Notch filtering the nuclear environment of a spin qubit

Filip K. Malinowski,1, 2 Fredérico Martins,1, 3 Peter D. Nissen,1 Edwin Barnes,2, 3 Lukasz Cywiński,4 Mark S. Rudner,1, 5 Saeed Fallahi,6 Geoffrey C. Gardner,6, 7 Michael J. Manfra,6, 7 Charles M. Marcus,1 and Ferdinand Kuemmeth1

1Center for Quantum Devices and Station Q Copenhagen, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark 2Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA 3Condensed Matter Theory Center and Joint Quantum Institute, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA 4Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, PL 02-668 Warsaw, Poland 5Niels Bohr International Academy, Niels Bohr Institute, 2100 Copenhagen, Denmark 6Department of Physics and Astronomy, Birck Nanotechnology Center, and Station Q Purdue, Purdue University, West Lafayette, Indiana 47907, USA 7School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA (Dated: July 26, 2016)

Electron spins in gate-defined quantum dots provide a promising platform for quantum computation [1–7]. In particular, spin-based quantum computing in gallium arsenide takes advantage of the high quality of semiconducting materials, reliability in fabricating arrays of quantum dots, and accurate qubit operations [5, 8]. However, the effective magnetic noise arising from the hyperfine interaction with uncontrolled nuclear spins in the host lattice constitutes a major source of decoherence [4, 5, 10, 11]. Low frequency nuclear noise, responsible for fast (10 ns) inhomogeneous dephasing [5], can be removed by echo techniques [4, 5, 11–14]. High frequency nuclear noise, recently studied via echo revivals [4, 11], occurs in narrow frequency bands related to differences in Larmor precession of the three isotopes 69Ga, 71Ga, and 75As [15, 17]. Here we show that both low and high frequency nuclear noise can be filtered by appropriate dynamical decoupling sequences, resulting in a substantial enhancement of spin qubit coherence times. Using nuclear notch filtering, we demonstrate a spin coherence time (T2) of 0.87 ms, five orders of magnitude longer than typical exchange gate times, and exceeding the longest coherence times reported to date in Si/SiGe gate-defined quantum dots [18, 19].

The qubit under study is implemented in a gate-defined double dot, with a potential that can be manipulated via nanosecond voltage pulses applied to gate electrodes V_L, V_M and V_R (Fig. 1 and Methods). The qubit states are encoded in the two-electron spin singlet state, |S⟩ = 1/√2(|↑↓⟩ − |↓↑⟩), and the spin triplet state, |T0⟩ = 1/√2(|↑↑⟩ + |↓↓⟩), where the arrows indicate the spin projections of the electrons in the left and right dots [5, 8]. These qubit states are energetically separated from the spin-polarized two-electron states, |↑↑⟩ and |↓↓⟩, by an external magnetic field B^ext, ranging from 0.2 to 1 tesla in this experiment. Single-shot readout of the qubit is accomplished using spin-to-charge conversion followed by readout of a proximal sensor dot [13, 20] (see Methods).

As illustrated in Fig. 1p,d, the local Zeeman energy in dot d = L, R is perturbed by the Overhauser field B^nuc arising from the hyperfine interaction with the nuclear spin bath. In our device, each electron is in contact with ~ 10^6 nuclear spins, comprised of three species: 69Ga, 71Ga, and 75As [4, 5, 17].

The Bloch sphere of the S-T0 qubit is shown in Fig. 1c. Bold arrows indicate the rotation axes associated with the exchange interaction, J, and the gradient of the effective field between the dots, ΔB^tot = B^L − B^R, where B^tot = √(B^ext + B^nuc)^2 is the magnitude of the total effective field in dot d [8]. Note that transverse nuclear field gradients tilt the quantization axes in the two dots relative to each other. For large external fields this primarily leads to a minor redefinition of the qubit subspace [17]: for simplicity throughout this work we refer to the states in the qubit subspace by the conventional labels S and T0.

