

Some highlights of experimental ADS programs in Europe

M.Baylac (CNRS/LPSC)

GUINEVERE collaboration

H.Aït Abderrahim, P.Baeten, G.Ban, G.Bergmans, A.Billebaud, D.Bondoux, J.Bouvier, S.Chabod, JM.De Conto, P.Dessagne, E.Froidefond, G.Gaudiot, JM.Gautier[†], G.Granget, G.Heitz, M.Kerveno, A. Kochetkov, B.Laune, F.R.Lecolley, J.L.Lecouey, N.Marie, F.Mellier, Y.Merrer, A.Nuttin, D.Reynet, J.C.Steckmeyer, W.Uyttenhove, D. Vandeplassche, F.Vermeersch, G.Vittiglio.
SCK-CEN, Belgium CNRS/IN2P3, France CEA/DEN, France

1st International Workshop on Accelerator-Driven Sub-Critical Systems & Thorium Utilization, Sep 27-29 2010, Virginia Tech

Overview

- Introduction to ADS
- MUSE experimental program
 - MUSE-4
- GUINEVERE project
 - motivations, objectives
 - civil engineering
 - reactor : design & construction
 - accelerator : design & construction
 - accelerator commissioning
 - outlook
- MYRRHA project
 - overview

Not a overview on European programs! Much more than the scope of this talk

ADS concept

- ADS: Accelerator Driven System
- Sub-critical reactor -> external neutron source to maintain the chain reaction

- Reactor driven by the source via the accelerator beam
- Allow a fuel with large amounts of minor actinides (impossible in critical reactors because of the small fraction of delayed neutrons)

First experimental ADS programs

- Mid 90's: FEAT and TARC experiments (renewal of ADS concept) Fast Energy Amplifier Test, C.Rubbia et al. (CERN, 1995) Transmutation by Adiabatic Resonance Crossing, C.Rubbia et al. (CERN, 1996)
 - → Validate ADS concepts with spallation targets (high energy p on Pb and U)
 - energy amplification
 - transmutation

[Andriamonje et al. PLB 398(1995)697, Arnould et al. CERN-SL-99-036 EET (1999)]

- - → R&D on related technologies
 - → Mock-up experiments for physics modeling and simulation validation
 - Neutron source and sub-critical core coupling
 - > Spallation target
 - > Nuclear Data
 - > Fuel
 - > Design

Main issues in ADS reactor physics

- Modeling/simulation code validation
 - Models and codes designed mainly for critical thermal reactors
 - No predictive models for fast sub-critical reactors
 - Codes need for validation/performance evaluation
- Monitoring of k_{eff} or reactivity, ρ (safety issue)
 - To guaranty a criticality margin allowing the power control of the reactor through the simple law:

$$P_{th}(t) = C \frac{I(t)}{\rho(t)}$$
 safety criterium :
-5000 pcm < ρ < -3000 pcm

Need for absolute reactivity online monitoring during reactor operation (with no reference to a critical state)

➔ Mock-up experiments

A.Billebaud, ADS Experimental Workshop, Torino, 2010

Genesis of MUSE experiment

- CEA/DEN (Cadarache) and CNRS collaboration , mid 90's
 - → Study of a coupled system without any power and thermal effects
 - Separate the neutron source issue from the sub-critical core physics: use of a well known neutron source

Experimental program "MUltiplication d'une Source Externe" aka MUSE with MASURCA reactor

- 1996 : MUSE-2 experiment used a simple Cf source
- 1998 : MUSE-3 experiment used a Genie 26 neutron generator by SODERN (F)
- This pulsed generator revealed several aspects detrimental to kinetics data:

long pulse, long falling time, bad repeatability, too much H in MASURCA

→ Need for a cleaner neutron generator

A.Billebaud, ADS Experimental Workshop, Torino, 2010

Experimental setup for MUSE-4

- Neutron production via deuteron irradiation of Tritium or Deuterium targets d + T -> n (14 MeV) + a d + D -> n (2.6 MeV) + He₃
- Electrostatic deuteron accelerator GENEPI-1
- GENEPI-1 developped by Laboratoire de Physique Subatomique et de Cosmologie (LPSC, former ISN), Grenoble, from CNRS/IN2P3

MUSE-4 : GENEPI-1 at MASURCA

- Accelerator requirements for reactor studies
 - short pulse, sharp falling time
 - high current peak intensity, wide source frequency range
 - no hydrogen inside the reactor core
 - geometrical constraints : limited space around MASURCA

Many safety requiremenents

- •fire protection, earthquake protection
- rules for coupled operation accelerator and MASURCA : reactor doubling time against accelerator fast frequency variation
- neutron irradiation of equipement
- tritium targets : T detection, glove box, air flowed suits for target handling

Design of the accelerator GENEPI-1

4. Quadrupole Q1

1.

