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We compute a variety of two and three-point real-time correlation functions for a strongly-coupled

nonrelativistic field theory. We focus on the theory conjectured to be dual to the Schrödinger-invariant

gravitational spacetime introduced by Balasubramanian, McGreevy, and Son, but our methods apply to a

large class of nonrelativistic theories. At zero temperature, we obtain time-ordered, retarded, and

Wightman nonrelativistic correlators for scalar operators of arbitrary conformal dimension directly in

field theory by applying a certain lightlike Fourier-transform to relativistic conformal correlators, and we

verify that nonrelativistic AdS/CFT reproduces the results. We compute thermal two and three-point

real-time correlators for scalar operators dual to scalar fields in the black hole background which is the

finite-temperature generalization of the Schrödinger spacetime. This is done by first identifying thermal

real-time bulk-to-boundary propagators which, when combined with Veltman’s circling rules, yield two

and three-point correlators. The two-point correlators we obtain satisfy the Kallen-Lehmann relations. We

also give retarded and time-ordered three-point correlators.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence [1–3] has enjoyed much
success in elucidating aspects of strongly-interacting rela-
tivistic field theories over the past 12 years. However, there
exists a broad array of strongly-coupled systems which
admit a field-theoretic description but do not exhibit
Lorentz invariance. Cold atomic gases in the so-called
unitarity limit provide a prime example of this. The uni-
tarity limit refers to a regime in which the system resides
precisely at the crossover point between a gas of Cooper
pairs and a Bose-Einstein condensate. This regime arises
when the interatomic potential is tuned such that the range
of the potential vanishes while the scattering length di-
verges, thus removing all scales in the problem. The ability
to realize this scaling limit experimentally by exploiting
the phenomena of Feshbach resonances [4] has drawn wide
attention to this system and emphasized the need for more
progress on the theory front to balance the successes in the
laboratory. Recent approaches to this problem that employ
field theory techniques directly can be found in [5–8].

The unitary Fermi gas is a natural candidate for testing
the waters of nonrelativistic AdS/CFT as it possesses not
just scale invariance but a larger group of symmetries
known as the Schrödinger group, which can be thought
of as the nonrelativistic analog of the conformal group. The
fact that the Schrödinger group is not only a close cousin of
conformal symmetry but that it can also be embedded in
the conformal group was a key observation in formulating
the first proposal for a nonrelativistic AdS/CFT correspon-
dence [9,10]. This proposal posited that the nonrelativistic

(Schrödinger) correspondence works in much the same
way as its relativistic counterpart, but with a particular
plane-wave-type geometry (sourced by additional nontri-
vial background fields) replacing AdS as the dual gravita-
tional spacetime at zero temperature.
The form of the Schrödinger spacetime suggests that we

should think of the dual Schrödinger theory as being
embedded within a parent theory living in one higher
dimension. If we denote the time coordinate in the parent
theory by t, then the Schrödinger theory is obtained by
switching to light cone coordinates x� ¼ y� t, where y is
one of the spatial directions, and then projecting the spec-
trum onto a sector of fixed x� momentum. The xþ coor-
dinate plays the role of time in the Schrödinger theory. If
x� is also compactified, then the x� momentum assumes a
discrete set of values that are naturally interpreted as
particle number for the nonrelativistic Schrödinger theory,
and the procedure is referred to as discrete light cone
quantization (DLCQ). At zero temperature, there are
subtleties involved with this compactification since x� is
lightlike, and one needs to consider large particle number
in order to trust the gravity dual [11–13]. This idea of
embedding the Schrödinger theory within a parent theory
is closely related to the notion of Bargmann spacetimes
[14–16], and it greatly facilitates the formulation of a
nonrelativistic version of AdS/CFT.
The original conjecture of Refs. [9,10] has since been

placed on firmer ground by subsequent work which up-
lifted the dual gravitational background to a solution of IIB
supergravity and extended it to a finite-temperature black
hole solution [11–13]. Furthermore, it was shown that at
finite-temperature, x� is no longer a lightlike direction, so
that subtleties pertaining to its compactification no longer
arise. The work of [11–13] also clarified that the parent
theory related to the Schrödinger metric constructed in
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[9,10] is an example of a well-known class of noncommu-
tative theories known as dipole theories [17–19]. The
dipole theories are obtained by starting from an ordinary
commutative field theory and replacing regular multiplica-
tion of fields with a noncommutative star product. The
particular parent theory described by the Schrödinger met-
ric is the dipole theory that results when N ¼ 4 super
Yang-Mills is deformed in this way, and the corresponding
Schrödinger theory is just the DLCQ of this. In what
follows, we will always refer to these theories simply as
the parent and Schrödinger theories,1 and we will also use
these terms to distinguish between their gravity duals,
which are also related by DLCQ. These discoveries con-
stitute an important milestone toward extending AdS/CFT
to the realm of nonrelativistic theories and applying it to
improve our understanding of systems like the unitary
Fermi gas.

Some of the most important information that AdS/CFT
provides about a field theory are its correlation functions.
As for theories exhibiting conformal invariance, the two
and three-point correlation functions for Schrödinger-
invariant theories also provide crucial checks of the con-
jectured correspondence since these correlators are largely
determined by the symmetry group alone [20,21]. In
particular, the two-point functions are completely fixed
by the symmetry up to an overall constant. Unlike the
conformally-invariant case, however, it is not true that
the functional form of the three-point functions are fully
determined. It was verified in [22–24] that AdS/CFT re-
produces both two and three-point scalar correlation
functions.2

In this paper, we will focus on computing real-time
correlation functions for scalar fields in Schrödinger field
theories. Real-time correlation functions are of particular
interest since these in turn yield quantities like conductiv-
ity and viscosity. However, real-time correlation functions
in AdS/CFT pose more technical challenges relative to
Euclidean ones since it is less clear how to formulate basic
AdS/CFT recipes in Minkowski signature, where the bulk
spacetime tends to be more complicated. Early attempts to
deal with this problem yielded a case-by-case treatment
[25,26], and only in the last two years have more system-
atic approaches appeared in the literature [27–29]. In the
context of Schrödinger-invariant theories, the methods of
[27,28] were employed by Hoang and Leigh [24] to com-
pute time-ordered and Wightman two-point functions at
zero temperature. We will show that the approach given in

[29] reproduces their findings in a simple way, and we
further use it to compute a wide variety of real-time two
and three-point correlators at both zero and finite-
temperature. Our results for the zero temperature two-point
functions are also consistent with the bulk-to-bulk corre-
lators computed in [30].
The complete functional form of the zero temperature

two and three-point correlation functions can in fact be
computed in real time without having to invoke AdS/CFT
or any other method for solving the Schrödinger field
theory due to the intimate relation between the
Schrödinger and conformal groups. More specifically, we
may obtain correlation functions of the Schrödinger theory
directly from the correlation functions of a CFT by switch-
ing to light cone coordinates and Fourier-transforming
with respect to x�, as was originally noticed some time
ago in Ref. [21] and more recently exploited in the context
of AdS/CFT in Refs. [22,23]. This procedure is essentially
equivalent to performing DLCQ, with the role of the
Fourier-transform being to project onto a sector of fixed
x� momentum. However, as stressed in [21], it is important
to note that the Fourier-transform trick must be performed
keeping x� noncompact so as to avoid having to construct
CFT correlators on a lightlike circle. We will still refer to
this procedure as DLCQ since we are free to consider a
fixed particle number in the resulting expressions, keeping
in mind the zero temperature subtleties mentioned earlier.
We will apply the Fourier-transform technique to com-

pute various zero temperature correlators in real time.
Although the authors of [22,23] computed real-time corre-
lators, they did not keep track of the type of correlator (e.g.
time-ordered, retarded, etc.), as their primary focus was on
testing whether nonrelativistic AdS/CFT reproduces
Schrödinger-invariant expressions. Since the i� prescrip-
tions which distinguish between the different types of real-
time correlators are well known in the case of a relativistic
CFT (see [29] for a review), it is a straightforward task to
perform DLCQ on these correlators to produce real-time
Schrödinger correlators, and we will show that the type of
correlator is preserved under DLCQ. In addition, we verify
that the standard Kallen-Lehmann relations are satisfied by
the various real-time Schrödinger correlators.
We stress that the CFT correlators that we Fourier-

transform are not the correlators of the parent theory. In
particular, note that the parent dipole theory is not Lorentz-
invariant [17–19]. Therefore, the resulting Schrödinger-
invariant correlators will not contain the same overall
constants as those of the DLCQ of the dipole theory. Our
aim in applying the Fourier-transform to CFT correlators is
to ascertain the form of the various real-time Schrödinger
correlators at zero temperature; this provides us with an
important check of the exact Schrödinger theory correla-
tors we will compute from nonrelativistic AdS/CFT.
We compute the zero temperature correlators in momen-

tum space as well as position space. DLCQ applied to

1Although Schrödinger invariance is broken at finite-
temperature, we will continue to use the term ‘‘Schrödinger
theory’’ even in this case.

2Intriguingly, the authors of [22] also computed the three-point
function using a certain field theory model for a unitary Fermi
gas and showed that, in addition, AdS/CFT correctly computes
the piece of the three-point function which is not determined by
Schrödinger symmetry.
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momentum space correlators simply amounts to perform-
ing a rotation in the plane spanned by! and py, the energy

and momentum associated with t and y. In the case of
three-point functions, we express the time-ordered and
retarded correlators in a way that is very reminiscent of
AdS/CFT, namely, in terms of an integral over what are
readily interpreted as three bulk-to-boundary propagators
in the Schrödinger spacetime. This allows us to define in a
natural way nonrelativistic Feynman and retarded bulk-to-
boundary propagators which in turn are easily verified to
reproduce the corresponding two-point correlators that we
compute directly in field theory. Wightman propagators are
then defined in such a way that they reproduce Wightman
two-point functions. The exercise of constructing the dif-
ferent real-time bulk-to-boundary propagators and estab-
lishing their interrelations not only provides additional
consistency checks of nonrelativistic AdS/CFT, but also
helps set the stage for the computations of thermal corre-
lation functions, which rely heavily on correctly identify-
ing these propagators.

One of the main objectives of this work is to compute
real-time two-point and three-point nonrelativistic correla-
tion functions for scalar operators dual to minimally
coupled scalars at finite-temperature. The Schrödinger the-
ory at finite-temperature also possesses a nonzero chemical
potential which breaks Schrödinger invariance, meaning
that we can no longer receive guidance by applying the
Fourier-transform trick to CFT correlators as in the zero
temperature case. With the confidence gained from cross-
checking AdS/CFT with field theory at zero temperature,
we therefore focus solely on AdS/CFT in the finite-
temperature case.

The first step is to compute real-time bulk-to-boundary
propagators. This is done by starting with the Euclidean
version of the metric which describes a black hole in the
Schrödinger spacetime [11–13] and solving the scalar
wave equation to obtain the Euclidean bulk-to-boundary
propagator in momentum space. This is the Euclidean
propagator in the gravity dual of the parent dipole theory.
We analytically continue this to a retarded propagator and
then perform DLCQ to get the retarded Schrödinger bulk-
to-boundary propagator. In [29], it was shown that in the
relativistic case, the other real-time thermal propagators
can be derived from the retarded one using certain identi-
ties. These identities naturally extend to the parent dipole
theory, where we can then apply DLCQ to show that
similar relations between Schrödinger propagators also
hold.

Once we have the real-time Schrödinger bulk-to-
boundary propagators, we can assemble them into real-
time two and three-point correlators. This problem was
solved in the case of thermal N ¼ 4 SYM in [29] by
extending Veltman’s circling rules [31–33] to the gravita-
tional theory on the black hole spacetime, and similar
arguments should apply in the present context as well.

We compute two-point correlators in this way and confirm
that the results satisfy standard Kallen-Lehmann relations.
The retarded three-point was worked out explicitly in [29],
and we borrow the result to immediately write down the
three-point function for the parent dipole theory. A simple
application of DLCQ to the result in turn gives the retarded
Schrödinger three-point correlator. In addition, we apply
the circling rules to construct the time-ordered Schrödinger
three-point function.
Before proceeding with the calculations, we pause for a

moment to briefly discuss the dimensionality of the theo-
ries we consider. We keep the number of spatial dimen-
sions (denoted d) arbitrary as much as possible. There is
certainly no obstacle to doing so in our discussion
of DLCQ applied directly to CFT correlators at zero tem-
perature. Furthermore, we may still consider the dþ 3
dimensional Schrödinger spacetime as a ‘‘bottom-up’’
holographic model even though this spacetime can only
be uplifted to a solution of IIB supergravity in the case
d ¼ 2. Leaving the dimension arbitrary here also facili-
tates comparison with our field theory results. We could
adopt a similar philosophy toward the Schrödinger black
hole spacetime, however it is considerably more difficult to
solve the wave equation for values of d not equal to 2, so
we restrict ourselves to d ¼ 2 in this case.
We will consider various types of correlators and bulk-

to-boundary propagators throughout the paper, and we
distinguish between these with different fonts of the letter
g, as we will now clarify. Relativistic CFT correlators are
denoted by g, while nonrelativistic Schrödinger correlators
are denoted by G. The symbol g specifies bulk-to-
boundary propagators in the gravity dual of the parent
theory. We also define bulk-to-boundary propagators for
the gravity dual of the Schrödinger theory, and these we
denote by G. In addition, we use tildes to denote momen-
tum space functions, the superscript (3) to denote causal
three-point correlators, and additional decorations to dis-
tinguish between the different types of real-time functions.
In particular, the subscripts F, R, and A denote time-
ordered, retarded, and advanced functions, respectively.
Reverse-time-ordered functions are distinguished from
time-ordered functions by an additional bar (e.g. �GF)
which should not be confused with complex conjugation,
for which we use the symbol �. Wightman two-point
functions have superscripts �, while Wightman three-
point functions are specified by a subscript which shows

the order of operator insertions. For example, ~G123 is a
Schrödinger Wightman three-point function in momentum
space proportional to hO1O2O3i, where theOi are arbitrary
scalar operators in the Schrödinger theory.
The paper is organized as follows. In Sec. II, we com-

pute all types of scalar real-time Schrödinger two-point
correlators at zero temperature in both position and mo-
mentum space by applying the Fourier-transform trick to
relativistic CFT correlators. We also verify that the results
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satisfy the Kallen-Lehmann relations. In Sec. III, we per-
form similar computations for real-time zero temperature
three-point correlators. We confirm that standard relations
among the three-point functions hold, and we also express
the results in a way that is very suggestive of an AdS/CFT
calculation, allowing us to identify Schrödinger ‘‘bulk-to-
boundary propagators’’. In Sec. IV, we construct real-time
bulk-to-boundary propagators directly in the zero tempera-
ture gravity dual and show that the results are consistent
with the answers obtained using the Fourier-transform trick
in Sec. II and III. Finally in Sec. V, we apply the intuition
developed in the zero temperature case to construct ther-
mal real-time bulk-to-boundary propagators for scalar
fields. These are then employed to compute two and
three-point scalar correlators for the Schrödinger theory
at finite-temperature. The first four appendixes each con-
tain details about the application of the Fourier-transform
trick to particular zero temperature three-point correlators
considered in Sec. III. In Appendix E, we construct an
explicit example of a massive scalar in the effective 5d
gravity theory which arises when a fluctuation in a particu-
lar off-diagonal metric component has nontrivial charges
on the 5d internal space.

