

Search for a 4th neutrino type with intense antineutrino emitters

> Virginia Tech 31/10/2012

Th. Lasserre (CEA-Saclay, Irfu)

Cerro Neutrino Anomalies & 4th Neutrino

Anomaly	Source	Туре	Sensitivity to Oscillation	Channel	Significance
LSND	Decay-at-Rest	$\overline{v_{\mu}} \rightarrow \overline{v_{e}}$	<u>Total Rate</u> , Energy	CC	3.8 σ
MiniBoone	Short baseline	$v_{\mu} \rightarrow v_{e}$	<u>Total Rate</u> , Energy	CC	3.8 σ
Gallium	Electron Capture	v _e dis.	Total Rate	CC	2.7 σ
Reactor	Beta-decay	v _e dis.	<u>Total Rate</u> , Energy	CC	3.0 σ
Cosmology	Big-Bang	All	Number of v, N _{eff}	CC	≈2 o

 \rightarrow could be interpreted by an existing eV² 4th neutrino state...

Number of v's From Cosmology

Universe Expansion Rate $H^2 \approx (\rho_v + \rho_v)$ - ρ_v given by CMB data

-4	-2 0	2	4	6	8	10		12
	N7+CMB+LRG+SN+H0				4.30	+1.40 +2.30 0.54 - 1.09		I
	N7+CMB+BAO+SN+H0		• •		4.20	+1.10 +2.00 0.61 - 1.14		
	N7+CMB+LRG+H0	÷	<u> </u>		4.87	±2.02		
	N7+CMB+BAO+H0		_		3.68	-1.90 1.84		
1	N-7+ACT+SPT+BAO+H0		⊢ ≜-1		4.00	±0.43		
1	N-7+ACT+SPT+BAO+H0		⊢ ▲1		4.03 :	± 0.45		
1	N-7+BAO+H0 Neff+Omegak		⊢		4.61 ±	0.96		
1	N-7+ACT+SPT+BAO+H0		⊢ ▲		4.87	-1.86 1.75		
	N-7+CMB+BAO+H0	H			4.47	-1.82 1.74		
ì	N-7+ACT+SPT+BAO+H0 №ff		⊢▲┥		3.890	±0.410		
ì	N-7+ACT+SPT+LRG+H0 №ff				4.080	+0.710 - 0.680		
ì	N-7+SPT+BAO+H0 №ff				3.850	±0.420		
ì	N-7+SPT		⊢ ▲•		3.850	±0.620		
ì	N-7+ACT+BAO+H0 №ff			-	4.560	±0.750		
ì	N7+ACT		┇		5.300	±1.300		
ì	N-7+LRG+H0 №ff		∮	•	4.250	+0.860 - 0.880		
ì	N-7+BAP+H0 №ff		↓ ▲	-	4.340	+0.860 - 0.880		
ì	N-5+LRG+maxBCG+H03	-		-	3.770	±0.670	+1.370 - 1.240	
ì	N-5+CMB+BAO+XLF+fga Neff	as+H0	¦ ▲ ·I		3.400	+0.600 - 0.500		
ì	N-5+LRG+H0 №ff	F			4.160	±0.670	+1.370 - 1.240	
			bewa	re: corr	elated	measu	remer	nts
			.					
-4	-2 0	2	4	6	8	10	1	12

Cosmic Microwave Background and Large Scale Structures

Big Bang Nucleosynthesis

 \rightarrow a 4th dof (v?) favored (2 σ)

Number of Neutrino Types

CE Neutrino Mass From Cosmology

Constraint on v mass and Number from flat ACDM

• $m_{heavier} < \approx 1 \text{ eV} \rightarrow \text{tension with terrestrial neutrino data}$

The Reactor Antineutrino Anomaly

G. Mention, M. Fechner, T. Lasserre, M. Cribier, Th. Mueller D. Lhuillier, A. Letourneau,

CEA / Irfu

Phys. Rev. D 83, 073006 (2011), arXiv:1101.2755 based on Phys. Rev. C83 054615 (2011)