Overhauser field fluctuations in each dot are non-Markovian, with low frequency (power-law) spectral content parallel to the external field, denoted B^nuc (suppressing the dot index), and narrow-band spectral components at the nuclear Larmor frequency scale perpendicular to the external field, denoted B^nuc. Low frequency fluctuations arise primarily from nuclear spin diffusion [21], driven by dipole-dipole interactions between neighboring nuclei, and nonlocal electron-mediated flips-flops [15, 16, 22, 23]. High frequency fluctuations of B^nuc arise primarily due to the megahertz-scale relative Larmor precession of different nuclear spins [4, 11, 17]. The transverse Overhauser field B^⊥ is given by the sum of contributions B^⊥Ga, B^⊥Ga, and B^⊥As of the three iso-
tial, thereby rapidly turning off the exchange interaction, \(J \). In this configuration, the gradient of the total effective field, \(\Delta B_{\text{tot}} \), causes uncontrolled qubit rotation around the horizontal axis of the Bloch sphere in Fig. 1. After a time \(\tau/2 \), an exchange pulse is applied by temporarily lowering the barrier between dots with a voltage pulse on gate \(V_M \) [10], implementing a \(\pi \) rotation around the vertical axis of the Bloch sphere (see Supplementary Section 1). We repeat this set of operations \(n \) times (where \(n \) is even) and, after a total evolution time \(T = n\tau \), read out the state of the qubit. The fraction of singlet outcomes is denoted \(P_S \). Setting \(n = 1 \) implements a Hahn-echo sequence, and allows comparison to previous work [4, 11, 24].

For quasistatic nuclear noise, the effective field acting on the qubit before and after the \(\pi \) pulse is nearly the same, causing the qubit state to be refocused to the singlet after an interval \(\tau/2 \). For nuclear noise with power spectrum \(S(f) \), Hahn and CPMG sequences act as a filter of the noise in the frequency domain [25–30]. For Gaussian noise, decoherence is described by a function

\[
W(\tau) = \exp \left(-\int_0^\infty \frac{df}{2\pi^2} S(f) \frac{F(f\tau)}{f^2} \right),
\]

where \(F_{\text{CPMG}} \), \(F_{\text{Hahn}} \) and several CPMG sequences \(F_{\text{CPMG,n}} \) for fixed \(\tau \) are plotted in Fig. 2 (gray) for varying numbers of \(\pi \) pulses. We write the CPMG filter function as a product \(F_{\text{CPMG,n}} = \frac{1}{2} F_{\text{FID}} \times F_{\text{env}} \), where \(F_{\text{FID}} \) is the filter function corresponding to the free induction decay and \(F_{\text{env}} \) is a slowly varying envelope (see Methods). \(F_{\text{env}} \) is periodic with period \(2/\tau \), with minima occurring at zero frequency and multiples of \(2/\tau \) (Fig. 2(b), black), independent of \(n \).

Specific features of the filter functions can be exploited to decouple the qubit from its characteristic noise environment. First, for fixed separation time \(T = n\tau \), the filter minimum near zero frequency becomes wider for increasing \(n \) (i.e., decreasing \(\tau \), note that the horizontal axis in Fig. 2 is normalized frequency \(f/\tau \)). Thus, for fixed \(T \), decoupling from low frequency \(1/f^2 \)-type noise \((\beta > 0)\) becomes more efficient as \(n \) increases. Second, the minima that occur at multiples of \(1/\tau \) indicate that noise at these frequencies is notch-filtered, in the sense that specific narrow frequency windows are suppressed.

A schematic of the spectral density of nuclear noise for the \(S-T_0 \) qubit fabricated in a GaAs heterostructure is shown in Fig. 2, distinguishing longitudinal low frequency noise (green) and transverse narrow-band noise (red). The low frequency longitudinal contribution is well described by a power-law spectrum [13, 21], and can be removed efficiently by any CPMG sequence (Fig. 2a). The high frequency transverse contribution due to relative Larmor precession of nuclei is concentrated near the
FIG. 2: Frequency-selective dynamical decoupling. a, CPMG pulse sequence consisting of \(n\) pulses separated by time \(\tau\). At the beginning, two electrons prepared in a singlet state \(|S\rangle\) (Initialization) are rapidly separated into two dots with negligible exchange splitting (shaded region of \(J\)). After a total separation time \(T=n\tau\) the preserved qubit state is detected by the readout dot via spin-to-charge conversion (Measurement). During the separation time the two-electron state evolves in the fluctuating gradient of total magnetic field \(\Delta B_{\text{tot}}\). For slow fluctuations, the phases acquired before and after each \(\pi\) pulse cancel each other, due to the sign reversal of the acquired phase by the \(\pi\) pulse. This is exemplified for three different values of \(\Delta B_{\text{tot}}\) by arrows in the Bloch sphere. b, Filter functions of Hahn echo \((n=1)\) and CPMG sequence with \(n=2, 8\) and \(32\) \(\pi\) pulses (gray). Envelope of the filter function \(F_{\text{env}}\) reveals a frequency selectivity that is independent of \(n\) (black). c, Schematic spectral density of nuclear noise. The linear low frequency part (green), described by a power law, is dominated by fluctuations associated with diffusion of the longitudinal component of the nuclear spin. The quadratic high frequency noise (red) results from fluctuations of \(B_{\text{tot}}\) at differences of nuclear Larmor frequencies. d, By adjusting the time between \(\pi\) pulses, the minima of the filter function envelope \(F_{\text{env}}\) (black) can be aligned with the nuclear noise spectrum (green and red shading), thereby decoupling the qubit from both linear low frequency and quadratic high frequency noise.

