cos����, and W����1−cos�3���
normalized to W�0�, in a polar graph. W��� is strongly
peaked toward small �, as expected for the predominantly
small-angle scattering from remote-ionized impurities. As
compared to �1−cos����, the multiplicative effect of the fac-
tor �1−cos�3��� is strongest at small �, leading to a higher
ratio ��1 /�3� for small-angle scattering than for large-angle
scattering.

From Eqs. �4� and �5� we calculate ��1 /�3��9. From the
observed 2��3�

D �2�3�1.1�1012 s−1 at 0.4 K we then extract
��490 eV Å3. This value agrees closely with theoretical
calculations yielding � in n-InSb / InAlSb quantum wells as a
function of well thickness, which have predicted �
�425 eV Å3 for a 25-nm-wide well.28 The value �
=490 eV Å3 signifies, in fact, an upper bound for � at 0.4 K,
resulting from the assumption of dominant remote-ionized
impurity scattering. Accounting for other scattering mecha-
nisms which yield a smaller ratio ��1 /�3�, such as phonon
scattering or interface roughness scattering,30 would result in
a somewhat smaller �. We stress however that at T=0.4 K

remote-ionized impurity scattering, rather than phonon or in-
terface roughness scattering, likely determines ��1 /�3� and
we hence accept ��490 eV Å3.

From the extracted values for ��0.03 eV Å and �
=490 eV Å3 at 0.4 K we calculate the average spin-orbit-
induced energy splitting of the conduction band at kF as
��sp��1.8 meV, and an average spin-precession frequency
of 2�����=2.7�1012 s−1. The dependence of �sp on momen-
tum direction, depicted in Fig. 6, reveals an anisotropy of �sp
in the plane of the 2DES. �sp ranges between �0.6 and
�2.8 meV depending on the direction of k. The angular
dependence results from the 3� dependence of �3�

D as com-
pared to the � dependence of �R. The fact that both terms
have substantial values in the 2DES produces a marked
anisotropy.

Beyond T=0.4 K, 2��R�2�1
Ns�p is found to have a
negligible T dependence reflecting the fact that, as observed
in Hall measurements, Ns and �p remain almost constant
��2% change� over this range of T. In contrast, 2��3�

D �2�3

Ns

3�3 increases by a factor �1.7 from 0.4 to 20 K. In order
to explain the dependence on T of spin relaxation in III-V
semiconductors, Ref. 30 has shown that 2��R�2�1 and
2��3�

D �2�3 can be multiplied by T-dependent factors, to
become

��R�2�1 → ��R�2�p�1 − e−EF��−1, �6a�

��3�
D �2�3 →

��3�
D �2

�EF��2

�p��3/�1�
1 − e−EF�

J�+3��
0�
J�+1��
0�

, �6b�

where �=1 /kBT �with kB the Boltzmann constant�, the
chemical potential 
0=ln�eEF�−1� /�, 4Jn�z�=�0

�xn sech2��x
−z� /2�dx, and where � depends on the operational scattering
mechanism. For weakly screened charged impurity scattering
considered here, �=2.30 Using values for ��� and � obtained
at 0.4 K we find that Eq. �6a� accurately describes 2��R�2�1
over the experimental range of T. However, Eq. �6b� predicts
a weaker T dependence of 2��3�

D �2�3 than experimentally ob-
served �Fig. 4�. A portion of the additional T dependence

FIG. 5. Calculated angular dependence of W���, W����1
−cos����, and W����1−cos�3��� normalized to W�0�, from Eq. �5�.
The radial axis follows a logarithmic scale.

FIG. 6. Calculated SOI-induced energy splitting �sp=2���� of
the conduction band at kF�kF

2 =2
Ns� as a function of momentum
direction. The plot is obtained by substituting �=490 eV Å3, �
=0.03 eV Å, and �kz

2�=8�1015 m−2 into Eqs. �1a�–�1c�.

KALLAHER et al. PHYSICAL REVIEW B 81, 075303 �2010�

075303-4



results from changes in ��3 /�1� from increased phonon scat-
tering with T. We suggest that electron-electron �e-e� scatter-
ing may also contribute to the observed T dependence of
2��3�

D �2�3. Although e-e scattering has little effect on �p, re-
cently a large impact of e-e scattering on spin relaxation has
been suggested in high-
 GaAs/AlGaAs quantum wells.49,50

As compared to doped semiconductor thin films, remotely
doped heterostructures experience a much reduced scattering
rate from ionized impurities, and hence effects arising from
e-e scattering49,50 are more evident in high-
 2DESs. Equa-
tion �3� does not explicitly include the contribution from e-e
scattering to spin relaxation, yet its effect can be approxi-
mated as follows. Since the parameter bs expresses the spin-
relaxation rate, we expect the effect of e-e scattering on spin
relaxation to affect bs. Any contribution to bs not included in
bs� is grouped into the term 2��3�

D �2�3, suggesting that the
spin-relaxation rate from e-e scattering �1 /�s

ee� should be
added to bs, namely, bs→bs

�=bs+� / �4eDH�s
ee�, similar to

the inclusion of spin relaxation via the Elliot-Yafet
mechanism.10 Experimentally observed then is the value of
2��3�

D �2�3
� derived from bs

�, with 2��3�
D �2�3

�=2��3�
D �2�3

+ �1 /�s
ee�. As T→0, e-e scattering is expected to vanish. Thus

1 /�s
ee is not expected to alter the values of ��� and � obtained

from the 0.4 K values of 2��R�2�1 and 2��3�
D �2�3. Yet, our

observation suggests that the T dependence of 2��3�
D �2�3

� may
be a consequence of an increase in 1 /�s

ee with T, not negli-
gible except at the lowest T.

In summary, we have extracted the SOI terms active in an
n-InSb / InAlSb 2DES, by fitting magnetotransport measure-
ments with AL theory. Accurate modeling of the measured
���H�−���0�, requires the presence of both the Rashba
SOI �R and the Dresselhaus �3�

D contributions, and requires
an estimate of the predominant momentum scattering mecha-
nism. It is found that in the heterostructure the Rashba coef-
ficient ��0.03 eV Å and the Dresselhaus coefficient �
�490 eV Å3.
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