II. ZERO TEMPERATURE TWO-POINT
FUNCTIONS FROM CFT CORRELATORS

In this section, we will obtain Schrödinger-invariant
nonrelativistic zero temperature two-point functions in
position space by starting with real-time relativistic con-
formal two-point functions in light cone coordinates and
Fourier-transforming with respect to one of these coordi-
nates. We also obtain momentum space two-point func-
tions by translating the Fourier-transform trick to
momentum space, where it becomes a simple redefinition
of momenta. We will pay particular attention to how the
different types of relativistic real-time functions (e.g. time-
ordered, retarded, etc.) map to the different types of non-
relativistic functions. We will see that the type of real-time
correlator is preserved under the special Fourier-transform.
We also verify that standard Kallen-Lehmann relations
between the various real-time functions are satisfied by
the nonrelativistic correlators we obtain.

A. Time-ordered and reverse-time-ordered two-point
functions in position space

Consider first the time-ordered relativistic conformal
function:

gFðx�; ~xÞ ¼ �i

4�2

1

ðxþx� þ x2 þ i�Þ� : (2.1)

Here, x� ¼ y� t, where t is the relativistic time coordi-
nate, and y is one of the spatial coordinates. We use the
mostly plus signature for Minkowski space. The coordinate
vector ~x represents the remaining d spatial coordinates
which coincide with the spatial coordinates of the

nonrelativistic theory: ~x ¼ ðx1; x2; . . . ; xdÞ. Following
[21,23], we can obtain a nonrelativistic two-point function
GF by performing a Fourier-transform with respect to the
x� direction:

GFðxþ; ~xÞ ¼ �i

4�2

Z
dx�

1

ðxþx� þ x2 þ i�Þ� e�iMx� :

(2.2)

This integral can be done by introducing a Schwinger
parameter:

GF ¼ ð�iÞ�þ1

4�2�ð�Þ
Z 1

0
dss��1

Z
dx�e�½��iðxþx�þx2Þ�se�iMx� :

(2.3)

The integral on x� yields a �-function:

GF ¼ ð�iÞ�þ1

2��ð�Þ
Z 1

0
dss��1e�½��ix2�s�ðM� xþsÞ: (2.4)

The �-function will evaluate to zero unless Mxþ > 0.
Therefore, we find

GFðxþ; ~xÞ ¼ ð�iÞ�þ1

2��ð�Þ jMj��1�ðMxþÞ e
iMðx2þi�Þ=xþ

jxþj� : (2.5)

This has the form of a nonrelativistic time-ordered two-
point function where the nonrelativistic time coordinate is
xþ=2. Hoang and Leigh [24] found the same result em-
ploying a very different approach [27,28]. We have re-
tained the i� in the final expression because it removes a
potential singularity at xþ ¼ 0. It is clear from (2.2) that
this singularity should not be present.
If we instead start with the reverse-time-ordered relativ-

istic two-point function:

�g Fðx�; ~xÞ ¼ �g�F ¼ �i

4�2

1

ðxþx� þ x2 � i�Þ� ; (2.6)

the same calculation now gives

�GFðxþ; ~xÞ ¼ i��1

2��ð�Þ jMj��1�ð�MxþÞ e
iMðx2�i�Þ=xþ

jxþj� :

(2.7)

This has the form of a nonrelativistic reverse-time-ordered
function.

B. Time-ordered and reverse-time-ordered two-point
functions in momentum space

To make it clear how the Fourier-transform trick trans-
lates to momentum space, we first consider a simple
example. The Fourier-transform of the conformal time-
ordered two-point function with � ¼ 1 and d ¼ 2 is
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~gFð!;py; ~pÞ ¼ �i

4�2

Z
dtdyd2xei!t�ipyy�i ~p� ~x

� 1

�t2 þ y2 þ x2 þ i�

¼ 1

!2 � p2
y � p2 þ i�

; (2.8)

where ~p ¼ ðp1; p2Þ and p ¼ j ~pj. Introducing the light
cone coordinates x�, we can write this as

~gF ¼ �i

8�2

Z
dxþdx�d2xei½ð!�pyÞ=2�xþ�i½ð!þpyÞ=2�x��i ~p� ~x

� 1

xþx� þ x2 þ i�

¼ 1

!2 � p2
y � p2 þ i�

: (2.9)

We now define the nonrelativistic energy� and massM in
terms of the relativistic energy ! and momentum compo-
nent py:

� � 1

2
ð!� pyÞ; M � 1

2
ð!þ pyÞ: (2.10)

Applying the inverse of this map,

! ¼ Mþ�; py ¼ M��; (2.11)

we obtain

~GFð�; ~pÞ ¼ 1

4M�� p2 þ i�

¼ 1

2M

�ðMÞ
2�� p2

2M þ i�
þ 1

2M

�ð�MÞ
2�� p2

2M � i�

¼ 1

2M

1

2�� p2

2M þ i�M
: (2.12)

This is the nonrelativistic time-ordered propagator in mo-
mentum space with nonrelativistic energy

Enon-rel: ¼ 2�: (2.13)

It is easy to check that (2.12) is the Fourier-transform of
(2.5) with � ¼ 1 and d ¼ 23:

~GFð�; ~pÞ ¼ 1

2

Z
dxþd2xei�xþ�i ~p� ~xGFðxþ; ~xÞ: (2.14)

Obviously the same approach can be applied to any
other momentum space function since, from the point of
view of the Fourier-transform in (2.8) and (2.9), we are
simply redefining momentum space variables. Starting

from the relativistic time-ordered two-point function with
arbitrary � and d,

~gFð!;py; ~pÞ ¼ �i

4�2

Z
dtdyd2xei!t�ipyy�i ~p� ~x

� 1

ð�t2 þ y2 þ x2 þ i�Þ�

¼ ð2iÞd�2��ðd=2Þ�1�ðd2 þ 1� �Þ
�ð�Þ

� ð!2 � p2
y � p2 þ i�Þ��ðd=2Þ�1; (2.15)

the map (2.11) gives the nonrelativistic time-ordered
function4:

~GFð�; ~pÞ ¼ ð2iÞd�2��ðd=2Þ�1�ðd2 þ 1� �Þ
�ð�Þ

� ð4M�� p2 þ i�Þ��ðd=2Þ�1

¼ ei�½ððd=2Þ��Þ�ðMÞ��ð�MÞ��ðd=2Þ�1�ðd2 þ 1� �Þ
2��ðd=2Þþ1�ð�Þ

� jMj��ðd=2Þ�1

�
2�� p2

2M
þ i�M

�
��ðd=2Þ�1

:

(2.16)

The reverse-time-ordered two-point function is just minus

the complex conjugate of ~GF:

~�GFð�; ~pÞ¼� ~G�
F

¼�e�i�½ððd=2Þ��Þ�ðMÞ��ð�MÞ��ðd=2Þ�1�ðd2þ1��Þ
2��ðd=2Þþ1�ð�Þ

�jMj��ðd=2Þ�1

�
2�� p2

2M
� i�M

�
��ðd=2Þ�1

:

(2.17)

C. Wightman two-point functions in position space

Next consider the following relativistic Wightman
function:

gþðx�; ~xÞ ¼ �i

4�2

1

ðxþx� þ x2 þ i�ðxþ � x�ÞÞ� : (2.18)

We can facilitate taking the Fourier-transform by rewriting
this as

gþ ¼ �i

4�2

1

ððxþ � i�Þx� þ x2 þ i�ðxþ � i�ÞÞ� : (2.19)

Before taking the Fourier-transform, it is useful to first
factor out a factor of xþ � i� from the denominator

3Our conventions for both relativistic and nonrelativistic
Fourier transforms are established in this subsection. In particu-
lar, note that we define our nonrelativistic Fourier-transform with
an additional overall factor of 1

2 because the nonrelativistic time
coordinate is xþ=2.

4The second line of (2.16) can be obtained with the help of
the identity ðabÞ� ¼ a�b�e2�i��ða;bÞ, �ða; bÞ � �ð�ImðaÞÞ�
�ð�ImðbÞÞ�ðImðabÞÞ � �ðImðaÞÞ�ðImðbÞÞ�ð�ImðabÞÞ.
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Gþðxþ; ~xÞ ¼ �i

4�2
ðxþ � i�Þ��

�
Z

dx�
1

ðx� þ x2

xþ�i�
þ i�Þ� e�iMx� : (2.20)

One can then use the positivity of � to introduce a
Schwinger parameter as we did in the case of time-ordered
functions in the previous subsection. The x� integral then
gives a �-function:

Gþ ¼ ð�iÞ�þ1ðxþ � i�Þ��

2��ð�Þ
�

Z 1

0
dss��1e�½��ix2=ðxþ�i�Þ�s�ðM� sÞ: (2.21)

Since the argument of the �-function does not contain xþ, a
step function involving xþ does not arise in this case. The
result is then

Gþðxþ; ~xÞ ¼ ð�iÞ�þ1

2��ð�ÞM
��1�ðMÞ e

iMx2=ðxþ�i�Þ

ðxþ � i�Þ� : (2.22)

This agrees with the result found in [24] using the methods
of [27,28]. The role of the i� in the exponent is to ensure that
Gþ vanishes at xþ ¼ 0, while the i� in the denominator
controls the location of the branch cut for noninteger �5:

ðxþ � i�Þ�� ¼ �ðxþÞjxþj�� þ �ð�xþÞei��jxþj��:

(2.23)

If we instead consider starting with the other relativistic
Wightman function,

g�ðx�; ~xÞ ¼ �i

4�2

1

ðxþx� þ x2 � i�ðxþ � x�ÞÞ� ; (2.24)

the same steps lead to an s integration as above, but with
�ðMþ sÞ instead of �ðM� sÞ appearing in the integrand,
yielding

G�ðxþ; ~xÞ¼ i��1

2��ð�ÞjMj��1�ð�MÞe
iMx2=ðxþþi�Þ

ðxþþ i�Þ� : (2.25)

Using (2.5), (2.22), and (2.25) it is easy to check that the
relations

GFðxþ; ~xÞ ¼ �ðxþÞGþðxþ; ~xÞ þ �ð�xþÞG�ðxþ; ~xÞ;
�GFðxþ; ~xÞ ¼ �ð�xþÞGþðxþ; ~xÞ þ �ðxþÞG�ðxþ; ~xÞ; (2.26)

are satisfied.6

D. Wightman two-point functions in momentum space

Now consider the relativistic Wightman functions with
� ¼ 1 and d ¼ 2 in momentum space:

~g�ð!;py; ~pÞ ¼ �2�i�ð�!Þ�ð!2 � p2
y � p2Þ: (2.27)

Under (2.11), these transform to

~G�ð�; ~pÞ ¼ �2�i�ð�ð�þMÞÞ�ð4M�� p2Þ: (2.28)

For M> 0 (M< 0), the �-function has support at positive
(negative) values of �, so that

~Gþð�; ~pÞ ¼ �2�i�ðMÞ�ð4M�� p2Þ; (2.29)

which is the Fourier-transform of (2.22) for � ¼ 1, d ¼ 2,
and

~G�ð�; ~pÞ ¼ �2�i�ð�MÞ�ð4M�� p2Þ: (2.30)

To obtain the nonrelativistic Wightman functions for
general � and d, we start with the Fourier-transform
of (2.18):

~gþð!;py; ~pÞ ¼ �i
2dþ1�2��ðd=2Þ

�ð�Þ�ð�� d
2Þ
�ð!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

q
Þ

� ð!2 � p2
y � p2Þ��ðd=2Þ�1: (2.31)

The map (2.11) then gives

~Gþð�; ~pÞ ¼ �i
2dþ1�2��ðd=2Þ

�ð�Þ�ð�� d
2Þ
�ðMÞ�ð4M�� p2Þ

� ð4M�� p2Þ��ðd=2Þ�1: (2.32)

We have used that

�ð!�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

q
Þ ¼ �ð!þ pyÞ�ð!2 � p2

y � p2Þ (2.33)

to rewrite the argument of the step function before apply-
ing the map. The second relativistic Wightman function
has the form

~g�ð!;py; ~pÞ ¼ �i
2dþ1�2��ðd=2Þ

�ð�Þ�ð��� d
2Þ
�ð�!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

q
Þ

� ð!2 � p2
y � p2Þ��ðd=2Þ�1: (2.34)

Now observing that

�ð�!�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
y þ p2

q
Þ ¼ �ð!2 � p2

y � p2Þ�ð�!� pyÞ;
(2.35)

we see that the map (2.11) leads to

~G�ð�; ~pÞ ¼ �i
2dþ1�2��ðd=2Þ

�ð�Þ�ð�� d
2Þ
�ð�MÞ�ð4M�� p2Þ

� ð4M�� p2Þ��ðd=2Þ�1: (2.36)

5Throughout this paper, we adopt the convention that ð�1Þ� ¼
ei�� if no i� prescription is given explicitly.

6When xþ � 0, the i� in the exponents can be discarded
relative to xþ. When xþ ¼ 0, GF, G

þ, and G� each vanish
identically, and (2.26) is satisfied trivially.
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So far, we have seen that the relativistic (reverse-)time-
ordered two-point function transforms into a nonrelativis-
tic (reverse-)time-ordered two-point function, and the
relativistic Wightman functions map to nonrelativistic
Wightman functions. It remains for us to check what
happens to relativistic retarded and advanced functions
under this mapping.

E. Retarded and advanced two-point functions
in position space

The relativistic conformal retarded two-point correlator
can be written in terms of Wightman functions:

gRðt; y; ~xÞ ¼ �ðtÞ½gþðt; y; ~xÞ � g�ðt; y; ~xÞ�: (2.37)

In terms of light cone coordinates, we therefore have

gRðx�; ~xÞ ¼ �i

4�2
�ðxþ � x�Þ

�
�

1

ððxþ � i�Þx� þ x2 þ i�ðxþ � i�ÞÞÞ�

� 1

ððxþ þ i�Þx� þ x2 � i�ðxþ þ i�ÞÞ�
�
:

(2.38)

Factoring out the (xþ � i�) in the denominators, assuming
xþ � 0, and Fourier-transforming leads to

GRðxþ; ~xÞ¼ �i

4�2
ðxþ� i�Þ��

Z xþ

�1
dx�

e�iMx�

ðx�þx2=xþþ i�Þ�

þ i

4�2
ðxþþ i�Þ�

Z xþ

�1
dx�

e�iMx�

ðx�þx2=xþ� i�Þ� :

(2.39)

Notice that we have chosen to write x2=xþ instead of
x2=ðxþ � i�Þ in the denominators. Since we are assuming
xþ � 0, we may rewrite x2=ðxþ � i�Þ ¼ x2=xþ �
i�x2=ðxþÞ2, and the term i�x2=ðxþÞ2 can be eliminated
by rescaling the � in the denominators of the integrands.
The i� in the factors ðxþ � i�Þ�� appearing outside the
integrals cannot be neglected even though xþ � 0 because
the i� in these factors control branch cuts, as we discussed
in the previous subsection on Wightman functions.