2.

3.

Pictures of GENEPI-1

Special assembly with a

channel for GENEPI beam guide

Thimble

GENEPI-1 at MASURCA: operation & results

• Key dates :

- 1996-99 : design, construction and commissioning at LPSC
- 2000 : installation in MASURCA
- 2001 : first neutrons, safety tests
- \bullet 2002 : first couplings in subcritical configuration on D then T
- 2003-2004 : operation for experimental program
- 2007 : end of dismantling

Data on-line reactivity monitoring, limitations of MUSE-4

& recommendations for future experiments

[C.Destouches et al, NIM A 562 (2006), 601-609]

• European Collaboration (2000-2004) within FP5 under the "MUSE" acronym

Motivations for GUINEVERE

- Extend and complete the MUSE-experiments on sub-critical system reactivity monitoring
- Reactor mock-up with a zero-power core representative of a fast ADS to follow up investigations in support to the design of Fast Transmutation Experimental Facility (MASURCA reactor unavailable until 2013)
- Neutron source that can be operated in various modes: pulsed, continuous and interrupted
- Need for an easily available facility in Europe

Objectives of GUINEVERE

- SCK•CEN initiated in collaboration with CNRS and CEA, the project GUINEVERE (Generator of Uninterrupted Intense NEutron at the lead VEnus Reactor)
- Project proposed to EUROTRANS Integrated Project (FP6) partners in 2006 (accepted in December 2006)
- Dedicated to Experimental activities on the Coupling of an Accelerator, a Target and a Subcritical blanket (ECATS)
 - Qualification of sub-criticality level monitoring; Validation of the core power / beam current relationship,
 - Start-up and shut-down procedures, instrumentation validation and specific dedicated experimentation,
 - Interpretation and validation of experimental data, benchmarking and code validation activities etc.,
 - Safety and licensing issues of different component parts as well as that of the integrated system as a whole.

EURATOM FP6, EUROTRANS-IP, ECATS

GUINEVERE : a collaborative work

- SCK•CEN is providing the VENUS facility, modifying it to get a Pb-based fast facility able to operate in both critical and sub-critical modes, and is taking the licensing responsibility
- CNRS/IN2P3 is in charge of the design and construction of the GENEPI-3C accelerator and of its installation at SCK Mol
- CEA/DEN provides fuel and lead rodlets
- Partners of EUROTRANS-IP support the design and the licensing of the facility and the experimental program and analysis

Accelerator requirements for GUINEVERE

- Similar requirements as GENEPI-1/2
- Additionally, new specifications
 - Beam specifications
 - Pulsed intense beam
 - Continuous beam (DC)
 - DC w/ programmable interruptions
 - Accelerator design
 - Vertical coupling to the reactor
 - Accommodate reactor topology for operation & core loading/unloading

Civil engineering at SCK.CEN

• Construction of an additional floor above the VENUS bunker to host the GENEPI-3C accelerator for a vertical coupling

Construction phase (2007-2009)

Courtesy of SCK·CEN

VENUS for GUINEVERE: set-up of a modular reactor design

Modifying of the water moderated VENUS core
fast lead core

Modular fuel assemblies

• CEA fuel rodlets

- > U-metal
- Enrichment 30 %
- Diameter= 1.27 cm
- Length= 20 cm
- Fuel assembly
 - > 60 cm active length in height
 - + 40 cm lead reflector
 - > 8 cm in lateral dimension

→ FA structure manufacturing completed

Courtesy of SCK·CEN

GUINEVERE cores

Safety and control rods

Safety rod structure driving

- 6 Safety Rods
- 2 Control Rods (stand-alone units)

\rightarrow installed

CR

- Reactor vessel
- → ready for core loading

Physics requirements for the accelerator - 1

• Intense pulsed mode similar as GENEPI-1

Energy	140 up to 240 keV	
Peak current	40 mA	
Repetition rate	10 Hz to 5 kHz	
Mean current	190 µA at 4.7 kHz	
Pulse FWHM	~ 0.7 μs	
Pulse stability	~ 1%	
Beam spot size	20-25 mm in diameter	
Target	Tritium (Deuterium) /Titanium	
Maximum neutron production	~8×10 ⁹ n/s at 4 kHz for Tritium	
Neutron energy	14 MeV (2.5 MeV)	

Physics requirements for the accelerator - 2

Continuous modes

- DC beam
- DC beam with programmable interruptions

	\frown
Mean current	160 µA to 1 mA
Beam trip rate	0.1 to 100 Hz
Beam trip duration	~ 20 µs to 10 ms
Transition (ON/OFF)	~1 μs
Beam spot size	20-40 mm (diameter)
Max neutron rate	~5×10 ¹⁰ n/s
Pulse stability	~1%