Reactor Neutrino Exp. Overview

- Electron antineutrinos emitted through Decays of Fission Products of ²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu
- Nuclear reactors : $1 \text{ GW}_{th} \Leftrightarrow 2 \ 10^{20} \ \bar{\nu}/s$
- Neutrino Luminosity : $~N_{ar{
 u}}=\gamma(1+k)P_{
 m th}$
 - γ: reactor constant
 - k : fuel evolution correction (<10%)
- Common Detection Principle
 - Inverse Beta-Decay reaction (σ_{V-A})

$$\bar{\nu}_e + p \longrightarrow e^+ + n$$

- Threshold 1.8 MeV. E_v extend to 10 MeV
- Measure anti-v_e of interaction rate

$$n_{\nu} = \frac{1}{4\pi R^2} \frac{P_{\rm th}}{\langle E_f \rangle} N_p \varepsilon \sigma_f \quad \longrightarrow \quad$$

New Reactor Antineutrino Spectra

- Accurate e⁻ measurements, ILL reactor (1980-89):
 - Irradiation of ²³⁵U, ²³⁹Pu, ²⁴¹Pu foils in intense n_{th} flux at the ILL core
 - High resolution magn. spectrometer, normalization uncertainty of 1.8%
- Thousands of β-branches involved...
- From electron to neutrino spectra: need a conversion
 - Old Method:
 - **•** Fit integral e⁻ spectrum with a sum of 30 effective β-branches
 - Conversion of the effective branches to v spectra
 - Effective correction on the v-spectra (A_{C,W})
 - New Method (Phys. Rev. C83, 054615, 2011)
 - Conversion with "true" distribution of β-branches reproducing >90% of ILL e⁻ data + five effective branches to the remaining 10%
 - Net 3% upward shift in energy-averaged neutrino fluxes with respect to old v-spectrum for ²³⁵U, ²³⁹Pu, ²⁴¹Pu
 - Confirmed and improved by Phys. Rev. C 84, 024617 (2011)

Canaly The Reactor Antineutrino Anomaly

i) v_{emission} : Improved reactor neutrino spectra $\rightarrow +3.5\%$

2 19 Experimental Results below 100m

Measured cross sections are taken at their face values

Cent The Reactor Antineutrino Anomaly

Reanalysis of Short Baseline Experiments Results (PRD83, 073006, 2011)

result	Det. type	τ_n (s)	²³⁵ U	²³⁹ Pu	²³⁸ U	²⁴¹ Pu	old	new	err(%)	corr(%)	L(m)
Bugey-4	³ He+H ₂ O	888.7	0.538	0.328	0.078	0.056	0.987	0.926	3.0	3.0	15
ROVNO91	³ He+H ₂ O	888.6	0.614	0.274	0.074	0.038	0.985	0.924	3.9	3.0	18
Bugey-3-I	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.988	0.930	4.8	4.8	15
Bugey-3-II	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.994	0.936	4.9	4.8	40
Bugey-3-III	⁶ Li-LS	889	0.538	0.328	0.078	0.056	0.915	0.861	14.1	4.8	95
Goesgen-I	³ He+LS	897	0.620	0.274	0.074	0.042	1.018	0.949	6.5	6.0	38
Goesgen-II	³ He+LS	897	0.584	0.298	0.068	0.050	1.045	0.975	6.5	6.0	45
Goesgen-II	³ He+LS	897	0.543	0.329	0.070	0.058	0.975	0.909	7.6	6.0	65
ILL	³ He+LS	889	≃ 1	_	_	_	0.832	0.7882	9.5	6.0	9
Krasn. I	³ He+PE	899	≃ 1	_	_	_	1.013	0.920	5.8	4.9	33
Krasn. II	³ He+PE	899	≃ 1	_	_	_	1.031	0.937	20.3	4.9	92
Krasn. III	³ He+PE	899	≃ 1	—	_	_	0.989	0.931	4.9	4.9	57
SRP I	Gd-LS	887	≃ 1	_	_	_	0.987	0.936	3.7	3.7	18
SRP II	Gd-LS	887	≃ 1	_	—	_	1.055	1.001	3.8	3.7	24
ROVNO88-1I	³ He+PE	898.8	0.607	0.277	0.074	0.042	0.969	0.901	6.9	6.9	18
ROVNO88-2I	³ He+PE	898.8	0.603	0.276	0.076	0.045	1.001	0.932	6.9	6.9	18
ROVNO88-1S	Gd-LS	898.8	0.606	0.277	0.074	0.043	1.026	0.955	7.8	7.2	18
ROVNO88-2S	Gd-LS	898.8	0.557	0.313	0.076	0.054	1.013	0.943	7.8	7.2	25
ROVNO88-3S	Gd-LS	898.8	0.606	0.274	0.074	0.046	0.990	0.922	7.2	7.2	18

But 19 correlated results...