Changing the integration variable to u � x� þ x2=xþ,
we have

GR ¼ �i

4�2
ðxþ � i�Þ��eiMx2=xþ

Z x2=xþþxþ

�1
du

e�iMu

ðuþ i�Þ�

þ i

4�2
ðxþ þ i�Þ��

Z x2=xþþxþ

�1
du

e�iMu

ðu� i�Þ� :

(2.40)

The integrals can be evaluated using

lim
�!0

Z �

�1
du

e�iMu

ðu� i�Þ� ¼ � 2�ð�iÞ�
�ð�Þ M��1�ð�Þ�ð�MÞ;

(2.41)

and we find

GRðxþ; ~xÞ ¼ ð�iÞ�þ1

2��ð�Þ jMj��1ei�ð��1Þ�ð�MÞ�ðxþÞ

� jxþj��eiMx2=xþ ; xþ � 0: (2.42)

This has the form of a nonrelativistic retarded two-point
function. This expression is valid for xþ � 0; when
xþ ¼ 0, it is easy to check that GR ¼ 0. (This can be
done by setting xþ ¼ 0 in (2.38) and Fourier-
transforming.) An analogous calculation reveals that if
we start with the relativistic advanced function, we obtain
the nonrelativistic advanced function:

GAðxþ; ~xÞ ¼ ð�iÞ�þ1

2��ð�Þ jMj��1ei�ð��1Þ�ðMÞ�ð�xþÞ

� jxþj��eiMx2=xþ ; xþ � 0: (2.43)

A shortcut to obtaining this result is to write down the
analog of (2.39) for GA and to notice that GA can be
obtained from GR by sending xþ ! �xþ and M ! �M
in the final answer. It is easy to check using (2.22) and
(2.25) that standard relations between retarded/advanced
and Wightman functions:

GR ¼ �ðxþÞ½Gþ �G��; GA ¼ �ð�xþÞ½G� �Gþ�;
(2.44)

hold for the nonrelativistic two-point functions we have
obtained.
We conclude that the type of real-time two-point func-

tions is preserved under the mapping which takes us from
relativistic to nonrelativistic functions.

F. Retarded and advanced two-point functions in
momentum space

The Fourier-transform of the relativistic retarded two-
point function (2.38) with � ¼ 1 and d ¼ 2 is given by

~g Rð!;py; ~pÞ ¼ �ð!Þ~gF þ �ð�!Þ~g�F
¼ 1

!2 � p2
y � p2 þ i�!

: (2.45)

Applying (2.11), we obtain

~GR ¼ �ð�þMÞ ~GF þ �ð���MÞ ~G�
F

¼ �ð�þMÞ
4M�� p2 þ i�

þ �ð���MÞ
4M�� p2 � i�

¼ 1

4M�� p2 þ i�ð�þMÞ : (2.46)
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This function has a pole at

�p ¼ p2

4M
� i�

�
1

4
þ p2

16M2

�
: (2.47)

Since this pole lies in the lower half �-plane regardless of
the value of M or p2, we see that this function has the
analytic properties expected of a retarded Green’s function.
We may therefore redefine � to absorb the positive coeffi-
cient which multiplies it in �p:

~GRð�; ~pÞ ¼ 1

2Mð2�� p2

2M þ i�Þ
: (2.48)

The advanced function is the conjugate of this:

~GA ¼ ~G�
R: (2.49)

Comparing these results with (2.12), we see that ~GF, ~GR

and ~GA obey the following relation:

~GFð�; ~pÞ ¼ �ðMÞ ~GRð�; ~pÞ þ �ð�MÞ ~GAð�; ~pÞ: (2.50)

On the other hand, we can obtain what appears to be a
slightly different relation directly from (2.46):

~GFð�; ~pÞ ¼ �ð�þMÞ ~GRð�; ~pÞ
þ �ð���MÞ ~GAð�; ~pÞ: (2.51)

At first glance, it may seem surprising that these two
relations hold simultaneously. However, their compatibil-
ity has a simple origin in the form of the imaginary part of
the retarded two-point correlator. Using (2.46), we can

write this as Im ~GR 	 sgnð�þMÞ�ð4M�� p2Þ. Note
that only the imaginary part is affected by the presence
of the step functions in (2.50) and (2.51). Since the
�-function requires that � and M have the same sign,

this is equivalent to Im ~GR 	 sgnðMÞ�ð4M�� p2Þ, which
agrees with (2.48). Also notice that we can write the
relation in a third way:

~GFð�; ~pÞ ¼ �ð�Þ ~GRð�; ~pÞ þ �ð��Þ ~GAð�; ~pÞ: (2.52)

This form of the relation makes it apparent that there is no
chemical potential at zero temperature. We will now see
that the relations (2.50), (2.51), and (2.52) hold for general
values of � and d.

The Fourier-transform of (2.38) for general � and d is

~g Rð!;py; ~pÞ ¼ �ð!Þ~gF þ �ð�!Þ~g�F; (2.53)

where ~gF was given in (2.15). This yields

~GRð�; ~pÞ ¼ �ð�þMÞ ~GF þ �ð���MÞ ~G�
F

¼ ð2isgnð�þMÞÞd�2��ðd=2Þ�1�ðd2 þ 1��Þ
�ð�Þ

� ð4M�� p2 þ i�ð�þMÞÞ��ðd=2Þ�1

¼ ei�½ððd=2Þ��Þ�ðMÞ��ð�MÞ��ðd=2Þ�1�ðd2 þ 1� �Þ
2��ðd=2Þþ1�ð�Þ

� jMj��ðd=2Þ�1

�
2�� p2

2M
þ i�

�
��ðd=2Þ�1

:

(2.54)

Similar reasoning leads to the following advanced two-
point function:

~GAð�; ~pÞ ¼ �ð�þMÞ ~G�
F þ �ð���MÞ ~GF

¼ ð�2isgnð�þMÞÞd�2��ðd=2Þ�1�ðd2 þ 1��Þ
�ð�Þ

� ð4M�� p2 � i�ð�þMÞÞ��ðd=2Þ�1

¼ e�i�½ððd=2Þ��Þ�ðMÞ��ð�MÞ��ðd=2Þ�1�ðd2 þ 1� �Þ
2��ðd=2Þþ1�ð�Þ

� jMj��ðd=2Þ�1

�
2�� p2

2M
� i�

�
��ðd=2Þ�1

:

(2.55)

It is not difficult to check that the relations (2.50), (2.51),
and (2.52) hold for general � and d. Furthermore, the
relation (2.50) provides a useful check of the consistency
of our results since it must also hold in position space, and
one can readily verify that (2.5), (2.42), and (2.43) satisfy
(2.50). We will see later on in Sec. V that the second
relation, (2.51), generalizes to a relation that is also valid
at finite-temperature.

III. ZERO TEMPERATURE THREE-POINT
FUNCTIONS FROM CFT CORRELATORS

In this section, we apply the Fourier-transform trick to
relativistic three-point functions to obtain Schrödinger-
invariant nonrelativistic three-point functions in position
space. We do this for time-ordered and Wightman func-
tions and show that the usual identity relating these types
of correlators is satisfied. In position space, retarded and
advanced functions can be expressed in terms of the
Wightman functions [34].
We compute nonrelativistic time-ordered and retarded/

advanced three-point functions in momentum space as
well. This can be done either by computing the Fourier
transforms of the nonrelativistic position space three-point
functions, or by starting with relativistic conformal three-
point functions in momentum space and performing an
appropriate redefinition of momenta as we did for two-
point functions in Sec. II. We will apply the former
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approach to obtain time-ordered functions and the latter
approach for retarded/advanced functions. Wightman
three-point functions are quite unwieldy in momentum
space, so we do not include them here.

The final answers we obtain for the momentum space
three-point functions are of the form one would expect
from an AdS/CFT calculation. In particular, we express the
results as integrals of products of three functions which are
naturally interpreted as bulk-to-boundary propagators for
scalar fields in nonrelativistic AdS/CFT [9,10]. In Sec. IV,
we reproduce these bulk-to-boundary propagators by ap-
plying DLCQ to propagators in the gravity dual of the
dipole theory and show that they give rise to two-point
functions which are consistent with the nonrelativistic
correlators we computed in Sec. II.

A. Time-ordered three-point functions in position space

The relativistic time-ordered three-point function in
position space has the form

gð3ÞF ¼ �h0jTO1ðx1ÞO2ðx2ÞO3ðx3Þj0i
¼ � 1

½xþ23x�23 þ x223 þ i���1
� 1

½xþ13x�13 þ x213 þ i���2

� 1

½xþ12x�12 þ x212 þ i���3
: (3.1)

We have introduced the notation xij ¼ xi � xj. The con-

stants �i are related to the conformal dimensions �i of the
scalar fields:

�1 � 1

2
ð�2 þ�3 ��1Þ; �2 � 1

2
ð�1 þ �3 � �2Þ;

�3 � 1

2
ð�1 þ �2 ��3Þ: (3.2)

To obtain the nonrelativistic correlator Gð3Þ
F , we must

Fourier-transform with respect to the x�i . The integrals
can be computed with the help of Schwinger parameters,
and the details can be found in Appendix A. The result is

Gð3Þ
F ¼ �ð2�Þ3ð�iÞ�1þ�2þ�3�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ
� jxþ23j��1 jxþ13j��2eiM1ðx213þi�Þ=xþ13eiM2ðx223þi�Þ=xþ23Iðv12Þ;

(3.3)

where

v12 � x212 þ i�

xþ12
þ x223 þ i�

xþ23
� x213 þ i�

xþ13
; (3.4)

and

I ¼ �ðxþ12Þ�ðxþ13Þ�ðxþ23ÞIþþþ þ �ðxþ12Þ�ðxþ13Þ�ðxþ32ÞIþþ�
þ �ðxþ12Þ�ðxþ31Þ�ðxþ32ÞIþ�� þ �ðxþ21Þ�ðxþ13Þ�ðxþ23ÞI�þþ
þ �ðxþ21Þ�ðxþ31Þ�ðxþ23ÞI��þ þ �ðxþ21Þ�ðxþ31Þ�ðxþ32ÞI���:

(3.5)

The functions Iijk appearing in this expression are given by

Iþþþ ¼ jxþ12j��3�ðM1Þ
�
�ðM2ÞM�2þ�3�1

1 M�1�1
2 Bð�3; �2Þ�1ð�3; 1� �1; �2 þ �3;�M1

M2

; iv12M1Þ

þ �ð�M2Þ�ðM1 � jM2jÞðM1 � jM2jÞ�1þ�2�1jM2j�3�1eiv12jM2j

� Bð�1; �2Þ�1ð�1; 1� �3; �1 þ �2;
jM2j �M1

jM2j ; iv12ðM1 � jM2jÞÞ
�
; (3.6)

Iþþ� ¼ jxþ12j��3

Z 1

0
dzz�3�1jM2 þ zj�1�1jM1 � zj�2�1eiv12z�ðM1 � zÞ�ð�M2 � zÞ

¼ jxþ12j��3�ðM1Þ�ð�M2Þ
�
�ðM1 � jM2jÞM�2�1

1 jM2j�1þ�3�1Bð�3; �1Þ ��1ð�3; 1� �2; �1 þ �3;
jM2j
M1

; iv12jM2jÞ

þ �ðjM2j �M1ÞM�2þ�3�1
1 jM2j�1�1 � Bð�3; �2Þ�1ð�3; 1� �1; �2 þ �3;

M1

jM2j ; iv12M1Þ
�
; (3.7)

Iþ�� ¼ jxþ12j��3

Z 1

0
dzz�3�1jM2 � zj�1�1jM1 þ zj�2�1e�iv12z�ðM1 þ zÞ�ðM2 � zÞ

¼ jxþ12j��3�ð�M2Þ
�
�ðM1Þ�ðjM2j �M1Þeiv12M1M�3�1

1 ðjM2j �M1Þ�1þ�2�1

� Bð�2; �1Þ�1ð�2; 1� �3; �1 þ �2;
M1 � jM2j

M1

; iv12ðjM2j �M1ÞÞ

þ �ð�M1ÞjM1j�2�1jM2j�1þ�3�1Bð�3; �1Þ�1ð�3; 1� �2; �1 þ �3;�M2

M1

; iv12jM2jÞ
�
: (3.8)
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The function Bðx; yÞ is the Euler beta function, while�1 is
a hypergeometric function of two variables. These func-
tions are defined in (A13) and (A14) respectively. The
remaining three Iijk appearing in (3.5) can be obtained
from the ones quoted above using the relations

I�þþð�1; �2; �3;M1;M2; v12Þ
¼ Iþþþð�2; �1; �3;M2;M1;�v12Þ;

I��þð�1; �2; �3;M1;M2; v12Þ
¼ Iþþ�ð�2; �1; �3;M2;M1;�v12Þ;

I���ð�1; �2; �3;M1;M2; v12Þ
¼ Iþ��ð�2; �1; �3;M2;M1;�v12Þ:

(3.9)

We will see in Sec. III C that the Iijk are proportional to the
Wightman functions Gijk in precisely the way one would
expect from the standard identity

Gð3Þ
F ¼ �ðxþ12Þ�ðxþ13Þ�ðxþ23ÞG123 þ �ðxþ12Þ�ðxþ13Þ�ðxþ32ÞG132

þ �ðxþ12Þ�ðxþ31Þ�ðxþ32ÞG312 þ �ðxþ21Þ�ðxþ13Þ�ðxþ23ÞG213

þ �ðxþ21Þ�ðxþ31Þ�ðxþ23ÞG231 þ �ðxþ21Þ�ðxþ31Þ�ðxþ32ÞG321:

(3.10)

B. Time-ordered three-point functions in
momentum space

We next consider time-ordered three-point functions in
momentum space. We could compute these by starting
with conformally-invariant time-ordered three-point func-
tions in momentum space and performing a redefinition of
momenta, but we choose instead to Fourier-transform the
CFT correlator in position space, Eq. (3.1). As in previous
sections, the Fourier-transform is computed by introducing
Schwinger parameters; the details can be found in
Appendix B. The result is

~Gð3Þ
F ¼ 25d=2þ8�2

P
i
�i�2dþ4

�ð�1Þ�ð�2Þ�ð�3Þ�ðPi �i � d
2 � 1Þ

� �

�X
i

�i

�
�

�X
i

Mi

�
�d

�X
i

~pi

�

�
Z 1

0
dzzðd=2Þ

Y
j

ð�4Mj�j þ p2
j � i�Þ�j=2

� K�j

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4Mj�j þ p2

j � i�
q �

; (3.11)

where we have defined

�j �
X
i�j

�i � d

2
� 1 ¼ �j � d

2
� 1: (3.12)

Our result for ~Gð3Þ
F has precisely the structure one would

expect to see arise out of an AdS/CFT calculation. This
observation suggests that we can identify a nonrelativistic
time-ordered ‘‘bulk-to-boundary propagator’’:

~GFð�; ~p;M;�Þ 	 zðd=2Þþ1ð�4M�þ p2 � i�Þ�=2

� K�

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M�þ p2 � i�

q �
: (3.13)

z can be interpreted as a radial coordinate in (a modified
version of) AdS. We have put in by hand the factor of

zðd=2Þþ1 appearing in ~GF; this will be justified later by
invoking the proposed AdS/CFT dual [9,10], which we
will review and make use of in Sec. IV. Note that after

separating out a factor of zðd=2Þþ1 for each propagator, there
remains the factor z�d�3, which is precisely the measure
factor of the dual gravity spacetime.
We can work out the position space analog of (3.11) by

computing its Fourier-transform, with the result

Gð3Þ
F ðxþi ; ~xi;MiÞ ¼ � 24�ð1=2ÞP

i
�i�6�ðd=2Þ�ð�1Þ�ð�2Þ�ð�3Þ

�ð�1Þ�ð�2Þ�ð�3Þ�ð
P

i �i � d
2 � 1Þ

� �

�X
i

Mi

�Z 1

0
dz

Z
dxþddxz�d�3

�GFðx1 � x; z;M1;�1Þ
�GFðx2 � x; z;M2;�2Þ
�GFðx3 � x; z;M3;�3Þ; (3.14)

where

GFðx; z;M;�Þ ¼ ð�iÞ�þ1

2��ð�Þ jMj��1z��ðMxþÞ

� jxþj��eiMðx2þz2Þ=xþ (3.15)

can be interpreted as a Schrödinger Feynman bulk-to-
boundary propagator in position space in the sense that it
is the Fourier-transform of (3.13). A similar expression was
obtained by Volovich and Wen [23].

