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Abstract

In earlier work, we (Kl and BW) gave a two line “almost proof” (for supersymmetric RG flows)
of the weakest form of the conjectured ddheorem, thatyr < ayy, using our result that the exact
superconformal R-symmetry of 4d SCFTs maximizes 3 Tr R3 — Tr R. The proof was incomplete
because of two identified loopholes: theories with accidental symmetries, and the fact that it is only
a local maximum of:. Here we discuss and extend a proposal of Kutasov (which helps close the
latter loophole) in whichu-maximization is generalized away from the endpoints of the RG flow,
with Lagrange multipliers that are conjecturedb® identified with the running coupling constants.
a-maximization then yields a monotonically decreasiagtinction” along the RG flow to the IR. As
we discuss, this proposal in fact suggests the strongest versionwftieerem: that 4d RG flows are
gradient flows of am-function, with positive-definite metric. In the perturbative limit, the RG flow
metric thus obtained is shown to agree precisely with that found by very different computations by
Osborn and collaborators. As examples, we discuss a new class of 4d SCFTs, along with their dual
descriptions and IR phases, obtained from SQCD by coupling some of the flavors to added singlets.
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1. Introduction

There is an intuition that RG flows are a emway process, with information about the
UV modes lost as one coarse-grains. More precisely (since even an RG fixed point con-
formal field theory (CFT) has UV modes going above the cutoff), the intuition is that
non-trivial RG flows should always decrease the numbenasslesslegrees of freedom:
relevant deformations will lift some massless degrees of freedom, and RG flow to the IR
coarse-grains away these lifted modes, with no new modes becoming massless.

Let us distinguish several possibilities:

(1) One can define a quantity,that properly counts the massless degrees of freedom of a
CFT (e.g.c > O for all unitarity CFTs, and = c¢1 + ¢ for two decoupled CFTs) such
that the endpoints of all (unitarity) RG flows satigfg < cuy -

(2) A stronger claim is that can be extended to a monotonically decreasirfuhction”
c(g(t)) along the entire RG flow to the IR:

ég)=—p" (g)a 7 <0, 1.1)

with ¢ = 0 iff the theory is conformal. Here= 4 47> with # = —logu the RG “time”,
increasing towards the IR, argd (r) = — B8 (g), with g (r) the running couplings.
(3) The strongest possibility isah RG flow is gradient flow of the-function,
C(g) and dc(g)
ag’

(hereG!’ = (G”)*l) with G’ (g) > 0 a positive-definite metric (all eigenvalues
positive) on the space of coupling constants. @) then implies¢ < 0,

Bl (g) = G”(g)

=GB’ (9 (1.2)

0
é(g(1) = —ﬁ’é =—G BB’ <0, (1.3)

with ¢ = 0 iff the theory is conformal.

The possibility that RG flow is gradient flowith positive-definite metric was proposed
(and verified to 3-loop order in 4d multi-componeégt* theory) by Wallace and Zig]. In
2d, Zamolodchikoy2] defined a functior(g), equal to the central charge of the Virasoro
algebra for CFTs, which he proved satisf{@s3) with G;;(g) > 0 (for unitary theories).
G is determined from the two-point function®; (x)O, (y)) of the operators that’ and
g’ source. This proves version (2) above in 2d, and suggests the strongest version (3) (if the
dot product with” could be eliminated from both sides(df.3)). It was also demonstrated
[2] that the strongest versidfh.2)is indeed true, at least in conformal perturbation theory,
in the vicinity of any 2d RG fixed point.

The apparent generality of these intuitiosigggest that analogous statements should
apply for RG flows in any spacetime dimension. Caf8lyconjectured that an appropri-
ate quantity for counting the number of massless degrees of freedom of 4d CFTs is the

2 This candidate does not have an analog for odd spacetime dimensions, unfortunately.
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conformal anomaly: on a curved spacetine:

a~ / (74, (1.4)
sS4

The weakest version of the 4dtheorem conjecture is then that the conformal anomaly
satisfiesu > 0 for every (unitary) 4d RG fixed point, angd)y > ajr for the endpoints of
all (unitary) 4d RG flows. Every known computable example (both non-supersymmetric
and using SUSY exact results) is strikingly, and often highly non-trivially, compatible with
this conjecture. It would be very interesting and powerful if #rtheorem conjecture is
indeed a completely general property of @lhitary) 4d RG flows. At present, however,
there is not yet a general, and generally accepted, proof of the conjecturethédrem.
See, e.g[4,6-8,30ffor further discussion of the-theorem conjecture.

Given the striking successes of the weaker version of the-#gtorem, it is natural to
consider the 4d analogs of the strongessibilities 2) and (3) above: perhapscan be
extended to a monotonically decreasimgftinction” a(g’) along the entire RG flow, and
perhaps the beta functions are gradients of dhfanction, with positive-definite metric,
as in(1.2). Osborn and collaboratof8,10] investigated this in perturbation theory for
4d QFTs (by considering renormalization wihatially dependent couplings) and indeed
found a candidate-functiona(g) which satisfies a relation similar {a.2).

d
% =(Gry+uW;—a;Wnp’,
wherea(g) = acon(g) + Wi () (). (1.5)

The candidate:-function a(g;) coincides with the conformal anomélyzconf(g) at the
endpoints of the RG flow. The possible teB@W; in (1.5), a possible difference from
gradient flow(1.2), was found to vanish in every example, to all orders checked. Also,
it is not manifest in this approach that;;(g) > 0 (G;;(g) is defined via beta functions
Buv ~ G1(g)d,8" d,g” upontaking the couplings to be spatially dependent)ghyt> 0

was verified to be true in every example, to all orders chefgdd].

Here we will explore these ideas in supersymmetric theories, where it is possible to
obtain exact results. Supersymmetry relatesdtiess tensor to a particular R-symmetry,
which we will refer to as the superconformal R-symmetry (even when the theory is not
conformal). The matter chiral superfields have superconformdl (1) charge

2 2 1
R(Qi)=§A(Qi)=§<1+ 5)’1'), (1.6)

3A general curved 4d spacetime background masihdependent anomaly coeﬁicientﬂi‘) =a(Eulen +
c(WeyI)Z, but (Weyl)2 = 0 vanishes on a conformally flat background suchs@sThis is just as well, since
its coefficientc (so named because it also appearsTin, (x) Ty (0)) in flat space) is known to not have def-
inite monotonicity under RG flovj4,5]. So we will not discusg further, and will replace ¢” with “a” in the
conjectured 4d analogs of the above statements.

4 To avoid repeatedly writing /@2, we rescale relative to other referencespere= (32/3)aysyar and write
our a-function asanerd(g) = (32/3)apspordg)- To avoid a factor of 43 which would then show up i(L.5), we
also rescale ouG ; relative to[9,10]: G?‘jre: %thhjere_
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related toQ;’s anomalous dimension. The exact beta functions are related to the violations
of the superconformal R-symmetry. For example, the NSVZ exact beta furjétidrior
the gauge coupling of gauge groGp with matter fieldsQ; in representations, is

[ 3¢%/16n% \ 4 R
Bnsvz(g) = TZT(ZG) BG(R),
Ba(R) = —[T(G) + ) T (R — 1)], (1.7)

with T'(G) the quadratic Casimir of the adjoint afidr;) that of representation. Like-
wise, the exact beta function for the couplingf a superpotential teri/ =1 []; Q;'(W)"
can be written as (using (h) = 3 — A(W) to write h ~ (/2 (R(W)=2)y.

. 3 4
Pw(h) = —h = Shpw(R),

Bw(R)=R(W) —2=">"n(W); R(Q;) — 2 (1.8)

Bc(R) and Bw (R) are simply linear combinations of the R-charges, independent of the
coupling constants. They are defined to have the same sign as the full beta functions, and
represent the violation of the R-symmetry by the interactighs(R) is the coefficient
Tr RG2 of the U(1) current's ABJ anomaly, andw (R) gives the violation of the R-
symmetry by the superpotential.

At the superconformal endpoints of RG flow, theperconformal R-current evolves to
a conserved/(1)g, C SU(2, 2|1), as the interactions flow to a zero of their beta functions.
The superconformal R-charges of the fields determine the exact operator dimensions of
gauge-invariant chiral primary operators i) = 3R.(O) (computable in terms of
R.(Q;) since R-charges are simply additive). Moreover, as showa, k2], the 't Hooft
anomalies ol/ (1) g, determine the exact central charge of the SCFT:

ClSCFT=3Ter —TrR.. (1.9)

It was shown in13] how to uniquely pick out the specidl(1)g, C SU(2, 2|1), from
among all possible conserved R-symmetries (satisffioR) = 0): it is that whichmaxi-
mizesthe combination of 't Hooft anomalies

ayial(R) =3TrR® — TrR. (1.10)

At the unique local maximum, the functiqf.10)coincides with the conformal anomaly
ascrT(1.9), hence the namer*maximization”. E.g., for a free chiral superfielgia (R) =

3(R — 1)3 — (R — 1), as plotted inFig. 1, with local maximum at point (A). The same
qualitative picture ofig. 1 applies for interacting theories. The functiaena (R), and its
local maximumR, and valueu,, can be exactly computed, even for strongly interacting
RG fixed points, via the power of 't Hooft anomaly matching. See, Eld=20]for some
extensions and applications @fmaximization.
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Fig. 1. The trial central chargegyiz (R) (with R, values indicated for free field case).

a-maximization has several immediatergeral corollariesE.qg., it implies[13] in com-
plete generality, foany4d A = 1 SCFT? that the superconforma, charges, and hence
the exact scaling dimension of chiraliary operators and the central chargegndc,,
are necessarily very special numbepsadratic irrationals of the general form

R*,a*e{#hez m € Z>o, peZ;,go}. (1.12)

Quadratic irrational numbers are a measure zero subset of th& reittisspecial properties
(e.g., precisely they have continued fraction form that is periodic). The i(@sult)implies
that the superconformal (1) r charges and central chargg cannot vary continuously;
therefore, for any SCFT, they cannot depend on any continuous moduli.