Main pink color comes from the 1.8% systematic on ILL β-spectra normalization uncertainty

The experiment block correlations come from identical detector, technology or neutrino source

The reactor anomaly

• Fit:
$$\chi^2 = \left(r - \overrightarrow{\mathbf{R}}\right)^T W^{-1} \left(r - \overrightarrow{\mathbf{R}}\right)$$

- Best fit for N_{obs}/N_{exp} : μ = 0.927
- Uncertainty : 0.023 (syst.)
- 7% deficit wrt the new prediction
 - ≈3%: reevaluation of emitted flux
 - ≈3%: reevaluation of
 - IDB cross section parameters
 - Neutron lifetime
 - Accounting for off eq. effect

99.7 % C.L. deviation from unity

- THE question:
 - Artifact or new physics?

CECI

The 4th neutrino hypothesis

Rate Only Analysis

Rate + Shape Analysis

The Reactor Antineutrino Anomaly

Puzzling 1981 ILL v-experiment

- Reactor at ILL with almost pure ²³⁵U, with compact core
- Detector 8.8 m from a COMPACT core
- Reanalysis in 1995 to account for overestimation of flux at ILL reactor by 10%... Affects the rate only but 20% deficit!

Large errors, but a striking pattern is seen by eye ?

Nucifer experiment

- Osiris research reactor
 - At Saclay, France
 - **70 MW, 20%**
 - Compact: 61x61x63 cm³
- Detector designed for reactor monitoring studies
 - 850 kg Gd-loaded liquid scintillator
 - 400 neutrinos expected / day
- But oscillation detection abilities:
 - Short baseline: only 7 m (center to center)
 - Target: h = 70 cm, Φ = 1.2 m

Commissioning and data taking

Detector works well (but see bkg...)

Accidental background

Liquid scintillator upgrade

- Liquid scintillator shows unexpected short attenuation length 1m
 - Vertex dependent energy reconstruction: degradation of energy resolution
 - Time resolution not affected: preliminary studies of correlated background (40/day, energy cut dependent), veto muon efficiency (97 %)...
- New liquid based on Double-Chooz R&D to be provided this fall

Expected sensitivity after upgrades

Upgrades planned to be finished early 2013

- Jonathan Gaffiot - Reactor experiments to

STEREO project

Contact: D. Lhuillier

- French and German project
- ILL research reactor (Grenoble):
 - 57 MW, highly enriched U
 - Compact: h = 80 cm, Φ = 40 cm
- Dedicated detector:
 - 5 segments: L and E oscillation
 - Active outer layer: high efficiency+veto
 - Muon flux divided by 4, thick CH₂ and Pb walls (70 t)

Target: Gd-doped liquid scintillator

The Gallium Neutrino Anomaly

Based on PRD82 053005 (2010), C. Giunti & M. Laveder

Recent update: C. Giunti et al., arXiv:1210.5715 (not included here)

The Gallium Neutrino Anomaly

Th. Lasserre

The Gallium Neutrino Anomaly

Fit to v_e disappearance hypothesis (3+1)

$$\begin{pmatrix} v_{e} \\ v_{s} \end{pmatrix} = \begin{pmatrix} \cos \theta_{new} & \sin \theta_{new} \\ -\sin \theta_{new} & \cos \theta_{new} \end{pmatrix} \begin{pmatrix} v_{1} \\ v_{new} \end{pmatrix}, P_{ee} = 1 - \sin^{2}(2\theta_{new}) \sin^{2}\left(\frac{\Delta m_{hew}^{2}}{E}\right)$$
$$\Delta m_{new}^{2} \approx eV^{2} = \frac{1}{2} \frac{10^{4}}{9^{4}} \frac{10^{4$$

No-oscillation hypothesis disfavored at 2.7σ (PRC 83 065504,2011)