C. Wightman three-point functions in position space

A conformally-invariant Wightman function in position
space can be expressed in the form

g123ðx1; x2; x3Þ � �h0jO1ðx1ÞO2ðx2ÞO3ðx3Þj0i

¼ � 1

½xþ23x�23 þ x223 þ i�ðxþ23 � x�23Þ��1

� 1

½xþ13x�13 þ x213 þ i�ðxþ13 � x�13Þ��2

� 1

½xþ12x�12 þ x212 þ i�ðxþ12 � x�12Þ��3
:

(3.16)
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The i� prescription is such that the time coordinate ti of operator Oi is greater by �i� than the time coordinate of any
operator to the right of Oi [35,36]. We compute the associated nonrelativistic three-point correlator by Fourier-
transforming with respect to the x�i . This is done in Appendix C, and one finds

G123¼�ð2�Þ3ð�iÞ�1þ�2þ�3�ðPiMiÞ
�ð�1Þ�ð�2Þ�ð�3Þ ðxþ23� i�Þ��1ðxþ13� i�Þ��2ðxþ12� i�Þ��3eiM1x

2
13ððxþ13Þ=ððxþ13Þ2þ�2ÞÞ

�eiM2x
2
23
ððxþ

23
Þ=ððxþ

23
Þ2þ�2ÞÞ�ðM1Þ

�
�ðM2ÞM�2þ�3�1

1 M�1�1
2 Bð�3;�2Þ

��1ð�3;1��1;�2þ�3;�M1

M2

;iv12M1Þþ�ð�M2Þ�ðM1�jM2jÞeiv12jM2jjM2j�3�1

�ðM1�jM2jÞ�1þ�2�1Bð�1;�2Þ�1ð�1;1��3;�1þ�2;
jM2j�M1

jM2j ; iv12ðM1�jM2jÞÞ
�
; (3.17)

with

v12 � x212
xþ12 � i�

þ x223
xþ23 � i�

� x213
xþ13 � i�

: (3.18)

The functions B and �1 are defined in Appendix A. This
expression is consistent with (3.10) as can be seen by
noting that when xþ is positive, ðxþ � i�Þ�� ¼ jxþj��.
The other Wightman three-point functions can of course
be obtained by permuting the labels 1,2,3. The relations
given in (3.9) can then simply be understood as particular
examples of these permutations in which the labels 1 and 2
are swapped. These permutations are particularly simple
because the coefficient in front of I in (3.3) is symmetric
with respect to the swapping of 1 and 2. Permutations of
either 1 or 2 with 3 are less trivial because this coefficient

does not exhibit symmetry under these swappings. These
cases can be checked by using an integral expression for I
given in Eq. (A5).

D. Retarded and advanced three-point functions
in momentum space

For nonrelativistic retarded and advanced three-point
functions, we will apply the approach used in Sec. II for
obtaining nonrelativistic momentum space two-point func-
tions directly from relativistic functions in momentum
space. There, we saw that we can simply start with the
relativistic function and rewrite the relativistic momenta in
terms of nonrelativistic momenta. The relativistic retarded
three-point function was computed in [29]7:

~gð3ÞR ð1; 2; 3Þ ¼ 25d=2þ9�2
P

i
�i�2dþ4

�ð�1Þ�ð�2Þ�ð�3Þ�ðPi �i � d
2 � 1Þ�

�X
i

!i

�
�

�X
i

pi;y

�
�d

�X
i

~pi

�Z 1

0
dzzðd=2Þ

� ½�ð!1 � i�Þ2 þ p2
1;y þ p2

1��1=2K�1

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð!1 � i�Þ2 þ p2

1;y þ p2
1

q �

� ½�ð!2 � i�Þ2 þ p2
2;y þ p2

2��2=2K�2

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð!2 � i�Þ2 þ p2

2;y þ p2
2

q �

� ½�ð!3 þ i�Þ2 þ p2
3;y þ p2

3��3=2K�3

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð!3 þ i�Þ2 þ p2

3;y þ p2
3

q �
: (3.19)

The notation here is a straightforward generalization of notation used in Sec. II and III. The !i, pi;y and ~pi are relativistic
energies and momenta. The spacetime is dþ 2 dimensional, where one of the spatial coordinates, y, is singled out. The
third operator is singled out in ~gð3ÞR ð1; 2; 3Þ because, in position space, this correlator corresponds to the case where the
operatorO3 has the largest time. The �i and �i are as defined in (3.2) and (3.12). Applying the map (2.11) to each of the!i,
pi;y pairs gives

7In Ref. [29], the retarded function was computed in 3þ 1 dimensions in the case where all three scalar fields have the same
conformal dimension, but it is easy to generalize this to arbitrary spacetime dimension and to three different conformal dimensions.
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~Gð3Þ
R ð1; 2; 3Þ ¼ 25d=2þ8�2

P
i
�i�2dþ4

�ð�1Þ�ð�2Þ�ð�3Þ�ð
P

i �i � d
2 � 1Þ�ð

X
i

�iÞ�
�X

i

Mi

�
�d

�X
i

~pi

�Z 1

0
dzzðd=2Þ

� ½�4M1�1 þ p2
1 þ i�ð�1 þM1Þ��1=2K�1

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M1�1 þ p2

1 þ i�ð�1 þM1Þ
q �

� ½�4M2�2 þ p2
2 þ i�ð�2 þM2Þ��2=2K�2

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M2�2 þ p2

2 þ i�ð�2 þM2Þ
q �

� ½�4M3�3 þ p2
3 � i�ð�3 þM3Þ��3=2K�3

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M3�3 þ p2

3 � i�ð�3 þM3Þ
q �

: (3.20)

We will confirm in the next subsection that, in position
space, Gð3Þ

R ð1; 2; 3Þ is such thatO3 has the largest time. The
advanced nonrelativistic three-point function is simply the
complex conjugate of the retarded function:

~G ð3Þ
A ¼ ð ~Gð3Þ

R Þ�: (3.21)

These results will be used in the next subsection to com-
pute retarded and advanced three-point correlators in po-
sition space.

As in the case of the time-ordered three-point function,
we can extract a bulk-to-boundary propagator:

~GR 	 zðd=2Þþ1½�4M�þ p2 � i�ð�þMÞ��=2

� K�

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M�þ p2 � i�ð�þMÞ

q �
: (3.22)

In inserting the factor zðd=2Þþ1, we have again anticipated
the AdS/CFT result. This is a retarded nonrelativistic
‘‘bulk-to-boundary propagator’’. Notice that the three-

point function ~Gð3Þ
R contains two different types of propa-

gators which are distinguished by the sign in front of the i�.
We have identified the retarded bulk-to-boundary propa-
gator by selecting the propagator which is analytic in the
upper-half �-plane. The other type of propagator appear-

ing in ~Gð3Þ
R above is an advanced propagator:

~GA 	 zðd=2Þþ1½�4M�þ p2 þ i�ð�þMÞ��=2

� K�

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M�þ p2 þ i�ð�þMÞ

q �
: (3.23)

The fact that the retarded three-point function can be ex-
pressed as an integral over two advanced propagators and
one retarded propagator was pointed out in the relativistic
case in [29]. Here we see that this same structure carries
over to the nonrelativistic theories we are considering. In
Sec. IV, we will verify directly from nonrelativistic AdS/

CFT that it is appropriate to identify ~GR and ~GA as retarded
and advanced bulk-to-boundary propagators by performing
an analytic continuation from a Euclidean propagator.

Note that the real-time propagators ~GF,
~GR, and

~GA

satisfy the relation

~G F ¼ �ð�þMÞ~GR þ �ð���MÞ~GA: (3.24)

This relation is not surprising when we recall that the
momentum space two-point correlators satisfy a similar
relation (2.51). Eq. (3.24) can be rewritten in a form
analogous to (2.50),

~G F ¼ �ðMÞ~GR þ �ð�MÞ~GA; (3.25)

as can be verified easily by rewriting the propagators as

~GF 	 e�i��ð�MÞ�=2jMj�=2
�
�2�þ p2

2M
� i�M

�
�=2

� K�

0
@z ffiffiffiffiffiffiffiffiffiffiffi

2jMj
p

e�i��ð�MÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�þ p2

2M
� i�M

s 1
A;

(3.26)

~G R ¼ ~G�
A 	 ei��ð�MÞ�=2jMj�=2

�
�2�þ p2

2M
� i�

�
�=2

� K�

0
@z ffiffiffiffiffiffiffiffiffiffiffi

2jMj
p

ei��ð�MÞ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�þ p2

2M
� i�

s 1
A:

(3.27)

E. Retarded and advanced three-point functions
in position space

We will obtain the retarded and advanced three-point
functions in position space by taking the Fourier-transform
of the momentum space correlators computed in the pre-
vious subsection. As we saw, these correlators can be
derived from relativistic three-point functions by redefin-
ing momentum space variables. The relativistic three-point

function ~gð3ÞR ð1; 2; 3Þ which leads to the above expression

for ~Gð3Þ
R ð1; 2; 3Þ is the Fourier-transform of the retarded

three-point function for which the operator O3 has the
largest time. It is natural to expect that the same will be

true for the nonrelativistic three-point function ~Gð3Þ
R ð1;2;3Þ,

and this is indeed the case. For simplicity, we restrict
ourselves to the case M1 > 0, M2 > 0, which in turn im-
plies thatM3 < 0. The details of the calculations are given
in Appendix D. For the retarded correlator, we find

EDWIN BARNES, DIANAVAMAN, AND CHAOLUN WU PHYSICAL REVIEW D 82, 125042 (2010)

125042-12



�ðM1Þ�ðM2ÞGð3Þ
R ð1; 2; 3Þ ¼ � ð2�Þ3i

P
i
�i�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ jxþ13j��2 jxþ23j��1 jxþ12j��3eiM1ðx213þi�Þ=xþ
13

� eiM2ðx223þi�Þ=xþ23�ðM1Þ�ðM2Þ�ðxþ31Þ�ðxþ32Þ
�
�ðxþ12ÞM�2�1

1 M�1þ�3�1
2

� Bð�3; �1Þ�1ð�3; 1� �2; �1 þ �3;�M2

M1

;�iv12M2Þ þ �ðxþ21Þ

�M
�2þ�3�1
1 M�1�1

2 Bð�3; �2Þ�1ð�3; 1� �1; �2 þ �3;�M1

M2

; iv12M1Þ
�
; (3.28)

with

v12 � x212
xþ12

þ x223
xþ23

� x213
xþ13

: (3.29)

The function Bðx; yÞ is the Euler beta function, while �1 is a hypergeometric function. Explicit definitions for these
functions are given in Appendix A. Notice that the above expression for �ðM1Þ�ðM2ÞGð3Þ

R is nonvanishing only when
xþ3 > xþ2 and xþ3 > xþ1 , which is consistent with our expectation that G

ð3Þ
R ð1; 2; 3Þ is a retarded correlator for which xþ3 =2 is

the largest time. The advanced correlator, with xþ3 =2 now being the smallest time, is found to be

�ðM1Þ�ðM2ÞGð3Þ
A ð1; 2; 3Þ ¼ � ð2�Þ3ð�iÞ

P
i
�i�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ jxþ13j��2 jxþ23j��1 jxþ12j��3eiM1ðx213þi�Þ=xþ
13

� eiM2ðx223þi�Þ=xþ
23�ðM1Þ�ðM2Þ�ðxþ13Þ�ðxþ23Þ

�
�ðxþ12ÞM�2þ�3�1

1 M�1�1
2

� Bð�3; �2Þ�1ð�3; 1� �1; �2 þ �3;�M1

M2

; iv12M1Þ þ �ðxþ21Þ

�M�2�1
1 M�1þ�3�1

2 Bð�3; �1Þ�1ð�3; 1� �2; �1 þ �3;�M2

M1

;�iv12M2Þ
�
: (3.30)

In position space, retarded and advanced three-point
functions can be expressed in terms of the Wightman
(non-time-ordered) functions [34]. For instance, the re-
tarded three-point function which corresponds to choosing
xþ3 to be the largest time is given by

Gð3Þ
R ðxþ1 ; xþ2 ; xþ3 Þ
¼ �ðxþ31Þ�ðxþ12ÞðG312 �G132 þG213 �G231Þ

þ �ðxþ32Þ�ðxþ21ÞðG321 �G231 þG123 �G132Þ: (3.31)

We can use this formula to compute the retarded three-
point correlator without making assumptions about the
signs of the Mi. In the case M1 > 0, M2 > 0, it is easy to
check using our formula for the Wightman function (3.17)
that only G123 and G213 are nonvanishing, and that (3.31)
agrees precisely with (3.28).

We can find an alternate expression for the retarded
three-point correlator in position space by taking the
Fourier-transform of the momentum space result (3.20):

Gð3Þ
R ðxþi ; ~xi;MiÞ

¼�24�ð1=2ÞP
i
�i�6�ðd=2Þ�ð�1Þ�ð�2Þ�ð�3Þ

�ð�1Þ�ð�2Þ�ð�3Þ�ð
P

i �i�d
2�1Þ �

�X
i

Mi

�

�
Z 1

0
dz

Z
dxþddxz�d�3GRðx�x1;z;M1;�1Þ

�GRðx�x2;z;M2;�2ÞGRðx3�x;z;M3;�3Þ; (3.32)

where

GRðx; z;M;�Þ ¼ ð�iÞ�þ1

2��ð�Þ jMj��1z��ðxþÞ

� jxþj��eiMðx2þz2Þ=xþ (3.33)

is the Fourier-transform of the Schrödinger retarded bulk-
to-boundary propagator (3.22). This result assumes that
M1 > 0, M2 > 0, M3 < 0.