As also discussed ifiL3], a-maximization gives a two line “almost proof” of the
theorem for supersymmetric RG flows: relevant deformations will break some of the flavor
symmetries, placing additional constraints on the IR R-symmetry as compared with the
UV one,Fir C Fuv, and maximizing a function over a subspace leads to smaller maximal
value, hencenr < ayyv—QED! However, as also pointed out [i3], each of these two
lines has possible exceptions. First of ale iR SCFT can have additional accidental sym-
metries not present in the UV theory, in which c&&g ¢ Fuy; the result of13] implies
thatayia should be maximized ovetll flavor symmetries, including all accidental ones,
so it is crucial that accidental symmetries regerly included. The two-line proof needs
to be supplemented with additional physicabirmation to apply to cases with accidental

5 Theories with accidental symmetries could be exceptito these general statements, though all known such
examples, for example, those associated with singular poidtsef2 Seiberg—Witten curveg1,22], still satisfy
the above general statements.

6 Rational numbers are a subset of thedratic irrationals. SCFTs with string dual descriptions are typically
limited to this subset, though recently string geometrgnegles were obtained for which the R-charges are not
rational[23], though they are indeed quadraiti@tional, compatible witt{1.11)(and the general prediction from
(1.12)is that any (generally singulafys, such thatAdS; x H® is dual to av = 1 SCFT, must have quadratic
irrational volumes). There are maBJUSY gauge theory examples with Raches that are quadratic irrational
but not rational.
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symmetries. The caveat for the second line of the proof is the fact that the maximum is only
alocal one. E.g., ifrig. 1, suppose that the UV theory is at local maximum (A): perturbing
away from there will reduce, but we need to rule out the possibility that the deformation
might eventually drive the value afup to a point such as (D) in the IR, withp) > a(a),
violatingair < auy.

In[19] Kutasov made a very interesting proposal, which helps close the second loophole
by extendingz-maximization away from the RG fixed points. Assuming that C Fuv
(in Sectiond, we will discuss an extension for certain accidental symmetries), the idea is to
implement the additional constraints associated Withc Fyy via Lagrange multipliers.
We will write this generally as

a(R,AI)=3TrR3—TrR—|—ZA”§[(R), (1.12)
1

with B7(R) the linear constraints on the R-charges mentioned abovefaad0 at the
IR SCFT. Extremizing1.12)w.r.t. R, holding the Lagrange multipliers; fixed, yields
R(\;), and plugging back int¢l.12)gives

a(})

a(kp)=a(R(r1), A7) such that B =5 T(RW), (1.13)
using the fact thaR (i;) solvesda/d R = 0. The observation now is that the functiof.;)
interpolates betweemyy andar, and(1.13)suggests thai(i;) is monotonic, using the
physical intuition that beta functions are exptto have a definite sign along the entire
RG flow: once a coupling hits a zero of the beta function, it just stops running (e.g., it does
not overshoot a zero).

It was conjectured ifil9] that the Lagrange multipliers; are to be identified with the
running coupling constan[ﬁ in some scheme. The extremizing solutiBt.) of (1.12)
is interpreted as the RG flow of the superconformal R-chargesq@nd(1.13)is inter-
preted as a monotonically decreasingunction along the RG flow to the IR. For relevant
mteracuons,)q > 0, so(1.13)with /3’ < 0 implies thata < 0. Likewise, for irrelevant
interactionsj.; < 0 and(1.13) with 3/ > 0, again leads ta < 0.

We will expand upon and further check the interpretation(bfL3) as defining a
monotonically decreasing-function along the RG flow. Our main point is that this pro-
posal suggests the strongest version (3) ofdkbeorem conjecture: that the exact RG
flows are indeed gradient flows of thefunction (1.13) as in(1.2), with metric on the
space of coupling constants given by

Gri(®)=ff(® K(g), wheregX (R) = K ()87 (g). (1.14)

A sufficient condition for this metric to be positive-definite is that pf}’é(g) are positive,
e.g.,¢ does not flow beyond the apparent pole in the denominatggefz(g) in (1.7),
and the relation (scheme change) betweenthand theg’ are monotonic.

In Section2.1 and 2.2we review the RG flow of the R-symmetry in the stress tensor
supermultiplet, and the-maximization method13] for determining the superconformal
R-charge at RG fixed points, as well as the extensiofiL6f for cases with accidental
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symmetries. In Sectio@.3 we review Kutasov’s proposal far-maximization with La-
grange multiplier$19], first for the case of gauge interactions only. In Secf8dhwe use
(1.6) and the R-chargeR (1) obtained by extremizingl.12)to compute the anomalous
dimensions

AC(ri)
G|~

comparing with perturbative computations)gtg). This provides both a non-trivial check
of a-maximization and its extensions, aaldo a means to determine the relatibpg), of

A1 to the to coupling constagtin a given scheme, e.g., that of the NSVZ beta function. In
Section2.4, we will check(1.15)to three loops, comparing with the computation$2f]
(the one-loop check was already verified[18], and the two-loop check was discussed
and verified in[19]). In Section2.5 we will discussa-maximization along the RG flow
for superpotential interactions, obtaining thee-loop (scheme-independent part) relation
between the Lagrange multiplier and the sypmtential Yukawa coupling. In Sectich6,
after reviewingz-maximization with Lagrange multipliers f@U(N,.) SQCD (which was
discussed i1119]), we apply this method to its magne&tJ(N; — N.) Seiberg25] dual.
Analyzing the magnetic theory, we point out that tRe.;) which extremizeg¢1.12)is a
solution of a quadratic equation and that, in the RG flowrRok ;) to the IR, 1 can flow
from increasing on one branch to decreasirmn the other branch.

In Section3, we point out that(1.13) with the Lagrange multipliers interpreted as
the running coupling constants, demonstrates that RG flow is indeed gradient flow, with
metric (1.14) We compute this metric for gauge (this case already appeaf$9in
and Yukawa interactions. In the perturbative limit, we compare these metrics with those
computed by Freedman and Osbdii®], and find perfect agreement for the leading,
scheme-independent coefficients. In other words gtfienction (1.13), computed bya-
maximization with Lagrange multipliers, aggs with that proposed and computed pertur-
batively in[9,10] (at least to leading perturbative order).

In Section4, we propose an extension of the Lagrange multiplier methold @jf to
apply for RG flows with accidental symmetriessaciated with gauge-invariant operators
hitting their unitarity bound and becomingef. This extension leads to a monotonically
decreasing:-function for such RG flows, showing in particular thaimaximization in-
deed ensures thair < ayy for these RG flows too. We also comment in Sectfoon
the challenge of finding a natural, monotonically decreasifignction for RG flows asso-
ciated with the Higgs mechanism: there aomtributions (the eaten matter fields) whose
effect is to reduce in the IR, as well as contributions (the uneaten matter fields) whose
effectis to increase in the IR, and the challenge is to find an interpolating function which
makes it manifest that the former always outweighs the latter.

Finally, in Sections, we illustrate some of these ideas with a new class of 4d SCFTs,
which are simply a deformation of SQCD, wlkesome general fraction of the flavors are
coupled to added singlets. For two special cases, no flavors coupled to singlets and all fla-
vors coupled to singlets, these theories coincide with SQCD and its magnetic Seiberg dual
[25]. Our generalizations interpolate betwebkase two special cases. As we discuss, these
new SCFTs, which we generally refer to as SSQCD (for single®QCD) have a dual de-
scription, obtained as a deformation of Seiberg dugfig]. Though these new SCFTs are

i) =3R(k1)g; —2=1— [1+

(1.15)
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simply related to SQCD, they could not have been analyzed before the introduction of the
a-maximization methogl3]. In ordinary SQCD, mesonstting their unitarity bound and
decoupling coincides with the entire magnetic dual being IR{28¢ In our SSQCD gen-
eralizations, on the other hand, mesons can decouple with the rest of the SCFT remaining
interacting. In the magnetic dual description, the superpotential term involving that meson
becomes irrelevant, but other superpotdm¢iams and the dual gauge coupling can remain
interacting.

Noteadded: The results of our Secticd 4 (including, in particular, the scheme change
with 3In F; /g ~ C(r;)%g + 0(g®)) were subsequently independently obtainef8it.