Th. Lasserre

Combining Gallium & Reactor Anomalies

$\overline{\mathbf{v}}$ Testing $\overline{\mathbf{v}}_{\mathbf{e}}^{'}$ disappearance anomalies

- GA & RAA arise from comparisons between data and event prediction → Need a conclusive technique
- Input from Sterile Neutrino Fits

•
$$\Delta \mathbf{m}^2 \approx \mathbf{eV}^2 \rightarrow L_{osc}(\mathbf{m}) = 2.5 \frac{E(MeV)}{\Delta m^2(eV^2)} \approx 2 - 10 \mathrm{m}$$

sin²(2
$$\theta_{new}$$
) \approx 0.1

- Experimental Specifications
 - Search for L, E, L/E pattern (<u>shape only</u>)
 - Complement with a <u>rate analysis</u> (direct test of RAA+GA)
 - $\Delta m^2 \approx eV^2$: <u>compact source</u> <1m & <u>good vertex resolution</u> (<1m)
 - sin²(2θ_{new}) : experiment with <u>few % stat. syst. uncertainties</u>

Oscillometry inside a v-detector

- Place the v-emitter inside or close to existing detectors
 - Very short Baseline (few m)
 - Low Background
- i) v-source at center

•
$$\frac{dN}{dR} \propto \left[1 - \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 R}{\langle E \rangle}\right)\right]$$

ii) v-source Outside LS

 Specific oscillation pattern analytically computable

v-source Proposal Overview

Туре	channel	Background	Source	Production	A	ctivity (Mci)	Proposal
v _e	Radiochemical v₀e→v₀e	radioactivity	⁵¹ Cr	n _{th} irradiation in Reactor	in	>3	Baksan LENS
	Compton	(managable) Solarv	0.75 MeV t _{1/2} =26d		out	10	SOX SNO+
	edge 5% F	(irreducible) v-Source	³⁷ Ar 0.8 MeV t _{1/2} =35d	n _{fast} irradiation in Reactor (breeder)	in	>1	-
	15cm R _{res}	(OUT ok but IN ?)			out	5	Ricochet (NC)
v _e	v _e p→e⁺ n	reactorv& v-Source → Background free!	¹⁴⁴ Ce E<3MeV t _{1/2} =285d	spent nuclear fuel reprocessing	in	0.005-0.05	CeLAND SOX
	E _{th} =1.8 MeV				out	0.5	Daya-Bay
	(e⁺,n) Coincidence 5% E _{res}		⁹⁰ Sr ¹⁰⁶ Rh		-	_	-
	15cm R _{res}		⁴² Ar	?	-	-	-

CeLAND: A proposed search for a fourth neutrino with a PBq antineutrino source

M. Cribier, M. Fechner, T. Lasserre, D. Lhuillier, A. Letourneau, G. Mention D. Franco, S. Schoenert, V. Kornoukhov

Phys. Rev. Lett. 107, 201801 (2011) arXiv:1107.2335

The Concept

erc

CET Antineutrino Source: 144Ce-144

(ITEP N°90 1994, PRL 107, 201801, 2011)

- 1st Trick: v_{e} source detected via \overline{v}_{e} +p \rightarrow e⁺+n (Thr=1.8 MeV)
 - High IBD cross section \rightarrow kCi activity
 - (e⁺,n) detected in coincidence \rightarrow Background free
- 2nd Trick: ¹⁴⁴Ce-¹⁴⁴Pr
 - Abundant fission product (5%)
 - ¹⁴⁴Ce: long-lived & low-Q_β Enough time to produce, transport, use
 - ¹⁴⁴Pr: short-lived & high-Q_B v_e-emitter above threshold

Gamma Backgrounds of ¹⁴⁴Ce-¹⁴⁴Pr

- γ rays produced by the decay through excited states of ¹⁴⁴Pr • Intensity $\gamma > 1$ MeV • Intensity $\gamma > 2 \text{ MeV}$ ■ 1380 keV – 0.007 % 2185 keV – 0.7 %
 - 1489 keV 0.3 %

erc

(10¹⁰ γ /sec for 50 kCi)