IV. ZERO TEMPERATURE BULK-TO-BOUNDARY
PROPAGATORS IN MOMENTUM SPACE

We will now confirm that our proposals for the real-time
bulk-to-boundary propagators, (3.13), (3.22), and (3.23),
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are consistent with what are obtained from nonrelativistic
AdS/CFT. Since the results of the previous sections were
derived without making recourse to AdS/CFT, it is reassur-
ing that these results are reproduced when applying holo-
graphic duality prescriptions extended to nonrelativistic
theories [9,10]. In AdS/CFT, we may construct retarded
propagators by first computing Euclidean propagators and
then performing an analytic continuation [29]. To arrive at
a Schrödinger-invariant theory, we must also perform (in
the case of momentum space propagators or correlators) a
change of momentum variables, as we saw in earlier sec-
tions. Once we have the retarded propagator, we may
obtain the remaining real-time propagators from this by
exploiting certain relations of which (3.24) is an example.

The zero temperature Schrödinger metric in Euclidean
space Poincaré-like coordinates has the form [11–13]

ds2E ¼ r2ð1þ �2r2Þd	2 � 2i�2r4d	dy

þ r2ð1� �2r2Þdy2 þ r2dx2 þ dr2

r2
: (4.1)

We are following the notation of Herzog, Rangamani, and
Ross [11]. The radial coordinate r ranges from zero to
infinity, and the spacetime has a boundary at r ¼ 1. The
Euclidean time 	 and the Minkowski time t are related by
	 ¼ �it. We lump together d of the spatial coordinates,
x1; . . . ; xd, into a d-dimensional vector ~xwith ~x � ~x ¼ x2; as
in previous sections, we reserve vector notation for this
d-dimensional subspace. Although the metric (4.1) is only
a solution to (a truncated version of) type IIB supergravity
when d ¼ 2, we will keep d general throughout this section
to facilitate comparison with the results of previous
sections.

It is important to stress that t should not be identified
with physical time in the Schrödinger field theory. The
physical time8 xþ=2 is obtained by switching to light cone
coordinates:

x� ¼ y� t: (4.2)

The time t does admit the interpretation as the time coor-
dinate of a parent theory that lives in one higher dimension
relative to the Schrödinger theory we wish to study. As we
described earlier, the parent theory is a nonlocal dipole
theory [17–19], and the Schrödinger theory is obtained
from this by applying DLCQ to the x� direction. Our
approach will be to compute quantities in the parent theory
and then perform a transformation (the momentum space
counterpart to (4.2)) to obtain quantities in the Schrödinger
theory.

We begin by computing the retarded propagator of a
minimally coupled massive scalar 
 in the parent theory.
This can be obtained by first finding—in Euclidean signa-
ture—the solution 
E to the scalar wave equation which is
well behaved in the interior of the spacetime. After

Fourier-transforming along all directions except r,

FEð!E;py; ~p;rÞ¼
Z
d	dyddxe�i!E	�ipyy�i ~p� ~x
Eð	;y; ~x;rÞ;

(4.3)

the wave equation has the form

F00
E þ dþ 3

r
F0
E � 1

r4
½!2

E þ p2
y þ p2 þ �2ðpy þ i!EÞ2r2

þm2r2�FE ¼ 0: (4.4)

The prime denotes differentiation with respect to r, and m
is the mass of the scalar. The solution to this equation
which is well behaved as r ! 0 is

FEð!E; py; ~p; rÞ ¼ C

rðd=2Þþ1
K�ðk=rÞ; (4.5)

with

k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2

E þ p2
y þ p2

q
; (4.6)

and

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 2Þ2

4
þm2 þ �2ðpy þ i!EÞ2

s
: (4.7)

The constant C can be fixed by normalizing the solution at
some large but finite value of r. If we now analytically
continue !E ! �ið!þ i�Þ, then the resulting function
will be analytic in the upper-half ! plane and will thus
admit the interpretation as a retarded propagator in the
parent theory.
We would like to reinterpret this result in terms of the

Schrödinger theory. We do this by first inverting the coor-
dinate transformation (4.2):

	 ¼ �i

2
ðxþ � x�Þ; y ¼ 1

2
ðxþ þ x�Þ: (4.8)

Applying this coordinate transformation to (4.3) allows us
to identify the frequency � associated with the time coor-
dinate xþ and the momentum M associated with the coor-
dinate x�:

� ¼ 1

2
ð!� pyÞ; M ¼ 1

2
ð!þ pyÞ: (4.9)

The inverse of this map is

! ¼ �þM; py ¼ M��: (4.10)

These mappings are of course identical to (2.10) and (2.11).
The retarded propagator parameters can then be
rewritten as

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M�þ p2 � i�ð�þMÞ

q
; (4.11)

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 2Þ2

4
þm2 þ 4�2M2

s
: (4.12)

8This coordinate was denoted u in [11].
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Setting r ¼ 1=z, we then have

FE ! ~GR

¼ Czðd=2Þþ1K�

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4M�þ p2 � i�ð�þMÞ

q �
;

(4.13)

which is consistent with our earlier finding for the retarded
bulk-to-boundary propagator, Eq. (3.22), if we identify the
conformal dimension � according to

� ¼ d

2
þ 1þ � ¼ d

2
þ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ 2Þ2

4
þm2 þ 4�2M2

s
:

(4.14)

We note the similarity between the AdS scalar bulk-to-
boundary propagator and the scalar propagator given in
(4.5), (4.6), and (4.7), with the main difference being the
extra term �2ðpy þ i!EÞ2 inside the square root in (4.7).

The AdS case corresponds, of course, to having � ¼ 0.
This change in � is the only effect of having a nonzero�, at
least as far as the scalar bulk-to-boundary propagators are
concerned.

We can apply this procedure to the other types of real-
time bulk-to-boundary propagators identified in [29]. One
finds for instance that the Feynman and advanced bulk-to-
boundary propagators constructed in this way agree pre-
cisely with (3.13) and (3.23), again writing the conformal
dimension as in (4.14). It was argued in [29] that one can
consistently define Wightman bulk-to-boundary propaga-
tors by extending the applicability of standard flat space
circling rules. This approach naturally commutes to the
present context, with the Wightman propagators given by

~G þ ¼ ~GF � ~GA;
~G� ¼ ~GF � ~GR: (4.15)

Combining these expressions with (3.24), it is straightfor-
ward to derive that the Wightman propagators can also be
written as

~G � ¼ i½sgnð�þMÞ � 1� Im~GR: (4.16)

It is easy to check that the various bulk-to-boundary
propagators identified in this and the previous section
reproduce the momentum space two-point functions com-
puted in Sec. II. This essentially follows from standard
AdS/CFT two-point function computations. Since the mo-
menta play a passive role in the AdS/CFT prescription
which takes us from bulk-to-boundary propagator to two-
point correlator, it makes no difference whether we apply
the mapping (4.10) before or after we execute this pre-
scription. Moreover, the different i� prescriptions which
distinguish the various types of bulk-to-boundary propa-
gator are also passive and carry over directly to the result-
ing two-point functions.

V. FINITE-TEMPERATURE CORRELATORS

A. Black hole metric and bulk-to-boundary
propagators

Finally, we turn to computing Schrödinger correlation
functions at finite-temperature from nonrelativistic AdS/
CFT. The previous sections have established the various
ingredients we will need to obtain these correlators, in
particular, the momentum space mapping (4.10) from the
parent to the Schrödinger theories and the identification of
the different real-time propagators. We will begin by using
these methods to construct the different real-time bulk-to-
boundary propagators at finite-temperature. We will first
obtain the retarded propagator by computing a thermal
Euclidean propagator and then analytically continuing
this and using (4.10) to obtain a thermal retarded propa-
gator for the gravity dual of the Schrödinger theory. The
remaining real-time propagators can be obtained from this
using various identities borrowed from the case of a rela-
tivistic CFT. With these propagators in hand, we will then
proceed to compute various two-point correlators as well
as the retarded and time-ordered three-point correlators
with the help of circling rules as in [29].
To study the theory at finite-temperature, we consider

the following (Euclidean) black hole geometry [11–13]:

ds2E ¼ r2kðrÞ�2=3½��2r2fðrÞðid	þ dyÞ2 þ fðrÞd	2

þ dy2 þ kðrÞdx2� þ kðrÞ1=3 dr2

r2fðrÞ ; (5.1)

fðrÞ � 1� r4þ
r4

; kðrÞ � 1þ �2r4þ
r2

: (5.2)

rþ is the location of the event horizon. As in the case of
zero temperature, we are adopting most of the notational
conventions of [11]. In this section, we restrict attention to
the case d ¼ 2 (i.e. ~x is two-dimensional). In order to
simplify some of the expressions that will follow and to
make contact with previous work, we will define a new
radial coordinate u:

u � r2þ
r2

: (5.3)

The metric then reads

ds2E ¼ r2þ
u
kðuÞ�2=3

�
��2r2þ

fðuÞ
u

ðid	þ dyÞ2 þ fðuÞd	2

þ dy2 þ kðuÞdx2
�
þ kðuÞ1=3 du2

4u2fðuÞ ; (5.4)

fðuÞ ¼ 1� u2; kðuÞ ¼ 1þ �2r2þu: (5.5)

The temperature can be computed from the surface gravity,
which in turn is computed from the Killing vector genera-
tor of the event horizon, �, according to the formula
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�2 ¼ � 1

2
ðra�bÞðra�bÞ: (5.6)

The vector � is normalized so that the component along the
Schrödinger time direction is 1:

� � 2
@

@t
¼ 2

@

@xþ
� 2

@

@x�
: (5.7)

With this definition, we find that the temperature of the
Schrödinger theory is given by twice that of the parent
dipole theory,

TS ¼ �

2�
¼ 2rþ

�
¼ 2Tp; (5.8)

since Tp should be measured with respect to the time t.

From (5.7), we see that we also have a chemical potential
associated with the conserved charge @

@x� . With our set of

conventions,

 ¼ �2: (5.9)

As was noted in [11,12], these observations can also be
discerned by considering a canonical ensemble for the
parent theory with a density matrix given by

� ¼ e�Hp=Tp ¼ e�½ð1=2ÞHS�P��=Tp ¼ e�½HS�2P��=TS

¼ e�½HSþP��=TS ; (5.10)

where the Hamiltonian Hp ¼ @
@t , HS ¼ 2 @

@xþ , and

P� ¼ @
@x� . We see that the thermal Schrödinger theory is

naturally described in terms of a grand canonical ensemble,
where P� is interpreted as the particle number operator.

We will focus on the case of a minimally coupled mass-
less scalar for simplicity.9 In momentum space, the equa-
tion of motion has the form

F00
E � 1þ u2

uð1� u2ÞF
0
E � 1

u2ð1� u2Þ2
�
!2

Euþ ðp2
y þ p2Þ

� uð1� u2Þ þ�2ðpy þ i!EÞ2ð1� u2Þ
�
FE ¼ 0;

(5.11)

where we have defined

� � �rþ: (5.12)

We have also defined the dimensionless quantities !E, py,

and ~p according to

! E � !E

2rþ
; py �

py

2rþ
; ~p � ~p

2rþ
: (5.13)

To solve the equation of motion, we use the following
ansatz for the Euclidean propagator:

FEð!E;py; ~p; uÞ ¼ u�ð1� uÞ!E=2ð1þ uÞi!E=2

�Hð!E;py; ~p; uÞ: (5.14)

The resulting equation for H is the Heun equation,

H00 þ
�
�

u
þ �

u� 1
þ "

u� d̂

�
H0 þ ��u� q

uðu� 1Þðu� d̂ÞH ¼ 0;

(5.15)

so long as we take10

� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ i!EÞ2

q
: (5.16)

The Heun parameters are

� ¼ 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ i!EÞ2

q
;

� ¼ 1þ!E; " ¼ 1þ i!E;

� ¼ � ¼ 1þ i

2
!E þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ i!EÞ2

q
;

d̂ ¼ �1;

q ¼ 1� i

2
!E

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ i!EÞ2

q
� 1

�
�!2

E � p2
y � p2:

(5.17)

The Heun’s function H must be chosen to be the solution
which is well behaved near the origin u ¼ 1 of the
Euclidean spacetime, which for positive frequencies is11:

Hð!E;py; ~p; uÞ ¼ Hlð1� d̂; ��� q;�;�; �; �; 1� uÞ:
(5.18)

Analytically continuing !E ! �ið!þ i�Þ, using (4.10),
and defining � � �=ð2rþÞ and M � M=ð2rþÞ, we find
that the retarded propagator is12

~GRð�; ~p; u;MÞ 	 u�ð1� uÞ�ði=2Þð�þMÞ

� ð1þ uÞð1=2Þð�þMÞHð�; ~p; uÞ; (5.19)

with

9An example of such a scalar is the fluctuation in the metric
component gx2x1 , which has been shown to decouple from all other
fluctuations [11,12]. As we show in Appendix E, this scalar
fluctuation can be made massive by considering nontrivial
harmonics on the internal 5d space, in which case the wave

equation generalizes to F00
E� 1þu2

uð1�u2ÞF
0
E� 1

u2ð1�u2Þ2 f!2
Euþðp2

yþ
p2þ 1

4�
2n2�Þuð1�u2Þþ½�2ðpyþ i!EÞ2þ 1

4 lðlþ4Þ�ð1�u2Þg�
FE ¼ 0, where l and n� are quantum numbers defined in the
Appendix.