• Aim for a single source for pulsed & DC mode operation

→ Required important developments on the ion source

Machine design : version 2006

• Preliminary discussions with SCK•CEN : 2006

feasibility, machine implementation

- Financing approved : Dec 2006
- French collaboration within the IN2P3 institute of CNRS
 - LPC Caen
 - IPN Orsay
 - IPHC-DRS Strasbourg
 - LPSC Grenoble

Machine design : version 2008

Ion source

- Duoplasmatron : production of Deuterons : well adapted to pulsed mode
- Developments for DC operation : ionization efficiency D+ ~ 40%
 - → 60% beam lost before target
- DC mode specifications mostly reached
 - ✓ 1 mA D+
 - ✓ Programmable interruptions
 - \checkmark ON/OFF transitions ~ few μs

Dipole magnet - 1

- Deflect the beam towards core & perform magnetic separation
- Magnet features : C design, 0.5 m radius, 0.2 T, 30° faces
- Translation system for dipole + short V line
- Water cooled with stringent precautions against leaks
 - Deported cooling unit away from bunker penetration
 - Coil, cooling system waterproof fiber glass ribbon & epoxy resin body

- Water & electrical connections waterproof casing with leak detection

Dipole magnet (out position)

Dipole magnet - 2

- Ion collector connected to the chamber (D_2^+, D_3^+) out of source)
- Recoil telescope facing the target
- Shielding against neutron production (protection of upper level)

Vertical beam line insertion

- Target within the thimble to be inserted at core center
- Machine sections mobile for periodic target changes & core maintenance
 - Dipole magnet to grant access to the V line
 - -Vertical beamline to be lifted up
- V line & shielding embedded in support structure, guided at upper & lower level

Tritium target

- Target holder : copper disk
 - Thermocouples isolated (2 used for redondancy) Current measurments _____ (1 used, 1 spare)

• Thin layer of TiT (12 Ci)

- Material: high purity copper OFHC
- Diameter: 60 mm
- Thickness: 1.5 mm
- Back side:
 - Pin fin size: 2.4x2.4x7 mm3
 - Diameter of pin area: 40 mm

- Titane deposit: 1100 μ g/cm2, diameter: 40 mm
- Tritium loading (by impregnation): 12 Ci
- Titanium hydride p=4.2 g/cm2
- T/Ti ~ > 1.5
- Mounted on beamline termination (thimble)

Target cooling

- Requirements
 - Beam power to be evacuated up to 250 W (DC mode), reactor not cooled
 - Temperature to be kept minimal to limit Tritium desorption : T < 60 ° C
 - No Hydrogen within core (neutron slowdown in fast core)
 - Limited room available for cooling (2x2 FA)

- Cooling system developed based on compressed air
 - Cooler & drier system (6 bars)
 - Diffuser at target's back fed by 4 inlets

Neutron monitoring - 1

Neutron production
d + T -> n (14 MeV) + a

 Monitoring of alpha particles associated to neutron production Performed within beam pipe and under direct solid angle Semiconductor Silicon dectector, mounted on thimble above the reactor Provides absolute neutron monitoring

Neutron monitoring - 2

• Direct monitoring of 14 MeV neutrons

To detect neutrons : conversion into proton via (n,p) reactions in an H material Consisting of 3 Silicon detectors, located atop the dipole magnet High energy protons stop in 3rd detector

- → triple coincidence for identification
- discriminated from reactor fission neutrons

GENEPI-3C commissioning @ LPSC

- Machine fully assembled and tested at LPSC before transfer to Mol
- Validate motions & guiding of mobile sections

Magnet horizontal translation Vertical beam line lift

- Validate safety interlock system
- Validate machine operation

Individual equipment and remote control

Validate beam dynamics

Beam transport through the machine

Beam size on target (emittance), dummy targets only

Validate target cooling

Reactor core mock-up at expected operating temperature

Commissioning at LPSC - July, August 2009

Beam transport

- Beam transported for
 - Intense pulsed beam : ~40 mA on target
 - DC beam: 150 μ A to ~ 1.2 mA

with optimization : 8 reference settings

- Some beam diagnostics commissioned
- Beam profile measured on profilometer at line end

✓ reference settings ready for operation at SCK·CEN

High current DC beam : operation

- Validation of
 - •Target cooling (P~ 250 W air-cooled)
 - Magnet collector cooling ($P_{lost} \sim 400$ W air-cooled)
- Vacuum chamber pressure
 - measurements consistent with design values
- High voltage operation
 - some discharges occurred