2. Thesuperconformal R-symmetry, a-maximization, and L agrange multipliers
2.1. The flowing R-charges

N = 1 supersymmetry puts the stress-energy teffisptinto a current supermultiplet,
Tya(x,0,0), whose first component is 8(1) current (and other components include
the supercharge currents). For superconfdiimeories, this R-current is conserved, and
is the U(1)gr c SU(2,2[1) in the superconformal algebr&or non-conformal theories,
supersymmetry relates the dilatation current divergédifcéo that of this R-current, via

Vs = Vo L7, (2.1)
with L7 the chiral superfield trace anomaly, e.g.,
,é(R) TrJ I 7 c 2 —
Ly =-— 64712( ¢ “)gauge_ 96772 (Wa we )flavor+ 2472 o 24772‘:" (2.2)

with the first term the gauge beta function, the second the contribution associated with
background fields coupled to flavor currents, and the last two terms the contributions asso-
ciated with a background metric and gauge fieddipled to the superconformal R-current.
Seeg[12] for a discussion of the latter terms. We will refer to #i€l)z current inT,, as
the superconformal R-current, whether or n@t theory is conformal, keeping in mind that
in the non-conformal case this R-symmetry is violated.

Whether or not the theory is conformal, supersymmetry relates the superconformal R-
charges to the scaling dimensions of the fields:

2 2 1
R(Qi)=§A(Qi)=§<1-I- 5%‘), (2.3)

with y; the anomalous dimension of fief@, . Consider a RG flow, e.g., with asymptotically
free gauge fields and matter in the UV, to an interacting RG fixed point in the IR. Along
this RG flow we can write the superconformal R-current as

R" = Rlgns+ Xfiow: (2.4)

with Rionsa conserved current, ar:}dl‘ow not conserved. The curremﬁow gets an anom-
alous dimension, and becomes irrelevant, flowing to zero in the IR, so the R-symmetry in
the stress tensor supermultiplet flowsRs> Rconsin the IR.
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As an example, consider SQCBU(N,) gauge theory with?vf fundamental flavors
Oy andQ (taking Ny in the superconformal windo{25] 2NC < Ny <3N.). There is
a unique conserved R-symmetry that commutes with all the flavor symmetries and charge
conjugation,Reon Q ¢) = Rcons(Q =1—N, /Nf This R-symmetry is conserved along
the entire RG flow, but itis only the R-symmetry in the stress tensor supermultiplet at the IR
SCFT fixed point. Along the RG flow, the R-symmetry in the stress tensor supermultiplet
is the sum of termé2.4), with X}, — 0 in the IR (see, e.g[26]). The superconformal R-

charges evolve along the RG flow, fraRyyv (Q r) = RUV(Qf) = Riree = 2/3 (asymptotic

freedom), to those of the IR SCFRr(Qf) = R|R(Q 7) = Rcons=1— N¢/Ny.

Using the result of5,12], the conformal anomaly at the UV and IR endpoints of the RG
flow are given byuyy = 3TrRUV —Tr Ryy andar = 3TrR|3,'Q Tr Rir. 't Hooft anomaly
matching does not equaigy andajr, because the R-charges themselves are different in
the UV and the IR, with the R-current ifi,;, not even conserved along the RG flow. E.g.,
for SQCD (with N in the superconformal window)

1\ 1 2
ayv =2(N? — 1) + 2NNy (3<—§> + §> =2(N?>-1)+ g@NeNp).  (25)
the free-field contribution expected by asymptotic freedalff{= 2 anda“Qree 2/9in
our normalizations). At the IR endpoint of the RG flow, the conformal anomaly is

N\ N
=2(N?— 1)+ 2N.N¢ | 3[ —=£ e
ar =2(Ne 1)+ f( ( Nf) +Nf>

—4N2—2—6—N‘4=a o(Ne, N (2.6)
=4N¢ N% = asqQcn(Ne, Ny), .
where we use®R|r = Rcons 't HoOft anomaly matching is used to evaluate thége
't Hooft anomalies using the weakly coupled degrees of freedom of the UV endpoint of
the flow (sinceR|r, unlike the R-symmetry i, 4, is here conserved along the entire RG
flow). As predicted by the-theorem conjectureiyy > air. In the UV, the matter fields
are at point (A) inFig. 1, and in the IR they are at a lower point such as (GJiop 1
Itis non-trivial thatascpr > 0, even at strongly coupled RG fixed points, as desired for a
count of massless d.o.f. E.g., expresg@ib) satisfiesisoco(Ne, Ny) > asoe(Ne, Ny —
1), as expected by the-theorem conjecture, since we can RG flow from the theory with
Ny flavors in the UV to one withV, — 1 flavors in the IR by giving a mass to a flavor.
If continued to sufficiently smallv, (2.6) would glve negativez. But Ny never gets
sufficiently small to violate: > 0, because foN ; < ZNC something different happens, as

can be seen from the fact that the mesdhs= QO hit the unitarity bound® (M) > 2/3;
in fact, the entire magnetic dual then becomes [2&g.

2.2. a-maximization at RG fixed points

Let us briefly recall the argument §f3], that the exact superconformal R-symmetry
maximizeSatrial = 3TrR,3 — Tr R;. We write the general trial/ (1) symmetry ask; =
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Ro+ ), s1F1, whereRg is an arbitrary R-symmetry, the; are non-R flavor symmetries,
ands; are real coefficients. The superconformal R-symmét($) z, C SU(2, 2|1) corre-
sponds to some particular values of the, that we would like to determine. The result of
[13] is that they are uniquely determined by the 't Hooft anomaly relations

9TrR2F; =TrF; forall Fy, (2.7)
1
TrR*F1F1=—§r1J<O. (28)

Relation(2.7) is equivalent to the statement that the exact superconformal R-symmetry
extremizeSiyial = 3Ter’ — Tr R;; becauseuyig is a cubic function(2.7) is a quadratic
equation forR in each variable;. The inequality(2.8) then implies that the correct ex-
tremum is the unique one which locally maximizeg,.

Relation(2.7) was obtained i{13] by using supersymmetry to relate the two corre-
sponding anomaly triangle diagram$;; RR) and (F; TT). A non-R flavor supercurrent
Jr is at one vertex and the super-stress terfs@r, containing both the superconformal
U(1)g current and the stress tensor, is at the other two vertices. Using a re$2it] pf
the (J1(z1)Taa(22)Tg(23)) three-point function, and hence its anomaly, is uniquely de-
termined by the superconformal Ward identities up to an overall normalization coefficient;
this implies that the anomalies on the two side¢27) have fixed ratio, and the factor of
9 can then be fixed by considering the free-field case, where the fermion®havel/3.
Another way to obtaif2.7) is to consider the anomalous violation of the flavor super-
currentJ; upon turning on a background coupledZg;, i.e., a background metric and
background gauge fields coupled t@ tbuperconformal R-currer(2.7)is obtained upon
arguing thatD?J; = k;)W?, with no contribution proportional to the chirally projected
super Euler densitg [13].

The equality in(2.8), obtained in5], relates the 't Hooft anomaly faiR F; F;) to the
coefficientsr; ; of the flavor current two-point functior(sll“(x)J}’ (y)). The inequality in
(2.8) then follows upon using unitarity to argue that the current—current two-point func-
tion coefficients are a positive-definite matreg,; > 0. The extremum conditio(®.7) is
a quadratic equation, and inequal{:8) determines that the correct solution is uniquely
determined to be that which locally maximizaga.

For a general\V' = 1 SUSY gauge theory, with gauge groGpand matter chiral su-
perfields Q; in representations; of G, (2.7) constrains the superconformal R-charges
R(Q;) = R; to satisfy

> 1k l(FDi(9R; — 1) — 1) =0. (2.9)
(Fp); = F;(Q;) are any flavor charges of the matter fields, which mugikenomaly-free:

TrFiG? =) (F1)iT(ri) =0, (2.10)

1

with T (r;) the quadratic Casimir of representatign Superpotential interactions further
constrain the chargedy);; for now, consider the case of gauge interactions only. The
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general solution for;, satisfying(2.7)for any flavor chargeéF;); satisfying(2.10) is

1 M T (1
Ri=1— 1 [p4 2Tl (2.11)
3 |7
A« is @ parameter that is fixed by the constraint ttigt) x be anomaly-free:
1 AiT (1)
2 _ AR — 1) = _ - Dy
TrRG?=T(G) + ZT(r,)(Rl D=T(G) -3 Z 1+ i 0. (2.12)

The branch of the square-roots are determine¢?g), which for gauge interactions has
sign corresponding to negative anomalous dimensions, €ht&)and(1.6)yield for the
RG fixed point anomalous dimensions:

M T (7 M C (1
Vi(g«) =3R; —2=1— |1+ |(|r):1_‘,1+ |G(|r). (2.13)
ri

As standard, we define group theory factors as

Tr, (TATB) = T () 545,
1G]

G|T(ry)
ZTr?Tr?ZC(ri)llr,-lxlm, soC(r;) = G !
A=1

— (2.14)

Iril
normalizing quadratic Casimirs so tHatG) = N, andT (Fund = L for SUN,).

As discussed ifil 3], a non-trivial check ofi-maximization is thaf2.13)indeed repro-
duces the correct anomalous dimensions &tyrbatively accessible RG fixed points:

82 4
Vi(g)=—mc(n)+0(g )- (2.15)

Expanding the exact resyR.13)for smallx and comparing witl{2.15)yields

_ 826
T 272
with both A, andg, determined at the RG fixed point in terms of the group theory factors
[13] by the condition that/ (1) g, be anomaly-free (equivalentlgnsyz = 0).

The above results are valid as long as there are no accidental symmetries in the IR. They
require modification when IR aaténtal symmetries are pres¢h’b], because we must
maximize over all flavor symmetries, includiad) accidental symmetries. Restricting the
landscape of allowed R-charges, by not accounting for the possibility of mixing with all
accidental symmetries, would lead to incorrect results. A crucial issue then becomes how
one can determine what accidental symmetries might be present.