Bremsstrahlung Background

¹⁴⁴Ce Electron – Nucleus Bremsstrahlung in the cerium
 →emission of gamma rays till Q-value

 Background less Critical with respect to γ rays produced by the decay through excited states of ¹⁴⁴Pr

erc

Neutrino Signal of ¹⁴⁴Pr

- Relevant Antineutrino emitter :¹⁴⁴Pr (Half-life : 0.78 y)
- 48.7 % of antineutrinos emitted above IBD threshold

erc

The Cerium Compact Source

- 50 kCi source (1.85 PBq)
- Assuming a spent fuel cooling time of 3 years
 - Composition (material in form of CeO₂)
 ¹⁴⁴Ce:Ce = 1/130
 - $\rho(\text{CeO}_2)$ = 4 g/cm³ \rightarrow R_{source} = 5 cm (if spherical)
 - 15 g ¹⁴⁴Ce $\rightarrow \approx$ 3 kg of CeO₂
 - Initial Heat release = 380 Watt (comparable to PMTs \rightarrow passive cooling foreseen)

Nuclear Spent Fuel Elements

- Fuel in N4-reactors (EDF N4-Type)
 - 120 tons of UO₂
 - ${}^{235}U \approx 3.45\% : 3.60 \text{ tons}$
- 205 fuel assembly
 - 264 rods per assembly
 - 272 "pellets "per rods
- I ton of VVR-440 spent fuel
 - Burnup of 40 GW*days/t
 - Fission Products: 44 kg
 - 13 kg of Rare Earth (RE)
 Ce≈22% → ≈3 kg
 - 22 g of ¹⁴⁴Ce (60 kCi)

- ine Zircald
- Must account for recovery efficiency
 - Estimation: ≈10 tons needed (80 fuel rods)

Scheme of production

144Ce-144Pr Production Data

- Technology & Productivity:
 - Complexing agent displacement chromatography
 - ≈10 kg of Rare Earth per cycle
 - Content of Ce element 25% → ≈2.5 kg of Ce /cycle
- Ratio of ¹⁴⁴Ce/Ce element is strongly depended on:
 - Fuel burning
 - Cooling time
 - 144 Ce:Ce \approx 1:130 for 3 years old fuel -
- Purity data from ¹⁴⁷Pm production line (TBC for ¹⁴⁴Ce)
 - Content of any others RE (γ -emitters) in Ce \leq 10⁻⁹ Ci/Ci
 - Content of Pu and TPE (*n emitters*) in $Ce \le 10^{-10}$ Ci/Ci

General requirements on shielding

Two separate goals

- Usual biological protection
 - Could be achieved with \approx 15 cm of W-alloy
- Minimisation of accidental bkg during the experiment
 - Need an extra 20 cm of W-alloy or equivalent
- Important constraints to fulfill
 - The size of the hole (chimney) of the neutrino detector
 - Cleanliness Radiopurity
- Several solutions under study
 - Internal ¹⁴⁴Ce : An « orange-like » shielding
 - Internal ¹⁴⁴Ce : A central W-shield inside a balloon filled with heavy liquid
 - External ¹⁴⁴Ce : another dedicated W-shield

œ

Radioprotection Shielding

- A first shield around the source just after production
- Designed to physicists/engineers to operate the source
- Preliminary design based on dose calculation using y crosssection and attenuation in Walloy (GEANT4)
 - 16 cm W allow (18.5 g/cm³)
 - Attenuation of 10⁻¹²
 - Dose @contact: 145 µ Sv/h
 - Dose @1m: 4.5 μ Sv/h
 (Regulation limit 2 mSv/h @1m)
- Cross check by radioprotection authority done (40% difference)

Th. Lasserre

¹⁴⁴Ce-¹⁴⁴Pr Source Activity

ercFinal product

- ¹⁴⁴Ce 15g, 3 kg CeO₂
- Mainly a ß emitters → heat deposition localised only (99%) in the CeO₂ or in the 1st few mm of shielding.
- $< P_{50kCi} > = 380 \text{ W} \rightarrow 150 \text{ W}$ after 1 year (500 W from PMTs)

Activity Measurement

- Differential calorimetric measurement in hot cells @ Mayak.
 - Routinely 3 % accuracy (certified by Lloyd's...).
 - Enough for physicists, but effort to improve to <2%</p>
- Ge Spectroscopy Cross check
 - Sampling, huge dilution and counting (accuracy?)