three Larmor frequency differences \([16]\), at megahertz frequencies for tesla-scale applied fields. Remarkably, two of the Larmor difference frequencies, \(f_{71\text{Ga}}-f_{69\text{Ga}}\) and \(f_{69\text{Ga}}-f_{75\text{As}}\), are nearly equal, independent of magnetic field, and hence the third frequency difference, \(f_{71\text{Ga}}-f_{75\text{As}}\), occurs at twice that frequency. This coincidental property of the three nuclear species allows us to approximately align minima of the filter function with all three frequency differences by correctly choosing the time between \(\pi\) pulses, \(\tau\), thereby decoupling the qubit from low and high frequency nuclear noise simultaneously.

We now demonstrate the efficacy of this notch filter strategy in our experimental setup. The narrow-band character of the high frequency nuclear noise is revealed by plotting the observed singlet return probability \(P_S\) as a function of \(\pi\)-pulse separation time \(\tau\) (rather than total separation time \(T\)). Independent of the choice of \(n\), we observe an initial loss of coherence followed by revivals at \(\tau \approx 1.1, 2.2, 3.3, ... \mu s\) (Fig. 3). These values of \(\tau\) correspond to decoupling conditions shown in Fig. 3b, namely the alignment of nuclear difference frequencies (shaded red) with minima of the filter function envelope. Qualitatively, the alternating depth of filter minima in Fig. 3b also explains the alternating heights of revivals, most pronounced for \(n=4\) in Fig. 3a. With increasing \(\tau\), the height of the revivals decreases. This is related
to decoherence arising from low frequency noise (shaded green in Fig. 3b) [14]. Revivals observed for Hahn-echo sequences can be explained similarly, except that the filter function for $\tau \approx 1.1 \mu$s has a maximum near 0.9 MHz (Fig. 3c), rather than a minimum. Accordingly, P_S shows a minimum near $\tau = 1.1 \mu$s instead of a revival (cf. $n = 1$ data in Fig. 3b).

The dependence of the decoupling condition for τ on nuclear Larmor dynamics can be verified by changing the applied magnetic field. In Fig. 4a, we fix $n = 256$ and measure the decay of coherence as a function of B^ext. As expected for a linear nuclear Zeeman splitting with $\delta B = 1.1 \text{ mT}$, of the effective magnetic field acting on nuclei (likely due to quadrupolar splitting arising from electric field gradients [4, 11, 17]), the spectral diffusion time, $T_{SD} = 600 \mu$s, and the exponent associated with the linear low frequency noise, $\beta = 3$ (all determined by independent measurements as described in Supplementary Sections 3 and 4). The model suggests that the longest coherence time may be achieved by choosing a decoupling condition corresponding to the second revival at high magnetic fields, consistent with a reduced contribution of B^nuc to B^ext in each dot (see Fig. 4a) and the decoupling condition depicted in Fig. 2d. We note that the model does not take pulse errors into account and does not show several fine features observed in experiment (see white arrows in Fig. 4b, see Supplementary Section 5).