One particular type of accidental symmetmhich is under control, is that associated
with gauge-invariant composite operatbiging a unitarity bound, and becoming free. To
be concrete, suppose that diifi) operatorsM = QQ become free, with an accidental
U (1) symmetry, under which only the composite operatdrare charged; th& (1),
charge isFy;, with Fy; (M) = 1 and all other fields neutrat-maximization must include

Ay +0(g}), (2.16)
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mixing with U (1) Ryjial = Rfrci’; + sy Fy. atrial = 3TrRt3;ial — Tr Ryial can be computed
using 't Hooft anomaly matching. Maximizing ovey; yields R.(M) = 2/3, as appropri-

ate for a free field, withR, (M) # R.(Q) + R.(Q) because of the mixing witit/ (1) ;.
There is an important residual effect on the quantity to be maximized for determining

y = R(Q) andy = R(Q) [15] (se€[16] for a derivation along the lines sketched here):

. 2 3 3
aPy,5,..0=a90,5,..)+ d|m(M)<6 3y 4+y-13+y+75— 1). (2.17)

The additional term i2.17)vanishes wherRo(M) = y + y = 2/3, as does its first
derivative. This ensures thatmaximization yieldsR, charges and central chargegt
that are continuous and smooth (first derivative continuous, though higher derivatives are
generally discontinuous) across a transition where the oper@tdrscome free (say as a
function of parameters that can be varied, sucivasv ).

2.3. a-maximization with Lagrange multipliers
We first review Kutasov’s proposHl9] for the case of gauge interactions only. The idea

is to implement the constraint that the superconforthél) z be anomaly-free at the IR
fixed point via a Lagrange multiplier, maximizing(1.12)

a(Ri, ) =2/G|+ Y _|ril[3(Ri = ° = (R — 1)]

—A(T(G)—l—ZT(r,)(Ri —1)). (2.18)

Extremizing(2.18)w.r.t. R; yields

1 AT(r) 1 AC(ri)
R,(/\)_l—§/1+ i =1-3,/1+ Gl (2.19)

Plugging back intq2.18)yields

. B 2 ' AT () \ 2
a(A):a(Rl(A),k)_2|G|—kT(G)+§Z[:|r,|<1+ | ) ) (2.20)
BecauseR; (1) solvesda/dR; =0, we have
d 0 .
ﬁa(k) = a—)\a(Ri, A)=-T(G)— ZT(Vi)(Ri —1)=Bc(Ri). (2.21)

Extremizing now ink has solution.,, where(2.21)vanishes, an®; (1) are the same asin
(2.11) Also, evaluating2.18)with both R; andx extremized yielda (R (Ay), A«) = asceT,
since the additional term proportionaltdn (2.18)vanishes ak = A,.

The proposal 0f19] is to interpret(2.19)and(2.20) as the running R-charges ane
function, along theentire RG flowfrom the UV to the IR, with the Lagrange multipligr
interpreted as the running gauge couplifgin some scheme. The RG flow from UV to
IR corresponds ta.:0 — .. Sincex is increasing along the RG flow to the IR,> 0,
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and the beta function along the RG flow is negat{2e21)implies that thisz-function is
monotonically decreasing along the RG flawng 0, with @ = 0 at precisely the IR SCFT,
where the beta function vanishes.

The RG flow can be pictured usifgg. 1 In the UV, A = 0 and the matter chiral super-
fields all haver; = 2/3, at point (A). Extremizing2.18)w.r.t. R; implies thatr; should sit
at a point where the slope of the functiorfig. 1equalsiT (r;), giving (2.19) Increasing
A thus takesr; to where the slope is positive, i.e., down the hill to the left of point (A),
reducinga. Eventually the flow hits a zero of the beta function and stops, RitQ;) at
some point (C) irFig. 1

2.4. Comparing with the explicit perturbative computations of Jack, Jones,
and North[24]

The proposal is tha2.19)gives the exact R-charges along the entire RG flow. Hence
the exact anomalous dimensions, along the entire RG flow, are given by

AC(ri)
Gl

In this subsection, we will compare this with explicit perturbative computations, extending
the higher-loop check made jh9]. Note that the expressid@.22)is obviously compati-
ble with thea-maximization resul{2.13)for the exact anomalous dimension at RG fixed
points. The check here is thus also a higher-loop extension of the ch¢tR]ihetween
the exacti-maximization results and explicit perturbative computations, for those RG fixed
point theories which are perturbatively accessible.

Expanding(2.22)in i = 1/2|G| yields (for uniform notation, we take-1)!! = 1)

yi() =2(A(0) —1)=3R —2=1— [1+ (2.22)

yi(h) = Z%( P

p=1
. 22 23 514
=—iC(ri) + 7C(rl-)2 - ?C(r,-)s + ?C(ri)‘l 4+ (2.23)
Comparing with the 1-loop anomalous dimensi@45)then yields
N A g2 °°
A== Ay8%, 2.24
20G] 42 T qzzz a8 (2.24)

the analog 0{2.16) now interpreted as applying along the entire RG fl¢24)is in-
deed compatible with the interpretation bfas corresponding to the running coupling.
The undetermined coefficients, >, in (2.24)reflect the standard renormalization scheme
freedom to reparametrize the coupling constén general, if one scheme has coupling
and wavefunction renormalization factars(g), another could have coupling(g) and
wavefunction renormalizatiof; (¢') = Z; (g) Fi(¢). The anomalous dimensions and beta
function of the two schemes are then related by

Fi(g) ;o 08'(9)
g

v (&) =vi(g) — /B(g) " and g'(g") = (2.25)
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We will compare the predictio(2.23)with the explicit higher-loop computations [#4],
assuming initially that the only scheme féifence is a change of coupling constant
A(g), asin(2.24) assuming initially tha¥; (g) = const in(2.25)

Keeping arbitraryd, in (2.24) (2.23)yields

o0
2p -3 C(rl
@)=y ”p! ( g ZA Crg? ) . (2.26)
p=1
Expanding yields predicted expressions forﬂnbop anomalous dimensions:
C(ri) C(ri)?
(€8] 2 2 4
. = — . = —_ A i ,
Y o i ( 32,74 2C(r ))g

@_( Co)® Cu)* s
@_(8Cw* 3, cu?
8 (424 2" “(4n?)2

1/ As
§<24 S+ A )C(ri)z—A4C(ri))g8, etc.
(2.27)

The prediction, for genergb-loops, is that the highest power 6f(r;) is C(r;)?. The
coefficient of this highest power term is hence scheme-independent, and predicted to be:

(») _ (2p—3)!!<_C(ri))p

p—1
+ Z (scheme-dependent coefﬁé(}i)£>g21’. (2.28)
=1

Moreover, for eaclp, the scheme-dependent coefficient<af; ) in (2.28)are fixed in
terms of those of lower orders of perturbation theory fat 2 < p (only the coefficient of
the¢ =1 term is not already determined by the results from lower orders in perturbation
theory). The structure of the scheme-depena®efficients is predicted to be such that
there exists a particular scheme, corresponding to settingy,alf = 0, in (2.24)in which
the p-loop anomalous dimension has only i&-;)?” term in(2.28)

As discussed ifil9], the predicteg @ in (2.27)indeed agrees with that obtained from
explicit computation of the Feynmatiagrams: the scheme-independeéit;)? term in-
deed has the same coefficiérand matching the coefficient of th@(r;) term fixes the
coefficientA, in the expressio2.24)for A in the particular scheme adopted 24]:

Ap = with b1 = 3T (G) — Z T(r;), inthe particular scheme ¢24].

i (2.29)

by
6474’

7 In comparing with[24], note that we define anomalous dimensionia®;) = 1+ %yi, whereas the defi-
nition in [24] would not have the}, SO Vhere= 2Vthere
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We can now go tdhree loops comparing the predictio(2.27) with the perturbative
results of[24]. We indeed find precise agreement floe scheme-independent coefficient
of the g8C(r;)® term! However, using2.29)in (2.27) our prediction for the (scheme-
dependent) coefficient of the?C (r;)2 term in yl.<3) is twice that obtained ifi24]. Fortu-
nately, this difference (as i(2.29) is proportional to (the leading term of)(g). Thus
(2.27)can be salvaged by including a further scheme differéa@5), between that of the
Lagrange multiplier method and that 4], coming from a non-trivial difference in the
wavefunction renormalization starting at two loop#n F; /dg ~ C(r;)%g°.

2.5. Including superpotential interactions

Let us now consider the case of both gaumgferactions and those associated with a
superpotential terniV = A [[; QZ?(W)". If this W is relevant, the IR SCFT has the added
constraint that the superpotenfiflas total R-charge 2, which can again be implemented
with a Lagrange multiplier. The prescription is then to modi2y18) by adding a term
Aw(R(W) — 2), with R(W) = 3, Rin(W),. Extremizinga(R;, Ag, Aw) W.r.t. the R;,
holding.s andiy fixed, then modifieg2.19)to

RiGug. ) =1— © [14 26T n(Widw (2.30)
3 |7l |7l
PluggingR; (Ag, Aw) back intoa(R;, Ag, Aw) yields thea-function
a(rg,  w) =2|G| = AcT(G) + Aw (n(W) — 2)
2 T (i) n(W)mw>3/2
+ = Iri|(1+ - ; 231
9 ZI: il |7l (2:31)
with ny =", n(W); the degree of the superpotential. Thigunction satisfies
da A da A~
27 d — =By, 2.32
o pc an Py Bw (2.32)

proportional to the exact gauge and Yukawa beta functions, as defiigd)and(1.8).