144Ce-144Pr Projects

3 Suitable Detectors for internal / external deployments

a 50 kCi ¹⁴⁴Ce-¹⁴⁴Pr source

Another proposal : a 500 kCi ¹⁴⁴Ce-¹⁴⁴Pr source in Daya Bay (D.A. Dwyer et al., <u>http://arxiv.org/pdf/1109.6036</u>)

erc

KamLAND

- A great existing underground detector
- But several constraints
 - Full of an extra pure mineral oil
 - Avoid contaminations
- The entrance hole
 - 55 cm in diameter
 - Complex operations to insert the source
- Hanging suspension
 - A rather limited space above the detector
 - ≈ 15 m long
- Dismounting the source

¹⁴⁴Ce-¹⁴⁴Pr Source Transportation erc Cont+Sł radio Cont+Sh_{radio}+Ce Sacla Cont Mayak KamLAND Cont+Sh_{radio}+Ce

- Ship radioprotection shield (Sh_{radio}) to PA Mayak
- Fit the ¹⁴⁴Ce source (Ce) inside first Sh_{radio} at Mayak
- Use certified container for further transportation (Conta)

CeLAND Stage 1:

Internal Antineutrino ¹⁴⁴Ce-¹⁴⁴Pr Emitter

¹⁴⁴Ce Source @external + 35 cm W-alloy

Celand Celand-External Signal/background

75 kCi ¹⁴⁴Ce-¹⁴⁴Pr – 2 year of data (30 kevts)

CeLAND-External Sensitivity

75 kCi ¹⁴⁴Ce-¹⁴⁴Pr – 0.5 year of data (9.3m from center 13 kevts)

CeLAND Stage 2:

Internal Antineutrino ¹⁴⁴Ce-¹⁴⁴Pr Emitter

The Concept

¹⁴⁴Ce @center + 35 cm tungsten alloy

Shielding For Gamma Ray Attenuation

GEANT4 preliminary simulation (50 kCi Ce source + W-shielding)

					•	8.4 cm	
	Name	Radius	Material	Density			1
Franco)	Source	R < 4 cm	CeO ₂ ¹⁴⁴ Ce: 0.010% ¹⁴² Ce: 49.995% ¹⁴⁰ Ce: 49.995%	7.65 g/cm³		5 cm	40 c
rtesy D.	Densimet	4 cm < R < 37 cm	W: 98.50% Fe: 0.75% Ni: 0.75%	18.8 g/cm³ (λ _D = 1.24 cm for 2.185 MeV γ) ←	16 cm	em 34 cm	10
cou	Copper	37 cm < R < 39 cm	Cu	8.94 g/cm ³			40
)	Scintillator	39 cm < R < 300 cm	C ₉ H ₁₂	0.882 g/cm ³		6 cm	

- γ suppression factor S for one ¹⁴⁴Pr beta decay:
 33 cm Densimet : S_D=2.10⁻¹³ & 2 cm Copper : S_C=0.66
- Single rate in LS (E>900 keV): 160 Hz, 3 Hz after 1 m
- Acc. rate (1m LS): R_{promt}=3 Hz, R_{delayed}=0.6 Hz, R_{accident}=1 mHz
 - S/B≈1 @1m from the shield
 - +3 cm W-alloy \rightarrow B/10

W-Shielding Intrinsic Background

^{erc} Background induced by intrinsic contamination in Densimet (Plansee Company W-alloy, d=18.5 g/cm³)

- Contamination is measured by the GERDA collaboration:
 - ²³⁸U: 180±20 mBq/kg
 ⁶⁰Co: 7±2 mBq/kg