By exploring the parameter space between B^ext and 1000 mT with τ corresponding to the first revival
FIG. 4: **Effect of magnetic field and τ on qubit coherence.**

a, Singlet return probability P_S as a function of time between π pulses, τ, and external magnetic field, B^{ext}, for a fixed number of π pulses, $n = 256$. Inset: A semiclassical model, generalizing the model of [17] to the case of CPMG sequences, with no free parameters (see Supplementary Section 2). Arrows indicate fine features that the model fails to reproduce. **b**, Singlet return probability, P_S, measured as a function of total separation time $T = n\tau$, where n is varied between 32 and 1536, for $\tau = 0.95$ and 1.15 μs at $B^{\text{ext}} = 600$ mT, the values marked in **a**. Solid lines are fits to a decay law with exponential decay time T_2^{CPMG} (see Methods). **c**, Coherence time T_2^{CPMG}, measured by increasing n as in **b**, as a function of τ (squares). For comparison, P_S for constant n, reproduced from the grey cut in **a**, is also shown (circles). Lines are guides to the eye. Triangles indicate the coherence times obtained from **b**.

peak, we observe coherence times around 0.7 ms for $B^{\text{ext}} = 500$ to 600 mT, with the largest being $T_2^{\text{CPMG}} = 0.87 \pm 0.13$ ms (Fig. 5), measured at $B^{\text{ext}} = 500$ mT and $\tau = 0.75$ μs. However, the number of examined values of B^{ext} and τ remains insufficient to resolve the fine structure apparent in the first revival peak.

We expect further improvements by using shorter π pulses and nuclear programming [8]. This will improve the fidelity of π pulses and suppress low frequency noise, allowing the advantageous use of the decoupling condition in Fig. 2 at high magnetic fields and high pulse rates.

In summary, dynamical decoupling sequences were demonstrated to provide decoupling from narrow-band high frequency noise, acting as a notch filter for the nuclear environment. This technique was used to efficiently decouple a GaAs-based S-T_0 qubit from its nuclear environment. By synchronizing the repetition rate of π pulses in CPMG sequences with differences of nuclear Larmor frequencies, the coherence of a S-T_0 qubit coupled to nuclear spin bath was extended the millisecond regime (0.87 ms), five orders of magnitude longer than the gate operation time.

ACKNOWLEDGEMENTS

We thank Rasmus Eriksen for help in preparation of the reflectometry setup. This work was supported by IARPA-MQCO, LPS-MPO-CMTC, the Polish National Science Centre (NCN) under Grant No. DEC-2012/07/B/ST3/03616, the Army Research Office, the Villum Foundation and the Danish National Research Foundation.

AUTHOR CONTRIBUTIONS

Correspondence and requests for materials should be addressed to F.K.
FIG. 5: Singlet return probability, P_S, as a function of total separation time, $T = n \tau$, for optimized and fixed values of τ and B_{ext}. An exponential fit to the data yields $T_{2}^{\text{CPMG}} = 0.87 \pm 0.13$ ms. The data points correspond to the CPMG sequences with $n = 32$ to $n = 1536 \pi$ pulses. Inset: Alignment of the filter function envelope with nuclear noise spectrum for this choice of τ and B_{ext}.

* These authors contributed equally to this work

METHODS

The sample

The sample, identical to the one shown in Fig. 1a, is fabricated from a GaAs/AlGaAs quantum well grown by molecular beam epitaxy. Crystallographic axes are shown in Fig. 1a. A high-mobility 2D electron gas (2DEG) is formed 57 nm below the sample surface with carrier density \(n_e = 2.5 \times 10^{15} \text{ m}^{-2} \) and mobility \(\mu = 230 \text{ m}^2/\text{Vs} \). Metallic gates, separated from the heterostructure by a 10 nm layer of HfO\(_2\), are used to confine two electrons in the region indicated by a rectangle in Fig. 1a. Gates indicated in blue and red are operated at negative voltages to deplete the 2DEG underneath, while gates colored in green are biased with positive voltages to accumulate electrons beneath. The charge state and tunnel coupling of the double dot can be controlled on a nanosecond timescale by applying voltage pulses to gates \(V_L, V_M, \) and \(V_R \).

Initialization and readout of the qubit

The sample is measured at a base temperature of 25 mK in a cryofree dilution refrigerator, with an external magnetic field \(B^\text{ext} \) applied parallel to the z direction indicated in Fig. 1a. The qubit is initialized in a singlet state by tilting its charge state into the (2,0) charge configuration and allowing the exchange of electrons with the left lead near the (1,0) charge transition [5].

After qubit manipulation the state of the qubit is measured by tilting the double well potential to favour the (2,0) charge state. If the two electrons are in the spin triplet configuration, Pauli blockade prevents reaching the (2,0) state, and the charge configuration remains (1,1). The charge state of the double dot modifies the conductance through a proximity sensor dot operated as a single electron transistor. This sensor dot is embedded in a radio-frequency resonant circuit, enabling us to distinguish singlet and triplet states in 8 \(\mu s \) with a readout visibility of approximately 80%, as defined in Ref. [13].