The conjecture is again thafy can be interpreted as the running superpotential Yukawa
couplingh?, in some appropriate scheme. Us{@gl9)for the exact R-charges yields exact
anomalous dimensions

AgT(ri)  Awn(W);

|7 |ri

Vi:3Ri_2:1—\/1+ (2.33)

We can again write this exact expression for the anomalous dimensions as
yi=1—y/1-2yP, (2.34)

8 We use the fact that the form of the superpotential is not renormalized along the RG flow: the only renormal-
ization is that of the overall coupling (coming from the renormalization dfi¢ kinetic terms). Non-perturbative
corrections to the superpotential are avoided if there is sufficient matter, Sp tH&tr;) > 7(G).
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with
@D AT (ri)  n(W)iiw
= , 2.35
7 2l 2l (2:35)
to be identified with the one-loop anomalous dimension. Comparing with explicit pertur-
bative computations allows us to check this result, e.g., verifying the| dependence in
(2.33)and(2.35) and to find the leading relation betwekep andh?.
To fix the normalization, let us first compdi& 35)with perturbation theory for a single
chiral superfieldD, with cubic superpotentiaV = 1 03 (son(W) = 3 in (2.35):

2 2
@ Al 3w h |A] 4

=——-=——, hencery = — + O(h"). 2.36
0 Tig2” 2 W= g2 HOU) (2.38)
With many chiral superfield®); and superpotentialy = %hif" Q,Q; Ok, the one-loop
anomalous dimension matrix is

i kl
y i = % (2.37)

Suppose that the matter fields form distinct irreps of a group, ifith= AT7i"i"* | with

T'i"i"t an invariant tensor to contract the group indices of those irreps. Schur’s lemma then
ensures that the anomalous dimension mdRi87)is diagonal and proportional to the
identity matrix for each irrep, and taking the trace fixes the coefficient to be

) ) hklmh*
y i = S}ﬁ (with A" B, = [R|PTT, = hPT ), (2.38)
giving y® ~ 1/|r;|, as predicted fronf2.33) Comparing2.33)and(2.38)yields,
Aw = |h2|1TT2|2 + higher-loop (scheme-dependent) corrections (2.39)

As in the previous subsection, one can do higher-loop comparisons with the re$a#} of
where the anomalous dimensions were computed to three loops, including the contributions
from Yukawa couplings. But there is significant scheme freedom in redefining the Yukawa
couplings, including their tensor structure, so we will not here explicitly discuss the higher
order dictionary(2.39)between.y and the Yukawa couplings in the schemd2#].

2.6. An example: electric and magnetic SQCD
For SU(N,) SQCD, with Ny fundamental flavorg) /, Q;, (2.19)gives[19]

1 AG
RQ(A)—RQ(k)—l—é 1+ Z—NC, (2.40)

and thus the:-function along the flow i$19]

3/2
a(x) =2(N?=1) — AN ilNN- 1 ra )Y 2.41
= c G c+9 cIVf +2N . ( )
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The asymptotically free UV theory corresponds.te: 0, and the RG flow to the IR corre-
sponds to.: 0 — A*, where

AGx 3N\
¢ :( ) 1 (2.42)
2N, Ny

is where the R-chargg2.40)are anomaly-free, and hen@41)is critical andfnsvz = 0.
The magnetic dugR5] is G = SU(N,) = SU(Ny — N.) SCQD, withN dual quarks
qf, g7, andN% added singlets s, with superpotential

W =hM;zq7rG°. (2.43)
The quantity to maximize for the RG flow of the dual theory is
a=2(N?—1)+2N.N¢(3(R; — 13— (R, — 1) + N2(3(Ryy — 1)° — (Ry — 1))
—4&(Ne + Np(Rg — D) + 2y (2Rg + Ry — 2). (2.44)

Extremizing inR, and Ry, holding s andA,, fixed yields

B 1 A An
R(@)=R@G)=1—= |1+ ¢ ™
(@) (@) 3\/ 2N, NN

1 Ah
RM)=1—€= |1— —. 2.45
(M) 63/ N2 (2.45)

Increasing), and hence the magnetic gauge group couplihigowers R(g), whereas
increasing\;, increasesk(¢) andR(M). Plugging back int¢2.44)yieldsa-function

arg, Am) = Z(NLZ — l) — )”G‘NC

4. A=\ 2 a2
+-N.Ng[( 1+ E") ~|—6—N2<1——> , 2.46

whosex gradients gives; andfy .

Thee = £ in (2.45)corresponds to the choice of branch sign in the square root, and is
a main point of this subsection. Taking; > %Nc, the magnetic theory is asymptotically
free, and the UV limit has the free-field R-chargeg;) — 2/3 andR(M) — 2/3, and
hence\; — 0 andi;, — 0, withe = +1in (2.45) As the magnetic theory RG flows to the
IR, 1, increases, and hen@ M) moves toR(M) > 2/3 (unitarity requireR(M) > 2/3,
with equality iff it is a free field). InFig. 1, R(M) flows from point (A) towards point (B).

If the IR fixed point is sufficiently strong couplin@® (M) can increase pa®t(M) =1, in
which case.;, must first increase t&/2 on thee = +1 branch 0f(2.45) and then we must
switch to thee = —1 branch, after Wlﬂflichh must decrease as we flow farther in the IR.

As an extreme example, fav, ~ 3N, (just below) the electd theory is barely as-
ymptotically free and hence weakly coupled in the IR, whereas the magnetic dual is very
strongly coupled in the IR. At the RG fixed point, we know from the electric side that
RRr(Q) ~ 2/3, and thusRir(M) ~ 4/3, i.e., R(M) in the magnetic theory flows from
Ruv(M)=2/3t0 Rr(M) ~ 4/3. Using(2.45), the flow starts in the UV witlh = +1 and
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Ay

h2

Fig. 2. Hypothetical plot of, (/22), with € = +1 on the top part and = —1 on the bottom.

Ap increasing from zero to its maximal valug = N]%, after which the continued flow to
the IR is on thee = —1 branch, withx;, decreasing, withk, — 0 at the IR fixed point.
Thoughi;, ~ 0 at the IR fixed point, the magnetic dual is certainly strongly coupled, and
we expect thak? is not small. As we will discuss in the next section, in order to have
positive-definite metri&5; ; and monotonically decreasingfunction, we expect that the
Jacobiamd g /dg’ should be positive (positive eigenvalues); assuming the off-diagonal
terms to be negligible, this requires.;, /dh? > 0, suggesting the “shark fin” shape of
Fig. 2

The slope of the beta function at a RG fixed poifitia.), is a scheme-independent
guantity, which gives the anomalous dimension of the leading irrelevant operator along
which we flow into a RG fixed point (i.e.f,, F*¥ for gauge interactions). For SUSY
gauge theories}’ (a,) was argued to be related to the anomalous dimension of the Konishi
current at the RG fixed poirf28]. Using a claimed map of this current to that of the
magnetic dual it was argued that(g?)elec = Blyin(82. 12)mag [28]. FOr Ny /N, = 3 +3,
with § « 1, the magnetic RG fixed point is weakly coupled eﬁﬁ,qn(gf, hi)mag can be
perturbatively computed; doing so, the claim[28] leads to a prediction fop’(a) in
the corresponding, strongly coupled electric thel@8], g’ (o) = (28/3)82. We do not,
however, find this qualitative behavior, of havig§a,) — 0 as§ — 0, in (dB/d)»))\* =
(Nf/6NC)2, as computed using2.41)and(2.42) The factor fromBnsvz/A in (1.7)does
not help (if anything, it is large in this limit); the only apparent way to get> 0 would
beif (dA/da)|s, — 0 asé — 0. We do not know whether or not this is the case.