✓ no major problem detected

Dismantle and transfer

- Dismantling & packing of whole machine : sep. 09
- Transfer to SKC·CEN, Mol (Belgium) : oct. 09
 - 3 trucks
 - 16 tons of equipment
 - Estimated cost ~ 1 M€

Delivery and re-assembly at SCK·CEN

Vertical beam line handling

Vertical beam line storage

Vertical beam line motion

Accelerator – upper level

Beam line insertion into the core upper level

Beam line insertion into the core

Beam line insertion into the core lower level

VENUS-F bunker and beamline

Motion picture

Official inauguration : March , 2010

GENEPI-3C commissioning at SCK·CEN

- Safety report for accelerator operation at SCK•CEN obtained by steps : Jan-Aug 2010
- Some debug : incorrect connections, fix breakages
- Transported beam through the machine with mostly LPSC settings
 - DC mode : 1 mA on target
 - Pulsed mode : ~ 25 mA
- Some instability on long high current runs
 - Discharges → to be investigated
- Maximum beam current in pulsed mode too low
 - \rightarrow To be investigated

GENEPI-3C commissioning at SCK·CEN

• Target and collimator cooling validated

- Neutron production
 - First neutron production : Sep 2010
 - Preliminary measurements analysis

few 10⁹ n/s as expected!

Main key dates

- Stop of VENUS reactor: 1-4-2007 -
- Removal of internal parts of VENUS: 1-7-2007 -
- Conceptual design of core: 1-10-2007 ✓
- Transport of fuel from CEA to SCK-CEN: 1-11-2007 🗸
- Accelerator room construction: 1-9-2009, Final stage 1-4-2009 🗸
- Building and commissioning of GENEPI at LPSC: 01-6-2009 -
- Transfer of GENEPI from CNRS to SCK-CEN: 1-10-2009 ✓
- Installation new components in VENUS: 1-11-2009 ✔
- Royal Decree for GUINEVERE-experiment: January-2010
- Fuel assembly construction: May-2010 🗸
- Commissioning accelerator: September 2010
- Commissioning reactor (non-nuclear): September- October 2010
- Criticality: October-November 2010
- Coupling with sub-critical core: December 2010

GUINEVERE outlook

- Experimental program to follow within framework of European programs FP7 FREYA (physics) & MAX (accelerator)
- GUINEVERE will provide a unique experiment with a continuous beam coupled to a fast (sub)critical assembly allowing
 - Validation of the methodology for measuring the sub-criticality level
 - Investigation and validation of the operational procedures for an ADS
 - Validation of neutronic codes
 - Safety and licensing issues related to a fast spectrum ADS
- It provides a zero power experimental facility (critical as well) for fast lead system studies and related further developments
- In particular it can act as a zero-power facility for the further design of the MYRRHA project

→ GUINEVERE as a mini-MYRRHA

Multipurpose fast spectrum irradiation facility

Courtesy of Prof. Baeten, SCK·CEN, pbaeten@sckcen.be or myrrha@sckcen.be

Applications of MYRRHA

	Challenge	Solution	MYRRHA contribution
Fission	High radiotoxic level waste	Transmutation	ADS demo
Fission GEN IV	Demonstrate concept	Build demonstrators	LFR ETPP Fast spectrum irradiation facility
Fusion	Extreme operating conditions	Material testing & development	Fast spectrum irradiation facility
Fundamental research	Pushing the limits of knowledge	Access to proton beam	Long term experiments with radioactive ion beams (RIB)
Renewable energies	Efficient power electronics	High efficiency transistors (NTD-Si)	Securing NTD-Silicon production
Healthcare	Ageing population	A long term source of medical radioisotopes	Securing radioisotopes production (existing and new ones)

Courtesy of Prof. Baeten, SCK·CEN, pbaeten@sckcen.be or myrrha@sckcen.be

MYRRHA: innovative and unique

Reactor : core layout

Courtesy of Prof. Baeten, SCK·CEN, pbaeten@sckcen.be or myrrha@sckcen.be

Accelerator - layout

Courtesy of Prof. Baeten, SCK·CEN, pbaeten@sckcen.be or myrrha@sckcen.be

ISOL@MYRRHA lay-out

Building layout and reactor hall Vertical section in the reactor building

Courtesy of Prof. Baeten, SCK·CEN, pbaeten@sckcen.be or myrrha@sckcen.be

Project schedule

For more information on MYRRHA : <u>http://myrrha.sckcen.be</u>

Courtesy of Prof. Baeten, SCK·CEN, pbaeten@sckcen.be or myrrha@sckcen.be

M

Thanks for your attention