Envelope of a filter function for CPMG sequence

Filter functions for Hahn echo and CPMG sequence (for even number of \(\pi \) pulses, \(n \)) are given by [26]

\[
F_{\text{Hahn}}(f\tau) = 8 \sin^4 \left(\frac{\pi f\tau}{2} \right) ; \quad (2)
\]

\[
F_{\text{CPMG},n}(f\tau) = \frac{8 \sin^4 \left(\frac{\pi f\tau}{2} \right) \sin^2 \left(\frac{\pi f\tau n}{2} \right)}{\cos^2 \left(\frac{\pi f\tau}{2} \right)}. \quad (3)
\]

To emphasize the qualitative difference between CPMG sequences and the Hahn echo sequence, and represent features of CPMG filter functions relevant for large number of \(\pi \) pulses, \(n \), we rewrite

\[
F_{\text{CPMG},n} = \frac{1}{2} F_{\text{env}} \times F_{\text{FID}} \quad (4)
\]

using \(n \)-independent filter function envelope

\[
F_{\text{env}}(f\tau) = \frac{8 \sin^4 \left(\frac{\pi f\tau}{2} \right)}{\cos^2 \left(\frac{\pi f\tau}{2} \right)}. \quad (5)
\]

obtained by dividing \(F_{\text{CPMG},n} \) by the filter function corresponding to free induction decay

\[
F_{\text{FID}}(fT) = 2 \sin^2 \left(\pi fT \right). \quad (6)
\]

Here \(T = \tau n \) corresponds to a free induction decay time equal to the total duration as a CPMG sequence. This normalization removes a fine comb related to the total length of the sequence.

Exponential fits to \(P_S(T) \)

In contrast to many spin qubit experiments [4, 5, 9, 11, 13, 16, 19, 22, 24] we measure coherence not by keeping \(n \) constant and sweeping \(\tau \), but by increasing \(n \) while keeping \(\tau \) constant. This method, which is standard in NMR experiments [22], results in an exponential decay of coherence for large number of \(\pi \) pulses \(n \) and long evolution times \(T = n\tau \), independent of the power spectrum of the Gaussian noise [30]. The rate of such a decay is determined by the noise spectrum at a frequency corresponding to the first peak of the filter function from Fig. 2, at \(f = 1/2\tau \).

Therefore, we perform an exponential fit of the form \(A + B \exp(-T/T^2_{\text{CPMG}}) \) to the data, where \(A \) and \(B \) account for preparation and readout fidelity as well as rapid initial decay of the signal [4, 11], and \(T^2_{\text{CPMG}} \) is a coherence time of the qubit. Typical values of \(A \) and \(B \) obtained from fits used to extract values of \(T^2_{\text{CPMG}} \), shown in Fig. 4, are \(A \sim 0.6 \) and \(B \sim 0.2 \). Fit to the data presented in Fig. 5 yields \(A = 0.53 \) and \(B = 0.34 \).
The supplementary information is divided into sections, which discuss the following topics:

1. Calibration of π pulses
2. Semiclassical model of decoherence due to nuclear noise
3. Estimating N and δB from Hahn echo signal
4. Estimating T_{2D} and β from scaling of coherence time
5. Extension of the model to take into account anisotropy of electron g-factor. Discussion of the origin of the splitting of the first revival peak.

1. Calibration of π pulses

To generate decoupling sequences consisting of as many as 1000 π pulses we took advantage of charge-noise-insensitive symmetric exchange pulses. This new technique improves the quality factor of exchange oscillations by a factor of six relative to conventional method of tilting the double dot potential $[S1, S2]$. A detailed analysis of this technique, and results obtained in the preceding experiment from the same setup and same sample, can be found in Ref. $[S1, S3]$.

The optimization was performed by maximizing the Hahn echo signal by varying the amplitude of the symmetric exchange pulse, γ_X, while keeping detuning $\varepsilon_X = 0$ mV, exchange time $t_X = 4.167$ ns and total evolution time $\tau = 0.75 \mu$s fixed (Fig. S1). The experiment was performed on the same device and in identical tuning as Ref. $[S1]$, where γ_X and ε_X are defined and discussed in detail.