10We have chosen the root which reproduces the zero- tem-
perature limit, in which � ! 0 and � ! 0.
11See Ref. [37] for a comprehensive discussion of the Heun
equation and its solutions. A brief review of aspects essential for
the present context is also given in Appendix E of [29].
12It is amusing to note that if we keep the i� in the exponent as
well so that ~GR 	 ð1� uÞ�ði=2Þð�þMþi�Þ, then the retarded propa-
gator vanishes at the horizon u ¼ 1 as opposed to the usual
boundary condition that it behave like an incoming wave.
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� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2�2

p
;

� ¼ 1� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2�2

p
;

� ¼ 1� ið�þMþ i�Þ;
" ¼ 1þ�þMþ i�;

� ¼ � ¼ 1� i

2
ð�þMþ i�Þ þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2�2

p
;

q ¼ � 1þ i

2
ð�þMþ i�Þ

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4M2�2

p
� 1

�
þ 4M�� p2 þ i�ð�þMÞ: (5.20)

Since it is not possible to normalize ~GR at u ¼ 0, we
introduce a cutoff uB 
 1, and normalize the propagator
at u ¼ uB:

~GRð�; ~p;u;MÞ

¼ u�ð1�uÞ�ði=2Þð�þMÞð1þuÞð1=2Þð�þMÞ

u�Bð1�uBÞ�ði=2Þð�þMÞð1þuBÞð1=2Þð�þMÞ
Hð�; ~p;uÞ
Hð�; ~p;uBÞ :

(5.21)

As in [29], we define the thermal Feynman bulk-to-
boundary propagator in the black hole background to be
given by

~gFð!;py; ~p; uÞ ¼ Re~gRð!;py; ~p; uÞ
þ i cothð�!Þ Im~gRð!;py; ~p; uÞ: (5.22)

Although [29] focused primarily on the gravity dual of
thermal N ¼ 4 super Yang-Mills theory, the arguments
(which were based on extending field theory finite-
temperature circling rules to bulk-to-boundary propaga-
tors) were quite general and should apply to a wide class
of theories including the dipole theory conjectured to be
dual to the black hole spacetime (5.4). (Note that thermal
N ¼ 4 SYM corresponds to the special case � ¼ 0.)
Applying (4.10), we obtain a similar relation for the
Schrödinger propagators as well:

~GFð�; ~p; u;MÞ ¼ Re~GRð�; ~p; u;MÞ þ i cothð�ð�þMÞÞ
� Im~GRð�; ~p; u;MÞ: (5.23)

This formula allows us to compute the Feynman bulk-to-
boundary propagator directly from the retarded propagator
we have already calculated. Again borrowing results from
the relativistic case, we may compute Wightman propaga-
tors using the same relations we have at zero temperature
[29]:

~G þ ¼ ~GF � ~GA;
~G� ¼ ~GF � ~GR: (5.24)

In conjuction with (5.23), these expressions imply that

~G � ¼ �2i

1� e�2�ð�þMÞ Im
~GR: (5.25)

B. Real-time thermal two-point correlators

The real-time bulk-to-boundary propagators obtained in
the previous subsection can be used to compute real-time
two-point correlators at finite-temperature. We start with
the retarded two-point function, which arises from a
boundary term in the quadratic part of the effective 5d
action13 of the form

R
d�d2p

ffiffiffiffiffiffiffi�g
p

guu
ð��;� ~pÞ�
@u
ð�; ~pÞju¼uB . Setting the scalar field 
ð�; ~p; uÞ ¼
~GRð�; ~p; uÞ
Bð�; ~pÞ and varying with respect to the
boundary value 
B, we find

~GRð�; ~p;MÞ ¼ �2 �N
ffiffiffiffiffiffiffi�g

p
guu ~GRð�; ~p; u;MÞ@u

� ~GRð�; ~p; u;MÞju¼uB : (5.26)

�N is a supergravity normalization factor. In order to evalu-
ate this expression, we must expand the Heun’s function H
near the boundary at u ¼ uB. This is facilitated by first
expressing the Heun’s function (5.18) as a linear combina-
tion of independent solutions defined in the vicinity of
u ¼ 0:

HðuÞ ¼ H1ðuÞ þ AH2ðuÞ; (5.27)

where

H1ðuÞ ¼ Hlðd̂; q; �; �; �; �; uÞ; (5.28)

and

H2ðuÞ ¼ u1��Hlðd̂; q� ð�� 1Þð�d̂þ "Þ; �� �þ 1;

�� �þ 1; 2� �; �; uÞ: (5.29)

The coefficient A is determined by matching (5.18) and
(5.27) at some value of u between 0 and 1; in practice, this
must be done numerically. Since our formula for the two-
point function, Eq. (5.26), only depends on the behavior of
~GR and its first derivative near u ¼ uB 
 1, it suffices to
expand H1 and H2 about u ¼ 0:

H1ðuÞ ¼ 1þ c1uþ c2u
2 þ . . . ; H2 ¼ u2 þ . . . ;

(5.30)

with14

c1 ¼ � q

�
; c2 ¼ qð"� �þ qÞ þ ���

2�ð�þ 1Þ ; (5.31)

where we have set the Heun parameter d̂ ¼ �1. After
throwing away terms which diverge in the uB ! 0 limit,

13We may take the effective 5d action to be any of a number of
consistent truncations of IIB supergravity that have been found
in the literature [11–13,38–41]. Since we are considering a
generic minimally coupled scalar, our results are independent
of this choice.
14Note that if � is a negative integer, then H1 can no longer be
expanded in a simple power series—logarithmic factors will also
appear. See Appendix E of [29] for a more complete discussion
of this subtlety.
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we find

~GRð�; ~p;MÞ ¼ 4r4þ �N

�
�� 2ðAþ c2Þ þ c21

þ 1� i

2
ð�þMÞ

�
: (5.32)

We can obtain an analytic expression for A in the limit of
small �, M, and ~p by plugging the ansatz HðuÞ ¼
1þ qhðuÞ into (5.15) and expanding the Heun parameters.
The solution which is regular at u ¼ 1, namely hðuÞ ¼
logð1þ uÞ, gives a solutionHðuÞ which is valid for all u so
long as we only keep the leading order terms in q.
Expanding this solution to second order in u about u ¼ 0
then gives

Aþ c2 ¼ 1þ i

4
ð�þMÞ þ 1

2
p2

þOð�2;�M;M2;�p2;Mp2;p4Þ: (5.33)

Plugging this into (5.32) yields the thermal retarded two-
point correlator in the limit of small frequency and mass.
This quantity was also obtained in [12] for the case ~p ¼ 0.

To compute the Feynman two-point function, we can
perform a similar analysis employing the various
thermal bulk-to-boundary propagators along with finite-
temperature circling rules. We will now give a brief review
of circling rules as they apply to Witten diagrams. Each
vertex of the diagram can be either circled or uncircled, and
a general real-time correlator will be given by a sum of
diagrams having particular vertices circled. The circlings
determine the type of real-time correlator (e.g. time-

ordered, retarded, etc.): if ~Gi extends between two un-

circled vertices, then ~Gi ¼ ~GF, the Feynman propagator.
In the case of two circled vertices, we instead have
~Gi ¼ ~�GF ¼ �~G�

F. Since the momenta pi are defined to

all be outgoing, ~Gi ¼ ~G� when the bulk vertex is circled

and the boundary vertex is uncircled, and ~Gi ¼ ~Gþ when
the reverse is true. If the number of circled vertices in a
given diagram is odd, then the contribution from that
diagram also receives an overall minus sign. In particular,
for the time-ordered two-point function, the vertices at the
boundary are uncircled, and the derivative-coupling bulk
vertex can be either circled or uncircled. Summing over
both contributions yields

~GFð�; ~p;MÞ
¼�2 �N

ffiffiffiffiffiffiffi�g
p

guu
�
~GFð�; ~p;u;MÞ@u ~GFð�; ~p;u;MÞ

� ~G�ð�; ~p;u;MÞ@u ~Gþð�; ~p;u;MÞ
���������u¼uB

; (5.34)

which, upon substituting (5.23) and (5.25), leads to

~GFð�; ~p;MÞ ¼ Re ~GRð�; ~p;MÞ þ i cothð�ð�þMÞÞ
� Im ~GRð�; ~p;MÞ: (5.35)

Recalling that � ¼ �
2rþ

and M ¼ M
2rþ

, where � and M are

the physical (dimensionful) frequency and mass, we see
that this is precisely the standard Kallen-Lehmann relation
at finite-temperature with energy 2�, particle number M,
and chemical potential  ¼ �2. It is straightforward to
check that in the zero temperature limit where rþ ! 0, this
reduces to the relation we found in Sec. II F, Eq. (2.51).
A similar application of circling rules in the case of the

Wightman functions leads to

~G� ¼ �2i

1� e�2�ð�þMÞ Im
~GR: (5.36)

C. Thermal retarded and advanced
three-point correlators

The retarded three-point scalar correlator (which is
equal to the sum of all diagrams with vertices either circled
or uncircled with the exception of the vertex with the
largest time, which remains uncircled) has the same uni-
versal expression in the black hole background which is
dual to the dipole theory as the one obtained in [29]:

~gð3ÞR ðp1;p2;p3Þ	�4ðp1þp2þp3Þ
�
Z 1

uB

du
ffiffiffiffiffiffiffi�g

p
~g�Rðp1;uÞ~g�Rðp2;uÞ~gRðp3;uÞ:

(5.37)

The position space version of this correlator is such that the
operator O3 has the largest time. Note that the four-
momenta pi are defined to be all outgoing, i.e. they point
toward the boundary. This result can be obtained in a
number of ways, including the application of circling rules
to Witten diagrams (as advertised) or by analytically con-
tinuing the Euclidean three-point function.
At this point, we should make a few comments regarding

the integration region in (5.37). In the case of thermal
N ¼ 4 SYM, it has been proposed that one must consider
the maximally extended AdS-Schwarzschild black hole
spacetime in order to reproduce Schwinger-Keldysh corre-
lators from AdS/CFT [26]. That is, in addition to the
quadrant which is integrated over in (5.37), there are three
more quadrants that one should also take into considera-
tion. However, as is argued in [29], the use of circling rules
renders unnecessary the introduction of additional quad-
rants. This result is useful since it avoids one of the more
subtle issues which arise in real-time AdS/CFT calcula-
tions, namely, the role of global properties of the bulk
spacetime. We will keep exploiting this simplification. It
was also pointed out in [29] that in the case of a retarded
three-point correlator, neglecting extra quadrants is con-
sistent with the expectation that one should need to inte-
grate only over a maximally causal region of the spacetime
that includes the original boundary at u ¼ uB. (In [29],
uB ¼ 0.) This is tantamount to integrating over only the
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original quadrant—from the event horizon at u ¼ 1 to the
boundary at u ¼ uB—since the other three are causally
disconnected from it, as is readily apparent from the fact
that the remaining quadrants lie beyond the event horizon
of the black hole. (For a different perspective reaching the
same conclusion see [42].)

Having argued for the validity of the three-point func-
tion (5.37) for the parent theory, it is then a simple matter to
transform this to a Schrödinger three-point function using
(4.10) for each of the three momenta:

~Gð3Þ
R ð�i; ~pi;MiÞ 	 �

�X
i

Mi

�
�

�X
i

�i

�
�

�X
i

~pi

�

�
Z 1

uB

du
ffiffiffiffiffiffiffi�g

p ~G�
Rð�1; ~p1; u;M1Þ

� ~G�
Rð�2; ~p2; u;M2Þ~GRð�3; ~p3; u;M3Þ:

(5.38)

The thermal retarded bulk-to-boundary propagator ~GR was
given in (5.21). The thermal advanced three-point function
is given by the complex conjugate of (5.38).

D. Thermal time-ordered three-point correlator

In this section, we compute the Schrödinger thermal
time-ordered three-point correlator. As we have done in
the case of the retarded three-point in the previous sub-
section, we could first compute the time-ordered three-
point function in the parent theory and then transform
this using (4.10) to obtain the Schrödinger time-ordered
function. However, considering the various results we have
obtained in earlier sections, it is clear that this will be

equivalent to a direct computation using a nonrelativistic
version of Witten diagrams and circling rules. A generic
three-point Witten diagram is of the form

�

�X
i

Mi

�
�

�X
i

�i

�
�

�X
i

~pi

�Z 1

uB

du
ffiffiffiffiffiffiffi�g

p ~Gað�1; ~p1; u;M1Þ

� ~Gbð�2; ~p2; u;M2Þ~Gcð�3; ~p3; u;M3Þ; (5.39)

where the types of bulk-to-boundary propagators ~Gi ap-
pearing in (5.39) depend on which vertices are circled.
In the case of a time-ordered function, we must add the

contributions of all diagrams which result from consider-
ing all possible circlings of internal vertices, with the
external vertices uncircled. For a three-point function
tree-level diagram there is only one internal vertex, and
the two contributing diagrams are shown in Fig. 1. A
straightforward application of the circling rules reviewed
above gives

~Gð3Þ
F ð�i; ~piÞ 	 �ðX

i

MiÞ�ð
X
i

�iÞ�ð
X
i

~piÞ
�Z 1

uB

du
ffiffiffiffiffiffiffi�g

p ~GFð�1; ~p1; u;M1Þ~GFð�2; ~p2; u;M2Þ~GFð�3; ~p3; u;M3Þ

�
Z 1

uB

du
ffiffiffiffiffiffiffi�g

p ~G�ð�1; ~p1; u;M1Þ~G�ð�2; ~p2; u;M2Þ~G�ð�3; ~p3; u;M3Þ
�
: (5.40)

This result is consistent with (3.11) in the zero temperature
limit since in this limit, the second term vanishes. This can
be seen from (5.25) by writing�þM ¼ �þM

2rþ
and sending

rþ ! 0 while keeping� andM fixed. Momentum conser-
vation ensures that �i þMi < 0 for at least one of the
three sets of momenta, and the corresponding Wightman
propagator ~G�ð�i; ~pi; u;MiÞ will therefore vanish.
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APPENDIX A: ZERO TEMPERATURE
TIME-ORDERED THREE-POINT
FUNCTIONS IN POSITION SPACE

We begin with the relativistic conformal three-point
correlator:

gð3ÞF ¼ �h0jTO1ðx1ÞO2ðx2ÞO3ðx3Þj0i
¼ � 1

½xþ23x�23 þ x223 þ i���1
� 1

½xþ13x�13 þ x213 þ i���2

� 1

½xþ12x�12 þ x212 þ i���3
; (A1)

where xij ¼ xi � xj. Fourier-transforming with respect to

FIG. 1 (color online). Witten diagrams contributing to the
time-ordered three-point correlator.
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x�i and introducing Schwinger parameters gives

Gð3Þ
F ¼ � ð�iÞ�1þ�2þ�3

�ð�1Þ�ð�2Þ�ð�3Þ
Z 1

0
ds1ds2ds3s

�1�1
1 s�2�1

2 s
�3�1
3

�
Z

dx�1 dx
�
2 dx

�
3 e

�iM1x
�
1
�iM2x

�
2
�iM3x

�
3

� e�s1½��ixþ
23
x�
23
�ix2

23
�e�s2½��ixþ

13
x�
13
�ix2

13
�

� e�s3½��ixþ
12
x�
12
�ix2

12
�: (A2)

It is useful to change integration variables from x�i to x�13,
x�23, and x�3 . The x

�
3 integration then gives a �-function of

the form �ðM1 þM2 þM3Þ. The x�13 and x�23 integrals also
produce �-functions, and we obtain

Gð3Þ
F ¼�ð2�Þ3ð�iÞ�1þ�2þ�3�ðPiMiÞ

�ð�1Þ�ð�2Þ�ð�3Þ
�
Z 1

0
ds1ds2ds3s

�1�1
1 s�2�1

2 s�3�1
3

�eiðx223þi�Þs1eiðx213þi�Þs2eiðx212þi�Þs3

��ð�M1þxþ12s3þxþ13s2Þ�ð�M2�xþ12s3þxþ23s1Þ:
(A3)

Evaluating the �-functions, we find

Gð3Þ
F ¼ �ð2�Þ3ð�iÞ�1þ�2þ�3�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ jxþ23j��1 jxþ13j��2

� eiM1ðx213þi�Þ=xþ
13eiM2ðx223þi�Þ=xþ

23I; (A4)

where

I �
Z 1

0
ds3s

�3�1
3 jM2 þ xþ12s3j�1�1jM1

� xþ12s3j�2�1eiv12x
þ
12
s3�

�
M1 � xþ12s3

xþ13

�
�

�
M2 þ xþ12s3

xþ23

�
;

(A5)

and

v12 � x212 þ i�

xþ12
þ x223 þ i�

xþ23
� x213 þ i�

xþ13
: (A6)

In order to perform the integral I, it helps to consider
separately the eight different cases which arise when we
suppose that each of xþ12, x