²³²Th: 70±20 mBq/kg ⁴⁰K: <57mBq/kg

GEANT4 simulation: Isotopes generated uniformly in the W-volume

	Isotope	Rate [Hz]	Rate E > 900 keV [Hz]	Rate E > 900 Hz R > 139 cm [Hz]	
(D. Franco)	238	12.6 ± 2.1	5.3 ± 0.9	(7.4 ± 1.2)x10 ⁻²	
	²³² Th	6.2 ± 1.8	2.6 ± 0.7	(6.0 ± 1.7)x10 ⁻²	
	⁶⁰ Co	0.8 ± 0.2	0.4 ± 0.1	(3.3 ± 0.9)x10 ⁻³	
	⁴⁰ K	< 0.44	< 0.23	< 2.5x10 ⁻³	
	¹³⁷ Cs	< 0.01	0	0	
	Total	19.6 ± 2.8	8.3 ± 1.2	(13.7 ± 2.1)x10 ⁻²	

>1 order magnitude less than the ¹⁴⁴Pr induced background But a real concern for material selection

CeLAND Signal & Background

- Signal: 50 kCi ¹⁴⁴Ce-¹⁴⁴Pr
 - 40000/8 months
 - about 1 mHz

Backgrounds:

- Detector backgrounds negligible
- Gammas from the source can be attenuated with enough high-Z shield material
 Shielding material should be radiopure

 10-100 mBq/kg

Th. Lasserre – Neutrino 2012

CeLAND R-oscillating Pattern

erc • Geant4 simulation of a CeLAND realization:

- 50 kCi ¹⁴⁴Ce-¹⁴⁴Pr source running for 8 months in KamLAND
- No-oscillation: 40000 events
- Oscillation $\Delta m^2 = 2 eV^2 \& sin^2(2\theta_{new}) = 0.1$: 38000 events

erc

CeLAND E-oscillating Pattern

Geant4 simulation of a CeLAND realization:

- 50 kCi ¹⁴⁴Ce-¹⁴⁴Pr source running for 8 months in KamLAND
- No-oscillation: 40000 events
- Oscillation $\Delta m^2 = 2 eV^2 \& sin^2(2\theta_{new}) = 0.1$: 38000 events

Expected Sensitivity

erc Inputs:

- 50 kCi ¹⁴⁴Ce-¹⁴⁴Pr source running for 1 yr
 (decrease in the source activity over 1 year : 66%)
- 35 cm W-alloy
- $\scriptstyle \bullet$ Using events between 1.5 and 6 m \rightarrow background free
- Detector Parameters:
 - 15 cm vertex resolution & 5% energy resolution
- χ^2 analysis using R (i) & E (j) information:

$$\chi^{2} = \sum_{i} \sum_{j} \frac{[N_{\text{obs}}^{i,j} - (1 + \alpha) N_{\text{exp}}^{i,j}]^{2}}{N_{\text{exp}}^{i,j} (1 + \sigma_{b}^{2} N_{\text{exp}}^{i,j})} + \left(\frac{\alpha}{\sigma_{N}}\right)^{2}$$

- $\sigma_{\rm N}$: Normalization error of 1% for the source activity uncertainty
- σ_{b} : Fully uncorrelated systematic error of 2% for:
 - fiducial volume uncertainty (1%) in a calibrated detector
 - analysis detection efficiencies uncertainties (sub-%)

erc

CeLAND-Inside Sensitivity 50 kCi ¹⁴⁴Ce-¹⁴⁴Pr – 1 year of data (55 kevts)

Th. Lasserre

Comparison of proposal sensitivities

Th. Lasserre

Comparison of proposal sensitivities

Th. Lasserre

Conclusion & Outlook

- Test of Reactor & Gallium Anomalies calls for Energy and baseline-dependent signatures for an unambiguous resolution
- Physics case: Sterile Neutrino White Paper arXiv:1204.5379
 Thanks to VT effort (editors, Patrick & John)
- CeLAND: an appealing approach testing RAA+GAA
 ¹⁴⁴Ce-¹⁴⁴Pr, 50 kCi, in/next to KamLAND
- 50 kCi scale ¹⁴⁴Ce + High-Z shielding feasible (&funded)
 - CEA-Saclay / PA Mayak Collaboration
 - Time scale : 1 y development & 1 year production (2014?)
- KamLAND is a suitable detector
 - Joint CEA-KamLAND effort towards realization ongoing

The Daya Bay Proposal

- D. Dwyer et al. Arxiv:1109.6036
- Proposal based on M. Cribier et al., Arxiv:1107.2335
- 500 kCi ¹⁴⁴Ce-¹⁴⁴Pr source in the Daya Bay FD Pool