We note that symmetric exchange pulses show a weaker dependence on gate voltages than ordinary tilt pulses. Hence, symmetric π pulses are more robust against fluctuations of pulse amplitudes. On the other hand, symmetric pulses require a larger amplitude, resulting in somewhat slower exchange gates compared to conventional tilted exchange gates. This limitation makes π pulses more susceptible to errors induced by gradients of the Overhauser field, causing a tilted rotation axis of the qubit. In future experiments, larger pulse amplitudes can be achieved straightforwardly by decreasing the attenuation in the transmission lines in the cryostat.

Nevertheless, the CPMG sequence is particularly robust to two kinds of π pulse errors that affect exchange gates $[S4]$. The first is over or under rotation around the vertical axis of the Bloch sphere due to miscalibration of pulse amplitude and duration. The second is tilt of the rotation axis in the $|S\uparrow\rangle-T_0\rangle-|\uparrow\downarrow\rangle-|\downarrow\uparrow\rangle$ plane due to uncontrolled gradients of the Overhauser field.

2. Semiclassical model for decoherence

The inset of Fig. 4 shows theoretical results for coherence revivals. The model is derived closely following the semiclassical approach developed in Ref. $[S5]$. The starting point is to express the Hamiltonian for the $|\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle$ subspace of the two-spin system as

$$\hat{H}(t) = g^* \mu_B \sum_{d=L,R} \left(B_{z,d}^{\text{nuc}}(t) + \frac{|B_{z,d}^{\text{nuc}}(t)|^2}{2|B^{\text{ext}}|} \right) c(t) \hat{S}_d^z, \tag{S1}$$

where g^* is the electron g-factor, μ_B is the Bohr magneton, B^{ext} is the external magnetic field, $B_{z,d}^{\text{nuc}} (B_{z,d}^{\text{nuc}})$ is the Overhauser field component parallel (perpendicular) to external magnetic field, \hat{S}_d^z is the electron spin operator, $d = L, R$ labels the left and right dots, and we assume $|B^{\text{ext}}| \gg |B_{d}^{\text{nuc}}|$. Here, the sequence of π pulses
applied to the qubit is captured by
\[c(t) = \sum_{j=0}^{n} (-1)^j \theta(t_{j+1} - t) \theta(t - t_j), \quad (S2) \]
where \(t_j \) is the time at which the \(j \)-th \(\pi \) pulse of the CPMG sequence is applied (with \(t_0 = 0 \), \(t_{n+1} = T \)), and \(\theta(t) \) is the Heaviside step function.

Reference [S5] treated only the Hahn echo sequence. This corresponds to \(n = 1 \) in the above. Following the same sequence of steps, we obtain results for arbitrary \(n \). As in that case, the decoherence function \(W(\tau) = W_z(\tau) W_\perp(\tau) \) is separated into a product of contributions from the longitudinal and transverse noise sources. The low-frequency longitudinal noise contribution is of the form \(W_z(\tau) = e^{-(\tau/T_{\text{SD}})\alpha} \), where \(\alpha = \beta + 1 \) is related to the exponent in the power law \(1/f^\beta \) describing the spectrum of this noise source [S6], and \(T_{\text{SD}} \) is the spectral diffusion time. Because the transverse field enters the Hamiltonian \((S1)\) as a square, \(|B_{\text{ext}}^\perp(t)|^2 \), this noise source is effectively non-Gaussian [S5, S7]. As a result, the decoherence function for dot \(d \) is of the form \(W_{\perp,d}(\tau) = 1/\det(1+iT_d) \) with components of the matrix \(T_d \) given by

\[
T_{kl,d} = \frac{5 A_{k+1}(k) A_{l+1}(l) \sqrt{N_k N_l}}{2 g^* \mu_B |B_{\text{ext}}^\perp|} \frac{\omega_{kl}}{\omega_{kl}^2 - A_{kl}^2} \left\{ 1 - \frac{\cos\left(\frac{\omega_{kl} T}{2n}\right)}{\cos\left(\frac{\omega_{kl} T}{2}\right)} \right\} \sin\left(\frac{\omega_{kl} T + n\pi}{2}\right) e^{-\frac{\omega_{kl} T + n\pi}{2}}. \quad (S3) \]