þ
13, and x

þ
23 have definite sign. We

adopt the notation Iijk, where i, j, k ¼ �, such that Iijk ¼ I

for the particular choices of sign specified by the i, j, k. For
example Iþþ� is equal to I when xþ12 > 0, xþ13 > 0 and

xþ23 < 0. We need not consider Iþ�þ and I�þ� since the

corresponding inequalities are not self-consistent in these
cases. Furthermore, a careful inspection of (A5) reveals
that it suffices to compute only the three integrals Iþjk

since the I�jk can be expressed in terms of these. In

particular, we have

I�þþð�1; �2; �3;M1;M2; v12Þ
¼ Iþþþð�2; �1; �3;M2;M1;�v12Þ;

I��þð�1; �2; �3;M1;M2; v12Þ
¼ Iþþ�ð�2; �1; �3;M2;M1;�v12Þ;

I���ð�1; �2; �3;M1;M2; v12Þ
¼ Iþ��ð�2; �1; �3;M2;M1;�v12Þ:

(A7)

In terms of these quantities, I is given by

I ¼ �ðxþ12Þ�ðxþ13Þ�ðxþ23ÞIþþþ þ �ðxþ12Þ�ðxþ13Þ�ðxþ32ÞIþþ�
þ �ðxþ12Þ�ðxþ31Þ�ðxþ32ÞIþ�� þ �ðxþ21Þ�ðxþ13Þ�ðxþ23ÞI�þþ
þ �ðxþ21Þ�ðxþ31Þ�ðxþ23ÞI��þ þ �ðxþ21Þ�ðxþ31Þ�ðxþ32ÞI���:

(A8)

We begin by computing Iþþþ:

Iþþþ ¼ jxþ12j��3

Z 1

0
dzz�3�1ðM2 þ zÞ�1�1ðM1 � zÞ�2�1

� eiv12z�ðM1 � zÞ�ðM2 þ zÞ: (A9)

We arrived at this expression by introducing a new inte-
gration variable via s3 ¼ xþ12z. To proceed further, it is
useful to note that the step functions impose the constraints
M1 > 0 and M1 þM2 > 0. We may then break up the
integral as follows:

Iþþþ ¼ jxþ12j��3�ðM1Þ½�ðM2ÞIð1Þþþþ

þ �ð�M2Þ�ðM1 � jM2jÞIð2Þþþþ�: (A10)

We first focus on Ið1Þþþþ. When M2 > 0, the z integration
limits are 0 and M1. Taking z ! M1z, we find

Ið1Þþþþ ¼ M�2þ�3�1
1 M�1�1

2

Z 1

0
dzz�3�1ð1� zÞ�2�1

�
�
1þM1

M2

z

�
�1�1

eiv12M1z: (A11)

We can evaluate this integral by making use of the
identity [43]

Z 1

0
dxx��1ð1� xÞ��1ð1� �xÞ��ex

¼ Bð�; �Þ�1ð�; �; �þ �; �;Þ; (A12)

where B is the Euler beta function,

Bðx; yÞ ¼
Z 1

0
dttx�1ð1� tÞy�1; (A13)
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and �1 is a hypergeometric function of two variables,

�1ð�;�; �; x; yÞ ¼
X1

m;n¼0

ð�Þmþnð�Þm
ð�Þmþnm!n!

xmyn: (A14)

This identity holds provided Reð�Þ> 0, Reð�Þ> 0, and
j argð1� �Þj<�. For our purposes, the first two condi-
tions will be always be satisfied if �i > 0, while the second
condition requires � ¼ �M1=M2 < 1, which is true in the

case of the integral Ið1Þþþþ, for which both M1 and M2 are
positive. We find

Ið1Þþþþ¼M
�2þ�3�1
1 M�2�1

2 Bð�3;�2Þ
��1ð�3;1��1;�2þ�3;�M1

M2

;iv12M1Þ: (A15)

The second piece of the integral, Ið2Þþþþ, has the form

Ið2Þþþþ ¼ M
�2þ�3�1
1 jM2j�1�1

Z 1

ððjM2jÞ=ðM1ÞÞ
dzz�3�1

� ð1� zÞ�2�1

�
�1þ M1

jM2j z
�
�1�1

eiv12M1z: (A16)

We can again evaluate this by making use of the identity
(A12) if we first perform the change of variable z ¼
ð1� jM2j=M1Þ~zþ jM2j=M1. We obtain

Ið2Þþþþ ¼ ðM1 � jM2jÞ�1þ�2�1jM2j�3�1eiv12jM2jBð�1; �2Þ

��1ð�1; 1� �3; �1 þ �2;
jM2j �M1

jM2j ;

iv12ðM1 � jM2jÞÞ: (A17)

Putting the results for Ið1Þþþþ and Ið2Þþþþ together gives

Iþþþ ¼ jxþ12j��3�ðM1Þ
�
�ðM2ÞM�2þ�3�1

1 M�1�1
2 Bð�3; �2Þ�1ð�3; 1� �1; �2 þ �3;�M1

M2

; iv12M1Þ

þ �ð�M2Þ�ðM1 � jM2jÞðM1 � jM2jÞ�1þ�2�1jM2j�3�1eiv12jM2j

� Bð�1; �2Þ�1ð�1; 1� �3; �1 þ �2;
jM2j �M1

jM2j ; iv12ðM1 � jM2jÞÞ
�
: (A18)

Similar methods lead to

Iþþ� ¼ jxþ12j��3

Z 1

0
dzz�3�1jM2 þ zj�1�1jM1 � zj�2�1eiv12z�ðM1 � zÞ�ð�M2 � zÞ

¼ jxþ12j��3�ðM1Þ�ð�M2Þ
�
�ðM1 � jM2jÞM�2�1

1 jM2j�1þ�3�1Bð�3; �1Þ ��1ð�3; 1� �2; �1 þ �3;
jM2j
M1

; iv12jM2jÞ

þ �ðjM2j �M1ÞM�2þ�3�1
1 jM2j�1�1 � Bð�3; �2Þ�1ð�3; 1� �1; �2 þ �3;

M1

jM2j ; iv12M1Þ
�
: (A19)

Iþ�� ¼ jxþ12j��3

Z 1

0
dzz�3�1jM2 � zj�1�1jM1 þ zj�2�1e�iv12z�ðM1 þ zÞ�ðM2 � zÞ

¼ jxþ12j��3�ð�M2Þ
�
�ðM1Þ�ðjM2j �M1Þeiv12M1M�3�1

1 ðjM2j �M1Þ�1þ�2�1

� Bð�2; �1Þ�1ð�2; 1� �3; �1 þ �2;
M1 � jM2j

M1

; iv12ðjM2j �M1ÞÞ

þ �ð�M1ÞjM1j�2�1jM2j�1þ�3�1Bð�3; �1Þ�1ð�3; 1� �2; �1 þ �3;�M2

M1

; iv12jM2jÞ
�
: (A20)

APPENDIX B: ZERO TEMPERATURE
TIME-ORDERED THREE-POINT

FUNCTIONS IN MOMENTUM SPACE

To compute the time-ordered three-point function in
momentum space, we will Fourier-transform the position
space correlator. It turns out that the most efficient way to
perform the Fourier-transform is to start with the relativis-
tic function in position space expressed in terms of light
cone coordinates:

gð3ÞF ¼ �h0jTO1ðx1ÞO2ðx2ÞO3ðx3Þj0i
¼ � 1

½xþ23x�23 þ x223 þ i���1

� 1

½xþ13x�13 þ x213 þ i���2

� 1

½xþ12x�12 þ x212 þ i���3
: (B1)
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We could start directly with the nonrelativistic result (3.3), but this approach proves more cumbersome. Taking the Fourier-
transform with respect to all coordinates and introducing Schwinger parameters leads to

~Gð3Þ
F ¼�ð2�Þdþ2ð�iÞ�1þ�2þ�3

8�ð�1Þ�ð�2Þ�ð�3Þ �

�X
i

�i

�
�

�X
i

Mi

�
�d

�X
i

~pi

�Z 1

0
ds1ds2ds3s

�1�1
1 s�2�1

2 s�3�1
3

�
Z

ddþ2x13d
dþ2x23e

i�1x
þ
13�iM1x

�
13�i ~p1� ~x13þi�2x

þ
23�iM2x

�
23�i ~p2� ~x23eis1ðx223þxþ23x

�
23þi�Þþis2ðx213þxþ13x

�
13þi�Þþis3ðx212þxþ12x

�
12þi�Þ: (B2)

The momentum variables �i, Mi and ~pi are conjugate to
xþi , x�i and ~xi, respectively. To obtain this expression, we
have switched integration variables from xi to x13, x23 and
x3, and we subsequently computed the dþ 2 integrals over
x3, giving rise to the �-function factors out front. The
integrals over x�13 and x�23 give rise to �-functions, and
the integrals over ~x13 and ~x23 can be evaluated usingZ

ddx13d
dx23e

iðs2þs3Þx213þiðs2þs3Þx223�2is3 ~x13� ~x23�i ~p1� ~x13�i ~p2� ~x23

¼ ði�Þd
ðs1s2 þ s1s3 þ s2s3Þd=2
� e�ði=4Þððs1p2

1
þs2p

2
2
þs3p

2
3
Þ=ðs1s2þs1s3þs2s3ÞÞ: (B3)

We then find

~Gð3Þ
F ¼ �ð2�Þdþ4ð�iÞ�1þ�2þ�3ði�Þd

8�ð�1Þ�ð�2Þ�ð�3Þ �

�X
i

�i

�
�

�X
i

Mi

�
�d

�
�X

i

~pi

�Z 1

0
ds1ds2ds3 � s�1�1

1 s�2�1
2 s�3�1

3

ðs1s2 þ s1s3 þ s2s3Þd=2
� e�ði=4Þððs1p2

1
þs2p

2
2
þs3p

2
3
Þ=ðs1s2þs1s3þs2s3ÞÞ

�
Z

dxþ13dx
þ
23e

i�1x
þ
13
þi�2x

þ
23 � �ððs2 þ s3Þxþ13

� s3x
þ
23 �M1Þ�ð�s3x

þ
13 þ ðs1 þ s3Þxþ23 �M2Þ:

(B4)

Using the �-functions to evaluate the integrals over xþ13 and
xþ23 yields

~Gð3Þ
F ¼ �ð2�Þdþ4ð�iÞ�1þ�2þ�3ði�Þd

8�ð�1Þ�ð�2Þ�ð�3Þ �

�X
i

�i

�
�

�X
i

Mi

�
�d

�X
i

~pi

�Z 1

0
ds1ds2ds3

� s�1�1
1 s�2�1

2 s�3�1
3

ðs1s2 þ s1s3 þ s2s3Þðd=2Þþ1
eði=4Þððð4M1�1�p2

1
Þs1þð4M2�2�p2

2
Þs2þð4M3�3�p2

3
Þs3Þ=ðs1s2þs1s3þs2s3ÞÞ: (B5)

To facilitate evaluation of the si integrals, we make the
following change of variables:

ui ¼ s1s2 þ s1s3 þ s2s3
si

; (B6)

under which the integral becomes

~Gð3Þ
F ¼ �ð2�Þdþ4ð�iÞ�1þ�2þ�3ði�Þd

8�ð�1Þ�ð�2Þ�ð�3Þ �

�X
i

�i

�
�

�X
i

Mi

�
�d

�
�X

i

~pi

�Z 1

0

Y
j

duju
�j�1
j eði=4Þ½4Mj�j�p2

jþi��=uj

� ðu1 þ u2 þ u3Þ�
P

i
�iþðd=2Þþ1: (B7)

We have defined

�j �
X
i�j

�i � d

2
� 1 ¼ �j � d

2
� 1: (B8)

Further progress is made with the help of an additional
Schwinger parameter:

~Gð3Þ
F ¼� ð2�Þdþ4ð�iÞ�1þ�2þ�3ði�Þd

4�ð�1Þ�ð�2Þ�ð�3Þ�ð
P

i �i � d
2� 1Þ

��ðX
i

�iÞ�
�X

i

Mi

�
�d

�X
i

~pi

�
�
Z 1

0
dzz2

P
i
�i�d�3

�
Z 1

0

Y
j

duju
�j�1
j eði=4Þ½4Mj�j�p2

jþi��=uje�z2uj : (B9)

The integral over each uj can now be identified as being
essentially a modified Bessel function:

~Gð3Þ
F ¼ 25d=2þ8�2

P
i
�i�2dþ4

�ð�1Þ�ð�2Þ�ð�3Þ�ðPi �i � d
2 � 1Þ

� �

�X
i

�i

�
�

�X
i

Mi

�
�d

�X
i

~pi

�

�
Z 1

0
dzzðd=2Þ

Y
j

ð�4Mj�j þ p2
j � i�Þ�j=2

� K�j

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4Mj�j þ p2

j � i�
q �

: (B10)
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In this expression, we have rotated the z-integration con-
tour to eliminate a factor of

ffiffi
i

p
that would otherwise appear

in the argument of the Bessel function. This rotation can be
done safely since the branch cut of the Bessel function lies
along the negative real axis, and the square root in its
argument is defined to be such that its real part is non-
negative.

APPENDIX C: ZERO TEMPERATURE
WIGHTMAN THREE-POINT

FUNCTIONS IN POSITION SPACE

We begin with one of the relativistic Wightman func-
tions in position space:

g123ðx1;x2;x3Þ��h0jO1ðx1ÞO2ðx2ÞO3ðx3Þj0i
¼� 1

½xþ23x�23þx223þ i�ðxþ23�x�23Þ��1

� 1

½xþ13x�13þx213þ i�ðxþ13�x�13Þ��2

� 1

½xþ12x�12þx212þ i�ðxþ12�x�12Þ��3
: (C1)

We factor out xij � i� from each of the three denominators

and take the Fourier-transform:

G123 ¼ �ðxþ23 � i�Þ��1ðxþ13 � i�Þ��2ðxþ12 � i�Þ��3

�
Z

dx�1 dx
�
2 dx

�
3 e

�iM1x
�
1
�iM2x

�
2
�iM3x

�
3

�
�
x�23 þ

x223x
þ
23

ðxþ23Þ2 þ �2
þ i�1

���1

�
�
x�13 þ

x213x
þ
13

ðxþ13Þ2 þ �2
þ i�2

���2

�
�
x�12 þ

x212x
þ
12

ðxþ12Þ2 þ �2
þ i�3

���3

: (C2)

We have defined

�1 � �
ðxþ23Þ2 þ x223
ðxþ23Þ2 þ �2

;

�2 � �
ðxþ13Þ2 þ x213
ðxþ13Þ2 þ �2

;

�3 � �
ðxþ12Þ2 þ x212
ðxþ12Þ2 þ �2

:

(C3)

Since the �i are positive-definite, we may introduce
Schwinger parameters. After changing integration varia-
bles from x�i to x�13, x�23 and x�3 , we arrive at

G123 ¼ � 2�ð�iÞ�1þ�2þ�3�ðPi MiÞ
�ð�1Þ�ð�2Þ�ð�3Þ ðxþ23 � i�Þ��1ðxþ13 � i�Þ��2ðxþ12 � i�Þ��3 �

Z 1

0
ds1ds2ds3s

�1�1
1 s�2�1

2 s
�3�1
3

�
Z

dx�13dx
�
23e

�iM1x
�
13
�iM2x

�
23 � e�s1½�1�ix�

23
�iððx2

23
xþ
23
Þ=ððxþ

23
Þ2þ�2ÞÞ�e�s2½�2�ix�

13
�iððx2

13
xþ
13
Þ=ððxþ

13
Þ2þ�2ÞÞ�

� e�s3½�1�ix�
12
�iððx2

12
xþ
12
Þ=ððxþ

12
Þ2þ�2ÞÞ�: (C4)

The integrations on x�13 and x�23 yield �-functions of the
form �ð�M1 þ s2 þ s3Þ and �ð�M2 þ s1 � s3Þ. Since the
si only assume positive values, the first of these
�-functions imposes the condition that G123 will only be
nonvanishing if M1 > 0. This is in keeping with expecta-
tions from perturbation theory, where a negativeM1 would
imply thatO1ðx1Þ is comprised of creation operators. Since
the creation operators will annihilate the bra vacuum state
h0j, G123 must vanish in this case. Furthermore, the two
�-functions together imply that the si integrals are sup-
ported on the curve s1 þ s2 ¼ M1 þM2. The factor
�ðM1 þM2 þM3Þ appearing in G123 then ensures that
M3 ¼ �M1 �M2 < 0 when G123 is nonvanishing. This
is once again in keeping with perturbation theory if we
now considerO3ðx3Þ acting on the ket j0i. We also note that
M1 þM2 > 0 implies that when M2 < 0, we must have
M1 > jM2j. These observations are useful for simplifying
the remainder of the calculation of the Wightman function
G123, as we will see.