3. RG flow = gradient flow: evidence for the strongest version of the a-theorem
Writing the genera&-function again ag (1) = a(R (1), A) with
a(R, ) =3TrR®—TrR+> np'(R), (3.1)
I

andR (1) obtained by extremizing i®®, the 1 g gradients of this function give

da(l) B
oAk o

BE(R()). (3.2)
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The BX (R) are proportional to the exact beta functions, which we will write as

BER) = ff (@B (9. (33)
Thus(3.2) demonstrates that the exact RG flow is indeed gradient flow! Writing thees
functions of the couplingg”’ in a general scheme, we have

da _ da oig

agl g og!
This gives the beta-functions as gradients ofdkenction, as in(1.2), with metric for the
space ofg! coupling constants

=ff (g) ﬂ (&) =Gr1(2)B (9). (3.9

oAk
Gry(e)=ff (g)@. (3.5)

A sufficient condition forG;;(g) > 0 and the strongest version of tlwetheorem is

fJK (g) > 0 (e.g., we do not continue past the apparent pole associated with the denominator

of Bnsvz) and the coupling constant reparametrizafi@ig) is monotonicpig /dg’ > 0.
Using(3.5)and(1.7), the exact metric for gauge couplings is (this case appears already

in [19])

3 2 2
Bdr _ﬂ( 8 T(G)>d£ 36

887 B e 3g3 872 ) dg’
with Ag(g) that for the NSVZg scheme. As long ag?7T(G) < 872 and Ag(g) is

monotonic,(3.6) satisfiesG,, > 0. Using(2.24) and (2.29), for weak coupling we ap-
proximate:

1672 2T(G G G|g3b
G g = (1_g ( ))(g| |, 1Gls 1+...>

3g3 8r2 72 8r4
16/G|
~ 1+ > (b1—T(G 3.7
21+ L 110) 37
Likewise, for Yukawa couplings, usin@.5)and(1.8), the exact metric is
ﬂ dr, 4 diy,
Gm==—==—>", 3.8
"= Tah T 3d(k?) (3.8)

which satisfiesG,; > 0 as long as., (k) is monotonic. Usind2.39) we can approximate
for weak coupling

4 dn 40 1 ,
G = =L 2 o(n?)). 3.9
"= 3 a0 3(247'[2 +0( )> (3.9)

Consider, e.g., the magnetic dual of SQCD, with gauge g&lu@V..), with gauge cou-
pling g, and superpotentigP.43), with Yukawa coupling:. Thea-function(2.44)gives
the beta-functions as gradient flow:

B\ _a(wE G\ [(4%ta-EH9) o (ﬁNsvz@) .10
da | 3\ Vg m 0 L)\ Bwiy )

ah oh
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A sufficient condition for positive metric i(3.10)is positivity of the Jacobiadik /dg’
and 32T (G) < 872. Assuming that the off-diagonal components of the metric are not
appreciable (they are zero in perturbation theory), positivity of the Jacobian requires
dy/dh? > 0, which motivated the shark-fin shapeFag. 2, for the case oy ~ 3N,

As we discussed in the introduction, we can compare meffigs as computed above,
with those computed by Osborn and collaborators in the context of 4d field theories on
curved spacetime, with spatially dependent couplings. The supersymmetric case was con-
sidered by Freedman and Osborn[10]. To compare expressions, we need to account
for our rescalings mentioned iimotnote 4 anerdg) = (32/3)atnerdg), and G*}?re(g) =
%G}hfre(g). We then find that the leading, scheme-independent, term in both the metric
G4, (3.7), and also the Yukawa coupling met(®.9), agree precisely with those found by
Freedman and Osbofh0]! (The coefficient of the subleading, scheme-dependentterm in
(3.7), however, does not agree with that obtainefili@]: rather tharb; — T(G) of (3.7),
the coefficient obtained ifL0] wasgbl — T(G). The apparent difference; b1, could be
completed at higher orders into a differenee8(g), which would at least vanish at the
endpoints of the RG flow. More work is needed to verify if this is a real difference in the
metric anda-function, or perhaps associateith a scheme discrepancy.)

The method of Osborn was to consider renalization for spatially dependent cou-
pling constants, e.g., wittf; ; coming from beta functiong,,, ~ G;;(g)d,& d,g”’. This
is very reminiscent of the AdS/CFT correspondence, where coupling constants correspond
to fields in the bulk, withG;, naturally associated with the sigma model meGR4* of
these bulk fields. Indeed, [29] it was argued that the AdS holographic RG flow leads to
é=—Gyp'p’, with metricG;; = 2cGP. This again suggests that RG flow is gradient
flow, with positive-definite metric, though it is important to emphasize that the AdS/CFT
correspondence seems limited to a very restricted subset of all possible CFTs. In any case,
G1y = 2cGK gives a nice insight into the resulorfthe leading perturbative metric,
Ggg ™~ |G|/g? (3.7). it matches with the$L(2, Z)-invariant) dilaton kinetic terms in the
bulk: Loulk = —3(t2) 28,737 (heret = 4= + 4rig~2, s05(d(10g72))? = (d (109 g))?).

4. a-maximization along RG flowswith accidental symmetries, and comments about
Higgsing

The Lagrange multiplier method needs to be extended in order to apply to RG flows
with accidental symmetries, ohase associated with Higgsirg9]. In this section, we
will discuss an extension of the proposal[@B] for the case of accidental symmetries
associated with gauge-invariant operatbitting the unitaritypound and becoming free.
This extension defines a monotonically decreagitfgnction along such RG flows. This
shows, in particular, that-maximization indeed ensures thaly > air is automatically
satisfied for such RG flows. We will next discuss Higgsing RG flows, where we do not yet
have a good candidatefunction, or general argument fagy > ar.

4.1. Accidental symmetries

Accidental symmetries, present in the IR but not in the UV, challenge: itheorem
conjecture. Additional symmetries broadiée landscape over which we are maximizing
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ayial, iNncreasing the value afir. To avoid violatingair < ayy thus requires that the IR
theory must not have too much accidental symmetry; at present, however, we do not know
of a general way to prove that the possiblidental symmetries are always sufficiently
bounded so as to be compatible witfy < ayy. Here we will limit our discussion to a
particular type of accidental symmetry, that of a gauge-invariant operator hitting its unitar-
ity bound and becoming free (without additiorfiade fields, such as free magnetic quarks
and gluons, whose existence would have been hard to predict from the spectrum of gauge-
invariant operators of the UV theory).

Near the UV start of the RG flow, we will use for thefunction, following[19],

a®(R.A)=3TrR3—TrR+ > %B1(R). (4.1)
1

Extremizing this in ther; has squtioan.(o)(xl), and plugging back in gives-function
aO0) =aO(R;(r;), A1). We propose that thesB@(i;) anda@(%;) give the R-
charges and the-function initially along the RG flow, up until the point where the ac-
cidental symmetry arises: until the flow hésvalue of the Lagrange multiplier/coupling
constantskﬁo) where a gauge-invariant composite operaltbhits R(M) = 2/3. At that
point on the RG flow, includinghe effect of the accidentdl (1) ,; means patching onto
anothem-function, with the correction term ¢15] added ta4.1).

aDRi, ap) =aO (R, A1)+ dim(M)(g — 3Ry — 13+ Ry — 1), (4.2)

with Ry =), Rim; for M =[], Q}”". Now (4.2) is extremized to finde.(l)()q), and
plugging these back int(#.2) givesa-functiona™™ (1) = a(l)(Rl.(l) (A1), A1). If other op-
eratorsM’ hit R(M’) = 2/3 further down the RG flow, we had similarly patch onto the
a-functiona‘® obtained by adding the analogous correction terif#ta).

So the running R-charge®; (A7) anda-functiona(i;) along the entire RG flow are
proposed to be given by this patching procedure, with the patches occurring at every place
along the RG flow where some gauge-invariant operator hits the unitarity bound. The im-
portant point is that, despite the patching together®h@;) anda(i;) thus obtained are
continuous along the entire RG flow, as presumably&@.;) anda(i;), because the
added term in(4.2) vanishes at the patching location, wh&tg = 2/3, as does its first
derivative w.r.t.Ry;. Moreover, the patched togethefunction still satisfies

da(rp)
oA]

=Bi1(R),

with B;(R) the same linear combinations of the (patched together) R-chrgeropor-
tional to the exact beta functions, agin7)and(1.8). Thus the patched-togethefunction
continues to satisfy(A;) < 0. In particular, for the endpoints of the RG flow, this demon-
strates that:-maximization automatically enswgéhat the accidental symmetries of the
above type never violat@r < ayy .-

Here is a suggestlve way to obtain this same patching-together prescription. Consider
coupling theNf composite, gauge-invariant meson opera@ysgg to the same number
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of added sourceg,/#, and also introduce into the theory the same number of added gauge-
invariant fieldsM ;;, with added superpotential

W:Lngng~ +th§Mfg~. (4.3)

We think of the second term, with couplig as a perturbation. Starting/at= 0, we have
R(M)=2/3andR(L) = 2— R(QQ), so theh perturbationis relevantiR(Q Q) > 2/3. In

this case, the effect of the two terms(#3)is thatL and M are both massive, and hence
should be integrated out. The e.0.m. setsV;; = Q;Q;, the M e.o.m. setd /¢ =0,

and the upshot is that we are back to were we would have been had we not included the
ZNJ% additional fieldsL /8 and M ;. In particular, these massive fields make cancelling

contributions to 't Hooft anomalies and hence to éhiinctiona = 3TrR3 — TrR.

On the other hand, iR(Q Q) < 2/3, the second term i(4.3)is irrelevant, and theN]%
fields M y; are then decoupled free fields, wik(M) = 2/3. This gives the 29 term
in (4.2), and the remaining additional terms {#4.2) are the contribution of the fields
L% (whose R-charge is fixed by the first term(#3)to be R(L) =2 — R(QQ)). The
a-function computed with these added fields and superpotential interactions involves addi-
tional Lagrange multipliers, associated witle tadded superpotential terms, but should be
equivalent to the patched-togettprescription described above.

4.2. Higgsing

Giving a chiral superfield an expectation value breaks the gauge gfeupH . There
is then a Higgsing RG flow, from the unbrokéh theory in the UV (as the vevs then
negligible), to theH theory in the IR, with the massiv@/ H fields decoupled. We do not
have a candidate-function, or a general argument thag < ayv, for Higgsing RG flows.
We will simply illustrate the challenge here, takifigree = O for simplicity.