Here \(k, l \) labels groups of nuclei associated by isotope and local nuclear Zeeman coupling, \(A_{k+1}(k) \) is the hyperfine coupling constant for nuclei in group \(k \), \(A_{kl} = A_{k+1}(k) - A_{l+1}(l) \), \(N_k \) is number of nuclei in a group, \(\omega_{kl} = \omega_k - \omega_l \) is a difference of Larmor frequencies between nuclei from two groups, and \(T = n\tau \) is the total evolution time. Specifically, the nuclei of each isotope are divided into \(K \) groups using the relation \(N_k = n_\xi(k) N/2K \), where \(n_\xi \) is the number of nuclei of isotope \(\xi \) per unit cell, and where all nuclei within each group have the same Larmor angular frequency \(\omega_k \). The value of \(\omega_k \) for each group is drawn from a Gaussian distribution centered at the bare Larmor frequency \(\omega_\zeta \) for the corresponding isotope, with standard deviation \(\delta B \). The broadening \(\delta B \) is introduced as a phenomenological parameter to take into account an effective spread in the Larmor frequencies due to inhomogeneous quadrupolar splittings and dipole-dipole interactions. For the simulation shown in Fig. 4, differences between hyperfine couplings within the same isotope were neglected, and convergence was obtained with \(K = 4 \) groups.

Larmor frequencies and hyperfine couplings used to perform the simulation shown in Fig. 4 were taken from Ref. [S8] (table S1). The remaining parameters are: the effective number, \(N \), of nuclei interacting with each electron, inhomogeneity, \(\delta B \), of the effective magnetic field acting on the nuclei, the spectral diffusion time, \(T_{\text{SD}} \), and the exponent, \(\beta \), associated with the low-frequency noise. The following sections explain how these parameters are obtained.

3. Estimating \(N \) and \(\delta B \) from Hahn echo signal

The simulation of revivals under CPMG sequences requires knowledge of four device-specific parameters, two of which, the effective number, \(N \), of nuclei interacting with each electron and the inhomogeneity, \(\delta B \), of the effective magnetic field acting on the nuclei, are extracted from Hahn echo data obtained at several magnetic fields (Fig. S2). Following previous work [S5, S9] we first fit theory to Hahn echo data at each magnetic field separately, keeping \(\delta B \), \(N \), the spectral diffusion time for Hahn echo, \(T_{\text{SD}}^{\text{Hahn}} \), vertical offset, and vertical scaling as free parameters. Setting \(T_{\text{SD}}^{\text{Hahn}} \gg 1 \) ms gives essentially equally good fits (i.e. \(T_{\text{SD}}^{\text{Hahn}} \) cannot be determined accurately by this method) but values for \(\delta B \) and \(N \) obtained at various magnetic fields (150-350 mT) differ from each other by less than 20\%. Therefore we average these values and obtain \(\delta B = 1.1 \) mT and \(N = 7 \times 10^5 \). Fixing these values and \(T_{\text{SD}}^{\text{Hahn}} = \infty \), we leave the vertical offset and vertical scaling as the only free parameters, and obtain excellent agreement for all magnetic fields, as seen in Fig. S2. Visibility and offset are left as free parameters, independent for each curve, to accommodate a fluctuating readout visibility that is likely due to a buildup of the gradient of Overhauser field for large \(B_{\text{ext}}^\perp \) [S10].

| TABLE S1: Bare Larmor angular frequencies, \(\omega_\zeta \), hyperfine constants, \(A_\zeta \), in units of angular frequency, and abundances, \(n_\zeta \), of \(^{69}\text{Ga}\), \(^{73}\text{Ga}\) and \(^{75}\text{As}\), taken from Ref. [S8]. |
|---------------------------------|-----------------|-----------------|
| \(\omega_\zeta / B \) [s\(^{-1}\)T\(^{-1}\)] | \(A_\zeta \) [s\(^{-1}\)] | \(n_\zeta \) |
| \(^{69}\text{Ga}\) | 64.2 | 5.47 \times 10^{10} | 0.604 |
| \(^{73}\text{Ga}\) | 81.6 | 6.99 \times 10^{10} | 0.396 |
| \(^{75}\text{As}\) | 45.8 | 6.53 \times 10^{10} | 1 |
The only systematic deviation between the experimental results and the model is a slight, rapid, initial decay of the signal (first 3-5 data points of each data set). This effect was also observed in Refs. [S9, S11]. The effect depended on the external magnetic field as well as the gradient of the Overhauser field [S11], and was speculated to be related to the entanglement of the qubit with the nuclear bath or to π pulse errors [S9].

