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Raman scattering was used to follow the structural and layer-composition changes
which accompany annealing of an a-Si:H/a-Ge:H superlattice. Following significant
intermixing in the amorphous phase, two separate crystallization events are
resolved: sudden crystallization of the Ge-rich layers followed by gradual
crystallization of the Si-rich layers. Ultimately, compositional bomogenization
ocCurs.

1. Introduction

This paper presents a Raman-scattering study of the structural changes
accompanying annealing in an a-Si:H/a-Ge:H superlattice. While the structural evolution
in this system is complex, Raman scattering is effective for distinguishing among the
various phases.l,23 Recent Raman work on crystalline Sij_xGey alloys*> allows this
technique to be used to determine composition (x) in the crystallized layers, and recent
diffusion studies® of amorphous Si/Ge multilayers are also available for comparison to
our Raman results. :

2. Experiment

The investigated superlattice was prepared by PECVD techniques described
elsewhere.” The intended structure consisted of thirty cycles of a-Si:H (sublayer
thickness dgj=30 nm) alternating with a-Ge:H (sublayer thickness dGe=5.5 nm). The top
layer was a-Si:H, with the bottom a-Ge:H sublayer on a 69 nm a-Si:H buffer layer
deposited on a c-Si substrate. The deposition plasma was halted between layers to
achieve abrupt interfaces. Rutherford backscattering confirmed the superlattice structure.
Furnace anneals were done in air for 20-minute periods.

Raman measurements were carried out in a back-scattering configuration8 using the
1.916 eV red line of a Kr laser. For back scattering, 1/(2a) is a conservative measure of
the optical penetration depth dopt~ At 1.916eV, dopt values estimated from the relevant



absorption coefficients o yield (dopt/dS =13 for a-Si:H and 50 for c-Si, (dopt/dc;e):ﬁf for
a-Ge:H and 7 for c-Ge. Thus several near-surface cycles (to a depth of about 150 nm) are
probed in these experiments, the thinner but more absorptive Ge layers being the limiting
factor.® Laser power was kept below 10 mW, and a spectral slit width of 4 cm~—1 was
used. Long scanning times (15 to 90 hours) were needed to yield clean spectra.

3. Results: Amorphous Interdiffusion and Two Crystallizations

Figure 1 presents our results. The annealing sequence begins with the as-grown
a-Si:H/a-Ge:H multilayer and ends with a homogeneous crystalline alloy. Table 1 lists
the peak positions and observed linewidths (full width at half maximum) estimated by
deconvoluting these spectra.

A 400 C anneal (not shown), like the unannealed sample, revealed only the two
broad bands corresponding to the dominant bands of a-Ge:H (272 cm™1) and a-Si:H
(477 cm™1).  But at 525C, a third broad band appears which corresponds to
a-811 xGey:H alloys.! Using the x=0.45 Raman spectrum reported in Ref. 1, the relative
Si-Ge and Ge-Ge intensities observed for the 525 C anneal,10 and a simple model
assuming a-Si:H/a-Sip 5Gep 5:H/a-Ge:H in place of a graded interface, we estimate that
the alloyed regions contain 30% of the Ge atoms. This corresponds to an interface-alloy
thickness of 1.6 nm. This can be compared to the equivalent diffusion-determined
thickness given by L2=(16/m)Dt, using D=1.0x10"3 (am)2s~1 extrapolated from Ref. 6.
This calculation yields L=2.5 nm, in quite reasonable agreement with our Raman-derived
experimental result.

The 600 C anneal is noteworthy because the Ge-rich layers have crystallized while
the Si-rich layers remain predominantly amorphous. A weak c-Si peak is, however,
already present, superimposed on the a-Si band, as seen in Fig. 1 and listed in Table 1.
Table 1 includes composition estimates for the crystalline phases, obtained from:

V(Si-Si) =521-62x-11x2 ,  x=0.016A-0.000034A2 - (1)

V(Ge-Ge) = 301-31y+17y2 | y = 0.0258+0.001852 (D)
where x is the Ge fraction, y=1—x is the Si fraction, Vv is in cm‘l, A=521-v (Si-Si), and
0=301-v (Ge-Ge). These relations are our fits to the c-SiyGey room-temperature data of
Refs. 4 and 5; they provide a convenient method for estimating x and y. The estimate
based on (1) is the more reliable one, since v (Si-Si) shifts quickly and nearly linearly

Table 1. Raman peak positions and linewidths, in cm™!, and layer-composition estimates.

Anneal Si-Si band Si-Ge band Ge-Ge band X of y of
Temp. v FWHM ¥ FWHM  V FWHM "Silayer” "Ge layer"
as-grown 477 63 — P 272 46 0 0

525C 477 79 376 66 270 47
600 C 475 76

517 15 399 26 296 15 0.06 0.2
630 C 518 13 399 28 296 14 0.05 0.2
725 C 517 15 403 30 294 15 0.06 0.3
g1oC 503 11 405 24 288 18 0.28 0.6

500 C 502 3 403 23 284 15 0.29 0.9
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Figure 1. Raman spectra of the
multilayers after various
20-minute anneals. The vertical
lines in (a) correspond to the
dominant bands in a-Ge:H,
a-GeSiH, and a-Si:H; those in (b)
correspond to the Raman lines of
pure c-Ge and ¢-Si.
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with x. The crystalline alloys also display4> a composition-insensitive narrow band near
400 cm™1; this Si-Ge band is present in our spectra for 600 C and above.

The position and sharpness of the Ge-Ge and Si-Ge lines seen for the 600 C anneal
show that the Ge-rich layers are crystalline, and v (Ge-Ge) indicates, via (2), that the
composition is about Sig 7Geq g. Note that we can be confident, from (1), that the weak
sharp line at 517 cm™! does not arise from Si-Si vibrations in the x=0.8 Ge-rich layers,
but instead arises from a small crystalline component in the Si-rich layers. This is
confirmed by the growth of this line at higher anneals of 650 C and 725 C. The
composition of these layers, from v (5i-Si) and (1), is about Sig 94Geg 6.

Figure 1 and Table 1 show that at 650 C and 725 C, the crystallization of the Si-rich
layers proceeds while the layer compositions change little. At 810 C and 900 C, the
shifted sharp lines signal composition changes, and Table 1 indicates that x+y is now
roughly unity (the y estimate is uncertain for large y). We interpret these results to
represent the homogenization of the multilayer. In fact, our 900 C anneal spectrum is
essentially identical to that reported, in Fig. 1(b) of Ref. 4, for c-Sip 79Geg.2g. This
composition is Ge-rich relative to that corresponding to complete intermixing of the
original superlattice (Sig ggGeq. 14); we attribute this to rejection of Ge from the silicon
oxide surface layer expected for this high-temperature anneal.

4. Summary

The spectral signatures documented in Fig. 1 and Table 1 clearly demonstrate the
compositional and structural changes which occur as a result of annealing-induced
diffusion and crystallization. The intermediate structure arrived at in the 600 C anneal
was close to a crystal/glass superlattice with alternating Ge-rich crystalline and Si-rich
amorphous layers.
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