When G — H, the G matter fieldsQ; decompose intdd representations a@; —
ZH Qi., some of which are eaten. As with other RG flows, we can compute=
air — ayy from the IR vs. UV R-charges of the chiral superfields, with the gauge field
contribution unchanged and cancelingAa. The fact that the low energy group does
change, fronG to H, is accounted for by the contribution tea of the |G| — | H| matter
fields eaten by the Higgs mechanism. At tiefixed point, these eaten matter fields will
haveRir(Qeaten = 0, as seen by the fact that their fermionic components pair up to get a
mass with the5 / H gauginos; their contribution tda then correctly accounts fa¥ — H.
We will write the totalAa asAa = Adeatert Aauneaten Thea-theorem conjecture predicts
Aa < 0. The eaten contribution satisfidsieaten< O if Ruv(Qeaten > 0, €.9., at point (C)
in Fig. 3 which is the case for RG fixed points williiyee = 0 and sufficient matter to
avoid generatingVgyn. (Theories withWyee can have matter with negative-charge, as
seen, e.g., ifil5] for the theory withWiee= Tr X**1.)

Very generally, howeveryayneaten> 0, because Higgsing leads to an IR theory that is
less asymptotically free than the UV theory. The uneaten matter fields move up the hill
of Fig. 3 (which is a blown-up portion oFig. 1), from point (C) in the UV, to a larger
value in the IR. Those that até-charged move partially up the hill, and those that dre
singlets are IR-free, and hence move all the way up to point (A) in the IRaTtheorem
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uneaten singlets

uncaten charged

-
N R

caten

Fig. 3. Eaten and uneaten matter fields contribute oppositeuto

prediction thatAa < 0 thus requires thahaeatenbe sufficiently negative, to compensate
for Aauneater> 0.

To illustrate all this, consideBU(N.) SQCD with N flavors in the superconformal
window rangeg N < Ny < 3N,. As reviewed in Sectio@, this theory has

N _N3
ascrr=asqco(Ne. Np) = 2(NZ — 1) + 2NNy == —3—% ). (4.4)
Ny Nf
Giving an expectation value to one of the flavors yiel & &N,.) — SU(N, — 1) Higgsing

RG flow, with Ny — Ny — 1, anda-theorem prediction

2
asQcp(Ne, Ny) > asqe(Ne —1, Ny — 1) + §(ZNf -1, (4.5)

with the last term from the ®  — 1 uneaten singlets (decomposiiNg) — (Nc—1) +(1)).
This inequality can be thought of as a statnt about the contributions of thevan »
matter fields toAa = air — ayy. In the UV limit of the Higgsing flow, all of these fields
start at point (C) irFig. 3, with Ryy = 1— (N./Ny). Inthe IR limit, the 2N, — 1) (N —1)
uneaten charged matter fields move slightly up the hilFigf. 3 (to Rr =1 — (N, —
1/Ny — 1)), contributing to an increase in The 2V — 1 uneaten singlets also contribute
positively to Aa, moving up the hill inFig. 3from point (C) to point (A), withR = 2/3.
Only the |G| — |H| = 2N, — 1 eaten matter fields contribute to a decreased valugrof
moving down the hill ofFig. 3from point (C) toR|r(Qeaten = O.

Since Aayneaters> 0, it is non-trivial to prove that the eaten matter field contribution is
sufficient to ensure thaka < 0. Indeed(4.5)would be violated forV ; sufficiently small,
if we did not account for the effect of accidental symmetriesNor< %NC. Upon taking
into account these accidental symmetriag, < 0 is satisfied. Proving that Higgsing RG
flows always satisfyAa < 0 thus generally requires accding for accidental symmetries.
Perhaps it is possible to prove thak < ayy is satisfied whenever the unitarity bound
condition is satisfied by all gauge-invariant operators, with accidental symmetries giving
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R = 2/3 for any gauge-invariant operators appearing to violate the unitarity bound, but we
have not found an effective way to implement this.

An attempt to generalize the proposald9] for defining a flowingz-function for Hig-
gsing RG flows would be to introduce sevekalgrange multipliers, to interpolate along
each of the three flows depictedrig. 3, A, for the eaten matter fields, c. for the uneaten
charged matter, ankl, s for uneaten singlet matter fields. The Higgsing RG flow would
then correspond to some path(t), y.c.(¢), Aus (1), along which we would like to find a
monotonically decreasing-function. Some clever choice of path would be required, since
only the flow associated with, has the needed sign of decreasing

5. New SCFTsfrom SQCD with singlets: SSQCD

In this section, we illustrate some of the points discussed in the previous sections with
a new set of examples. Consid&d(N.) SQCD with Ny fundamental flavorg; and Q;
(withi =1,...,Ny), andN} additional flavorsQ;, and Q; (with i’ =1, ..., N’f), with
the N’f flavors coupled td\/’f2 singletsS"//T/ by a superpotential term
w=hs'l' 0} 0", (5.1)

Forh = 0, the theory is just SQCD, withv; + N’ flavors, which flows to an interacting
SCFT in the superconformal wmdong <Ny+ N’ < 3N,. The superpotentigb.1)is
a relevant deformation of these SCF&SQ — h, # O driving a RG flow to a new family
of SCFTs in the IR, labeled bgN,, N.,«,N/) The usual SQCD RG fixed points are the
special caseJ} = 0 (electric description) oNy = 0 (dual, magnetic description).
TheSUN + N’f — N.) Seiberg dua]25] of the theory withz = 0 can be deformed
by the superpotentigb.1), whose effect in the dual is simply a mass term that pairs up the
N}.Z added singlets with theN’f2 mesonsV/’ (which @’ 9’ map to). The dual description
of the new RG fixed points associated w{h1)is thus simply a deformation of Seiberg
duality, where we integrate out the massive gauge singletd M’. What is left is an
SU(N,) gauge theory, withV. = Ny + N} — N., with N flavors of dual quarksy’,
andg’ (if O € Ny of SUNy)., theng’ € N¢), and N’ flavorsq, andg (if Q' e N; of
SU(N’) theng e N; £)s andN gauge smglets‘VI and ZVfN’ singlets P, - i and P~
with superpotenﬂal (suppressmg flavor and color indices)

W=Mq'q'+ Pq'qg+ P'q'q. (5.2)
The first term in(5.2) is similar to the superpotenti@b.1) of the electric theory, with an

exchangeV; < N’ in the number of flavors coupled to singlets. But the additiaPal
and P’ terms in(5. 2)d|st|ngwsh the magnetic duals from the original electric th€brg),

so the duality doesot simply equate the SCFT, obtained from the electric theory with
(N¢, Ny, N}), to that obtained from the electric theory withv + N} — Ng, N’f, Np).
Duality equates these two SCFTs only for the special case of SQQIN,} = 0; for
N¢N #0, the electriqN,, Ny, N;) and(Ny + N’ — Ne, N;, Ny) theories are distinct
(each with their own, distinct, magnetlc dual). T(’le dual|ty map for mesons, singlets, and
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baryonic operators is

00—->M, S——qj, Q00 —P, QQ0—P,
Qr Q/N(y—r q/Nf—qu}-chJrr (5.3)

(with r an arbitrary integer).

Both the electric and magnetic theories haveSafiN r); x SUNf)r x SU(N’ ) X
SU(N’ ) xU@D)p x U)p x UL)F x UQ)g, flavor symmetry. E.g., takln@ #0
in (5. 1) breaks the axiaBUN s + N/) to SU(Nys) x SU(N’) x U(D)F, so theU(1)r

charges ar¢"(Q) = F(Q) = N/ ?/(Ns+Np)andF(Q) = F(Q')=—N¢/(Ns+ N It
is straightforward to list all of the flavor charges in the electric and magnetic duals and to
verify that they are compatible with the mappin(§s3), and also to verify that all of their
't Hooft anomalies match. All of these chexire guaranteed to work, because they worked
for the original Seiberg dualitj25], and the above new SCFTs and duality are obtained
from those via a relevant deformation and its map to the dual description.

Despite the fact that these new SCFTs ahsusimple deformation of those associated
with SQCD, they could not have been quarititaly analyzed prioto the introductiorf13]
of thea-maximization method for determining the superconformal R-charges. The reason
is that there are three independent R-charges)) = R(Q) =y, R(Q') = R(Q) = y/,
andR(S) = z, but only two constraints among them, anomaly freedom and the constraint
that the superpotentiéb.1)respect the R-symmetry:

Ne+Ny(R(Q)—1) + Ny (R(Q)—1)=0 and R(S)+2R(Q)=2. (5.4)

This is because the R4gymetry can mix with thé/ (1) r flavor symmetry, whose effect is
to allow R(Q) and R(Q’) to differ. We will first discuss:-maximization at the RG fixed
points, imposing5.4) at the outset, and then neximaximization along the RG flow, with
(5.4)imposed along the lines §19], with Lagrange multipliers.

5.1. a-maximization at the RG fixed point

Before getting started, it is worth noting that the superconformal R-charges, obtained
via a-maximization in the above electric and magnetic dual theories, will be compatible
with the duality mapg5.3), which require

2R.(Q) = R«(M), R« (S) =2R.(q), R.(Q)+ R(Q)=Ri(P). (5.5)

The two duals have the same flavor symmetries and 't Hooft anomalies, so we are maximiz-
ing the same functiomayia (s) in both descriptions. The result is that the superconformal
R-charges of the electric and greetic theories are related by

Ri(q) =1~ R.(Q), Ri(q) =1~ R.(Q"), (5.6)

which imply (5.5).