4. Estimating T_{SD} and β scaling of coherence time

To estimate the spectral diffusion time T_{SD} for the simulation in Fig. 4a we quantify the scaling of the CPMG coherence time with the number of π pulses n in a regime where revivals are not yet developed (i.e., for $n \leq 32$ at 750 mT) [S6]. The coherence time is found to be proportional to n^γ, with $\gamma \sim 0.75$ [S12]. Using this scaling behaviour we infer $T_{SD} \approx 0.6$ ms for a CPMG sequence with 256 π-pulses. Using the relationship $\beta = \gamma / (1 - \gamma)$ [S6] the exponent $\gamma = 0.75$ corresponds to a power law of low-frequency noise governed by $1/f^\beta$ behaviour, with $\beta = 3$, in reasonable agreement with previous measurements [S6].

5. Splitting of the first revival peak

A possible explanation for the observed splitting in the first revival peak (Fig. 4a) is based on the anisotropy of the electronic g-factor. The g-factor anisotropy between [011] and [01-1] primary axes can be as high as 15% in asymmetric GaAs/AlGaAs quantum wells [S13]. In Ref. [S11] it was shown that the anisotropy has a strong impact on $S-T_0$ qubit coherence when the magnetic field is not parallel to one of the main axes. The combination of the anisotropy and small misalignment of the external magnetic field with the [011] crystal axis changes the magnetic field term in the system Hamiltonian (S1) to:

$$B_{z,d}^{\text{nuc}}(t) + \frac{|B_{x,d}^{\text{nuc}}(t)|^2}{2|B_{\text{ext}}^z|} + \frac{g_\perp}{g_\parallel} \left[B_{x,d}^{\text{nuc}}(t) + B_{y,d}^{\text{nuc}}(t) \right], \quad \text{(S4)}$$

where g_\parallel (g_\perp) are diagonal (off-diagonal) elements of a g-tensor in the basis set by direction of the external magnetic field. The latter leads to the appearance of individual nuclear Larmor frequencies in the nuclear noise spectrum in addition to nuclear difference frequencies [S11]. As a result, the CPMG sequence will not be as efficient in suppressing nuclear noise even when the pulses are commensurate with all three difference frequencies.

In Fig. S3 we present simulations showing the consequences of g-factor anisotropy. Panel (a) shows the simulation presented in the inset of Fig. 4a, i.e. $g_\perp/g_\parallel = 0$. In panel (b) we show a simulation that assumes $g_\perp/g_\parallel = 0.01$. Although our external magnetic field was nominally aligned with the [011] crystal axis (cf. Fig. 1a), the choice of $g_\perp/g_\parallel = 0.01$ is consistent with the smallest value observed in [S11] for the same direction of magnetic field as in our setup. In our simulation a splitting of the first revival peak appears (indicated by a white arrow) as well as more complex fine structure in other revival peaks. Such fine structure is beyond the resolution of the experimental data.

FIG. S2: Revival of coherence under Hahn-echo sequence. Singlet return probability P_S as a function of separation time τ for various magnetic fields. Datasets are offset for clarity. Dotted lines indicate $P_S = 0.5$ for data plotted in corresponding color. Black lines are simulations with $\delta B = 1.1$ mT, $T_{SD}^{\text{bln}} = \infty$, $N = 7 \times 10^5$. They are fitted to experimental data using offset and visibility, different for each curve.
FIG. S3: Simulation of revivals of coherence under CPMG sequence for 256 π pulses. a, Simulation omitting effects of g-factor anisotropy, identical to map in the inset of Fig. 4a, i.e., \(g_\perp/g_\parallel = 0 \). b, Simulation assuming \(g_\perp/g_\parallel = 0.01 \).

We note that a splitting of the first revival peak appears exactly when the frequency of π pulses coincides with a difference of Larmor frequencies \(f_\gamma_{\text{Ga}} - f_\omega_{\text{Ga}} \) and \(f_\omega_{\text{Ga}} - f_\gamma_{\text{As}} \). Therefore other mechanisms might also lead to the appearance of the splitting. We speculate that weak driving of the nuclei by a periodic Knight field could enhance flip-flops between nuclei of different species and therefore increase spin diffusion, leading to faster decoherence.