In the electric theory we havR(Q) = R(Q) =y, R(Q') = R(Q')=y’, andR(S) =z,
which are subject to the constrain(t.4) at the RG fixed point. We use these to elimi-
natey’ andz in favor of y, and we then obtairy at the RG fixed point by maximizing
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atial = 3 TrR3 — Tr R, which we write as (takingyV.., Ny, andN’f all large, to simplify the
expressions, holding fixed= N./N; andn = N}./Nf):

a

/7
2Nfo

3
:;—C[S(y—1)3—y+1]+x|:3(1_y_x> - l—y—x]

SR () )]s e

Maximizing this with respect tg determines the superconformal R-charge to be

(x,n,y)

' m{—?’[MHnH(n(n—4)—1)x+x ]
+ \/n2(9x2(x —2n)2 4+ 8n(1—n?)x ~|—4n2)}, 5.8)

The result(5.8) is only valid over a range of andn for which no gauge-invariant
operator violates the unitarity bound. The first operator to hit the unitarity bound is the
mesonM = Q Q, which hits the unitarity bound wheR(Q) = 1/3; solving(5.8) for the
valuexy, (n) such thaty (xys(n)) = 1/3, the unitarity bound is hit aty; (n) = %(1+ 5n —

/1 —14n 4+ 13n2). So(5.8)is valid for x < xp(n), and needs correction to account for
the accidental symmetry associated with the free-fi¢ddehenx > x; (n).

We also know that, whew' s + N, < 3N, i.e., whenx > xem(n) = §(1 + n), the
theory is in a free magnetic phase,.with IR-free quasdd(N ; + N’f — N.) gluons, and
singletsM, P, P’. The phases are as kg. 4 for n = N’f/Nf < 2 (e.g., for the usual
SQCD, wherer = 0) the theory goes directly from having no accidental symmetries to
free magnetic phase, where the entire magnetic theory is IR-free. On the other hand, for
n > 2, there is a wedge in the, n) parameter space where the fighd hits its unitarity
bound, while the dual is still asymgtically free. In this wedge, the IR theory remains an
interacting SCFT, with only the fiel# becoming free and decoupled.

In the wedgexy; < x < xpm, WhereM = Q 0 hits the unitarity bound, but the theory is
not in the free magnetic phase, the effect of the accidénta),, symmetry is, as ifl5],
simply to replace thé/ field contributions with those of free fields: we instead maximize
the quantity

2
a®=a© 4 (5 —32y -1+ @y - 1))1\/%. (5.9)

The maximizing solution for the superconformal R-charges, and the maximal wdare
the central charge, are pasted-together with the sol{&@) at x = x;;(n). Because the
added quantity if5.9) has a second order zeroyat= 2/3, these pasted together quantities
are continuous and smooth (first derivatives match)-atx, (n).

The magnetic description of the decouplingMfin the wedgexy, (n) < x < xpm(n)
is very simple, the ternM ¢’g’ in the dual superpotentiéh.2)is then irrelevant: when its
coefficientis smallR(Mq'q’) > 2, becaus® (M) ~ 2/3 andR(q’) > 2/3 forx > xp(n).
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Fig. 4. Phases of SSQCD.

In the IR, this irrelevant term goes away, and the dual superpotential becomes

Wmag= Pq'q + P'q'q. (5.10)

When we now computéyig in the magnetic theory, with superpoteniial10) we obtain
the same result as on the electric side, reproducing the correction tébmd)n

5.2. a-function, viaa-maximization with Lagrange multipliers

For the electric theory-maximization along the RG flow, imposin®.4) with La-
grange multipliers, yields

1 AG 1 AG As
RO =1->[1+25 RH=1-:]1 s
(Q) 3 * 2N, (@) 3\/ + 2N, NCN}
1 As

with both brancheg = +1 generally needed, asendiscussed in Sectic.6. Plugging
these back inta(R;, Ay) yieldsa(rg, As),

4 6 \? 4 A rs \?
NCNf<1+ G) ~|——NCN’f<1+ < S)

“=9 2N, 9 2N. NN,
2 A 3/2
+ §N}?e(1— N—f2> +2N2 — AN, + As. (5.12)
f

It would be interesting to determine the RG flow path of the gauge coupling and superpo-
tential coupling Lagrange multiplierag (r) andig(¢) to their eventual IR values, where
(5.12)is critical. It is gradient flow, as discussed in Sect®but to actually determine the

full trajectory requires knowing the full; (g).



158 E. Barnes et al. / Nuclear Physics B 702 (2004) 131-162

Similarly, a-maximization along the RG flow, with Lagrange multipliers, in the mag-
netic dual yields

1
Rg)=1-Z |1+ = — —— —
(¢) 3\/+N. .

R(P)=1— %EP (5.13)

In the wedgexy (n) < x < x,:M(n),~WhereM decouples but the theory is otherwise
interacting, the RG fixed point has;, = 0. This happens whe®(¢") > 2/3, hence

Ap/2Ns > ig in (5.13)
5.3. Predictions and checks of thetheorem

Having obtained the superconformal R-cha®e via a-maximization, as discussed
above, we can computg(N,, Ny, N}) = 3Ter — Tr R, for our new SCFTs. There are
many RG flows associated with these theories, and in this subsection we will discuss and
check some of theyy > ajr predictions.

First, there is the RG flow associated with superpotefidl). In the UV limit of this
flow, h — 0, and the theory is the SCFT associated with ordinary SQCD Mijth- N’
flavors plus theN’2 decoupled singlets, sayy = asqco(Ne, Ny + N) + 2N’2 The
IR limit is our new SSQCD superconformal field theory, witlg = a(NL, Ny, N/) o)
ayy > ajr means

N \? Ne 2
2N2 42N (Ns + N} (3 - ———) - _7L> 22
.t L( f+t f)( ( N}‘"‘N/f> ( Nf~|—N} +9 f
>a(Ne, Ny, Ny). (5.14)

For simplicity, we again consider the limit of largé., Ny, andN}, holding fixedx =
N./Ny andn = N’f/Nf. Defininga(x,n) = a(N¢, Ny, N’f)/ZNfN’ , (5.14)becomes

x2 1 X 3 X n
— 1+=)[-3 — —>a ) 5.15
n ~|—x< +n>< <1+n) +1+n +9>a(x,n) (.15

We have verified numerically that this prediction is indeed satisfied.
Another RG flow is to start at our SSQCD fixed point and deform by givir@ féavor
amass. The IR theory is again SSQCD, but wWth— N, — 1, andayy > ar becomes

a(Ne, Ny, Ny) > a(Ne, Ny —1,Ny). (5.16)
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Fig. 5. 0 mass RG flow, checkingir < ayy, i.e., 0> (x% + n% — 1)a in the conformal window.

In the limit discussed above, this becomes

a(x,n) > (1—6)&(x(1+6),n(1~|—6)) (5.17)
with e = 1/Ny > 0. The ordek term then gives
0 0 n
0> (x—+n——1>a(x,n), (5.18)
0x on

which must hold for alk andn in the conformal window, 8> 1+n > %x. In Fig. 5, we
have plotted the function on the right-hand sid¢®f.8) The plane at the top of the graph
indicates both the conformal window as well as where the right-hand sideld)would
equal 0, sayr < ayy is indeed always satisfied in the conformal window.

Now consider giving a mass to one of theflavors, which is equivalent to giving, say
SN}N} a non-zero expectation value. This drives the theory in the IR to a similar RG fixed

point, with N. — N., Ny — Ny, andN} — N’f — 1. In addition, the IR fixed point has
ZN} — 1 decoupled free singlets, coming from tﬁ'}g,/f. Thea-theorem thus requires

a(Ne. Ny Np) > a(Ne. Ny Ny 1) + 5 (2N}~ 1). (5.19)

As above, we divide both sides byN;N’f and take the term proportionaléc=1/Ny > 0
to write this inequality as

. da 2
a+ o >3 (5.20)

Once again, we find numerically th@.20)is satisfied.
Now consider givingDy, On, a non-zero expectation value. This leads to

a(Ne,Ng,Ny) >a(Ne =1, Ny — 1, N}) + S(ZNf +2N} -1), (5.21)
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Fig. 6. O vev Higgsing satisfiea|gr < ayy in the conformal window.

with the last term from the uneat&U(N, — 1) singlets, which are IR-free. We can write
(5.21)as

a(x,n)> 1 —e)a((x—e)d+e),nl+e)+ g(l—i- E)e, (5.22)
n
so, taking the: term,
0>—(1+(1—x)i—ni>&+g(l+g>. (5.23)
ox on 9 n

This inequality is shown irFig. 6, where there appears to be a region where it is vio-
lated. But within the conformal window, the inequality is indeed satisfied. (Outside of the
conformal window, additional contributions of free fields come to the rescue.)

There is a similar Higgsing RG flow upon giving Q;v, an expectation value (i.ep,
in the dual), andiyy > ar is ‘

a(Ne, Ny, N’f) >a(Ne— 1, Ny, N} — 1) + S(ZNf), (5.24)

where there are fewer singlets than(i21)because some pair up with tngN/f togeta
mass. We writg5.24)as

1 2
a(x,n) > (1 — —e)&(x —e,n—¢€)+ —¢, (5.25)
n 9n
and hence
1 9 0 2
-+ —+—)a>—. 5.26
(n+8x+8n>a>9n ( )

Once again, we numerically verified that this inequality is true.
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