Evaluating the �-functions arising from the x�13 and x�23
integrations gives

G123 ¼ �ð2�Þ3ð�iÞ�1þ�2þ�3�ðPi MiÞ
�ð�1Þ�ð�2Þ�ð�3Þ

� ðxþ23 � i�Þ��1ðxþ13 � i�Þ��2ðxþ12 � i�Þ��3

� eiM1x
2
13
ððxþ

13
Þ=ððxþ

13
Þ2þ�2ÞÞeiM2x

2
23
ððxþ

23
Þ=ððxþ

23
Þ2þ�2ÞÞ~Iðv12Þ;

(C5)

where we have defined

~Iðv12Þ �
Z 1

0
ds3s

�3�1
3 ðM2 þ s3Þ�1�1ðM1 � s3Þ�2�1

� eiv12s3�ðM1 � s3Þ�ðM2 þ s3Þ; (C6)

and

v12 � x212x
þ
12

ðxþ12Þ2 þ �2
þ x223x

þ
23

ðxþ23Þ2 þ �2
� x213x

þ
13

ðxþ13Þ2 þ �2

þ ið�1 � �2 þ �3Þ

� x212
xþ12 � i�

þ x223
xþ23 � i�

� x213
xþ13 � i�

: (C7)

HOLOGRAPHIC REAL-TIME NONRELATIVISTIC . . . PHYSICAL REVIEW D 82, 125042 (2010)

125042-23



We have already evaluated the integral ~Iðv12Þ in Appendix A. It is given by

~Iðv12Þ ¼ jxþ12j�3Iþþþ

¼ �ðM1Þ
�
�ðM2ÞM�2þ�3�1

1 M�1�1
2 Bð�3; �2Þ ��1

�
�3; 1� �1; �2 þ �3;�M1

M2

; iv12M1

�
þ �ð�M2Þ�ðM1 � jM2jÞeiv12jM2jjM2j�3�1ðM1 � jM2jÞ�1þ�2�1Bð�1; �2Þ

��1

�
�1; 1� �3; �1 þ �2;

jM2j �M1

jM2j ; iv12ðM1 � jM2jÞ
��
: (C8)

Putting everything together, we find

G123 ¼ �ð2�Þ3ð�iÞ�1þ�2þ�3�ðPi MiÞ
�ð�1Þ�ð�2Þ�ð�3Þ ðxþ23 � i�Þ��1ðxþ13 � i�Þ��2ðxþ12 � i�Þ��3 � eiM1x

2
13
ððxþ

13
Þ=ððxþ

13
Þ2þ�2ÞÞ

� eiM2x
2
23ððxþ23Þ=ððxþ23Þ2þ�2ÞÞ�ðM1Þ

�
�ðM2ÞM�2þ�3�1

1 M�1�1
2 Bð�3; �2Þ ��1

�
�3; 1� �1; �2 þ �3;�M1

M2

; iv12M1

�
þ �ð�M2Þ�ðM1 � jM2jÞeiv12jM2jjM2j�3�1ðM1 � jM2jÞ�1þ�2�1Bð�1; �2Þ

��1

�
�1; 1� �3; �1 þ �2;

jM2j �M1

jM2j ; iv12ðM1 � jM2jÞ
��
: (C9)

APPENDIX D: ZERO TEMPERATURE RETARDED AND ADVANCED THREE-POINT
FUNCTIONS IN POSITION SPACE

We will compute the retarded three-point function by taking the Fourier-transform of the momentum space result we
obtained in Sec. III D. The retarded three-point function in momentum space can be written in the form

~Gð3Þ
R ¼ 25d=2þ8�2

P
i
�i�2dþ4

�ð�1Þ�ð�2Þ�ð�3Þ�ð
P

i �i � d
2 � 1Þ�

�X
i

�i

�
�

�X
i

Mi

�
�d

�X
i

~pi

�Z 1

0
dzzd=2 � j2M1j�1=2j2M2j�2=2j2M3j�3=2

�
�
�2�1 þ p2

1

2M1

þ i�

�
�1=2

�
�2�2 þ p2

2

2M2

þ i�

�
�2=2

�
�2�3 þ p2

3

2M3

� i�

�
�3=2

� e�i��ð�M1Þ�1=2e�i��ð�M2Þ�2=2ei��ð�M3Þ�3=2 � K�1

�
z

ffiffiffiffiffiffiffiffiffiffiffiffi
2jM1j

q
e�i��ð�M1Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�1 þ p2

1

2M1

þ i�

s �

� K�2

�
z

ffiffiffiffiffiffiffiffiffiffiffiffi
2jM2j

q
e�i��ð�M2Þ=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�2 þ p2

2

2M2

þ i�

s �
� K�3

0
B@z ffiffiffiffiffiffiffiffiffiffiffiffi

2jM3j
q

ei��ð�M3Þ=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�3 þ p2

3

2M3

� i�

s 1
CA: (D1)

For simplicity, we will focus on the case M1, M2 > 0 and M3 < 0. Rotating the contour of the z integration such that
z ! z

ffiffiffiffiffiffi�i
p

, writing the Bessel functions in terms of the following integral representation:

j2Mj�=2
�
�2�þ p2

2M
þ i�

�
�=2

K�

0
B@z ffiffiffiffiffiffi�i

p ffiffiffiffiffiffiffiffiffiffiffi
2jMj

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2�þ p2

2M
þ i�

s 1
CA

¼ 2��1ei��=4z�
Z 1

0
duu��1eððijMjÞ=ð2uÞÞð�2�þððp2Þ=ð2MÞÞþi�Þ�z2u; (D2)

and performing the integral over z leads to

�ðM1Þ�ðM2Þ ~Gð3Þ
R ¼ 2dþ1�2dþ4ð�iÞ

P
i
�i�d�2

�ð�1Þ�ð�2Þ�ð�3Þ �

�X
i

�i

�
�

�X
i

Mi

�
�d

�X
i

~pi

�

�
Z 1

0
du1du2du3u

�1�1
1 u�2�1

2 u
�3�1
3 ðu1 þ u2 þ u3Þðd=2Þþ1�P

i
�i

� eððiM1Þ=ð2u1ÞÞð�2�1þððp2
1
Þ=ð2M1ÞÞþi�ÞeððiM2Þ=ð2u2ÞÞð�2�2þððp2

2
Þ=ð2M2ÞÞþi�ÞeððiM3Þ=ð2u3ÞÞð�2�3þððp2

3
Þ=ð2M3ÞÞ�i�Þ: (D3)

EDWIN BARNES, DIANAVAMAN, AND CHAOLUN WU PHYSICAL REVIEW D 82, 125042 (2010)

125042-24



We want to compute the Fourier-transform of this expression15:

Gð3Þ
R ¼ 23

ð2�Þ3dþ3

Z Y
i

d�id
dpie

�i�ix
þ
i þ ~pi� ~xi ~Gð3Þ

R : (D4)

One of the�i integrals (�3 say) eliminates the factor of �ðPi�iÞ appearing in ~Gð3Þ
R . The remaining two�i integrals then

produce �-functions. Similarly, one of the ~pi integrations removes the �ðPi ~piÞ, and the other two ~pi integrals are easily
computed, with the result

�ðM1Þ�ðM2ÞGð3Þ
R ¼ �ð2�Þ3i

P
i
�i�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ
Z 1

0
du1du2du3e

�ð�=2ÞðððM1Þ=ðu1ÞÞþððM2Þ=ðu2ÞÞ�ððM3Þ=ðu3ÞÞÞ

� ðu1u2Þ�3�1ðu1u3Þ�2�1ðu2u3Þ�1�1

ðu1 þ u2 þ u3Þ
P

i
�i�1

�

�
�M1

u1
þM3

u3
� xþ13

�
�

�
�M2

u2
þM3

u3
� xþ23

�

� eðð�iÞ=ðu1þu2þu3ÞÞ½u1u3x213þu2u3x
2
23
þu1u2x

2
12
�: (D5)

Further progress is facilitated by the following change of integration variables:

si ¼ 1

ui

u1u2u3
u1 þ u2 þ u3

; ui ¼ s1s2 þ s1s3 þ s2s3
si

: (D6)

After using the two �-functions to perform the integrations over s1 and s2, we are left with
16:

�ðM1Þ�ðM2ÞGð3Þ
R ¼ �ð2�Þ3i

P
i
�i�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ jxþ13j��2 jxþ23j��1eiM1ðx213þi�Þ=xþ
13 � eiM2ðx223þi�Þ=xþ

23

Z 1

0
ds3s

�3�1
3

� j �M2 þ xþ12s3j�1�1j �M1 � xþ12s3j�2�1e�iv12x
þ
12
s3 � �

��M2 þ xþ12s3
xþ23

�
�

��M1 � xþ12s3
xþ13

�
; (D7)

where

v12 ¼ x212
xþ12

þ x223
xþ23

� x213
xþ13

: (D8)

Comparing the integral in (D7) with (A5), we see that we have essentially already evaluated this integral. It can be
expressed in terms of the functions Iþþþ, Iþþ�, and Iþ�� we defined in Sec. III A and Appendix A. We must first send
M1 ! �M1,M2 ! �M2, and v12 ! �v12 and then impose the constraintsM1 > 0,M2 > 0. From (A18)–(A20), we see
that only Iþ�� is nonvanishing under these constraints. Since I��� can be obtained from Iþ�� by swapping parameters
(see (A7)), this function will also contribute, and we find

�ðM1Þ�ðM2ÞGð3Þ
R ¼ �ð2�Þ3i

P
i
�i�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ jxþ13j��2 jxþ23j��1 jxþ12j��3eiM1ðx213þi�Þ=xþ13 � eiM2ðx223þi�Þ=xþ23�ðM1Þ�ðM2Þ�ðxþ31Þ�ðxþ32Þ

�
�
�ðxþ12ÞM�2�1

1 M
�1þ�3�1
2 � Bð�3; �1Þ�1ð�3; 1� �2; �1 þ �3;�M2

M1

;�iv12M2Þ

þ �ðxþ21ÞM�2þ�3�1
1 M�1�1

2 Bð�3; �2Þ�1ð�3; 1� �1; �2 þ �3;�M1

M2

; iv12M1Þ
�
: (D9)

Notice that this expression is nonvanishing only when xþ3 > xþ2 and xþ3 > xþ1 , which is consistent with our expectation that
Gð3Þ

R is a retarded correlator for which xþ3 =2 is the largest time.

15We include a factor of 2 for each of the three �i integrals because the nonrelativistic energies are given by 2�i.
16The � in (D5) can be set to zero since the integral remains convergent in this limit. A different � regulator is introduced in (D7) to
impose the vanishing of Gð3Þ

R at xþ13 ¼ 0 and xþ23 ¼ 0. The fact that Gð3Þ
R vanishes at these points is evident from (D5) since one or both

of the �-functions vanish identically.
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The advanced three-point function can be obtained by starting from ~Gð3Þ
A ¼ ð ~Gð3Þ

R Þ�. We again suppose thatM1,M2 > 0,
M3 < 0. Similar steps to the above lead to the expression

�ðM1Þ�ðM2ÞGð3Þ
A ¼ �ð2�Þ3ð�iÞ

P
i
�i�ðPi MiÞ

�ð�1Þ�ð�2Þ�ð�3Þ jxþ13j��2 jxþ23j��1eiM1ðx213þi�Þ=xþ
13 � eiM2ðx223þi�Þ=xþ

23

�
Z 1

0
ds3s

�3�1
3 jM2 þ xþ12s3j�1�1jM1 � xþ12s3j�2�1eiv12x

þ
12
s3 � �

�
M2 þ xþ12s3

xþ23

�
�

�
M1 � xþ12s3

xþ13

�
: (D10)

This time, the integral over s3 is precisely the same as I as it is given in (A5). The conditions M1 > 0 and M2 > 0 now
single out Iþþþ and I�þþ as the sole contributors, and we find

�ðM1Þ�ðM2ÞGð3Þ
A ¼�ð2�Þ3ð�iÞ

P
i
�i�ðPiMiÞ

�ð�1Þ�ð�2Þ�ð�3Þ jxþ13j��2 jxþ23j��1 jxþ12j��3eiM1ðx213þi�Þ=xþ
13

�eiM2ðx223þi�Þ=xþ23�ðM1Þ�ðM2Þ�ðxþ13Þ�ðxþ23Þ
�
�ðxþ12ÞM�2þ�3�1

1 M�1�1
2

�Bð�3;�2Þ�1ðy�3;1��1;�2þ�3;�M1

M2

;iv12M1Þ

þ�ðxþ21ÞM�2�1
1 M

�1þ�3�1
2 Bð�3;�1Þ�1ð�3;1��2;�1þ�3;�M2

M1

;�iv12M2Þ
�
: (D11)

We see that this result is consistent with the interpretation
as an advanced correlator, with xþ3 =2 now being the small-
est time.

APPENDIX E: �g1
2 METRIC FLUCTUATION

SPECTRUM

Let us begin with a brief reminder of the scalar spherical
harmonics on S5, written as an S1 fibration over CP2:

ds2
S5

¼ ðd�þ sin2!3Þ2 þ ½d2 þ sin2ð!2
1 þ!2

2

þ cos2!2
3Þ�

!1 ¼ 1

2
ðcosc d�þ sinc sin�d
Þ

!2 ¼ 1

2
ðsinc d�� cosc sin�d
Þ

!3 ¼ 1

2
ðdc þ cos�d
Þ

(E1)

where 0���2�, 0 �  � �
2 , 0 � c � 4�, 0����

and 0 � 
 � 2�.
The scalar spherical harmonics are solutions to the box

equation

hS5Y ¼ 1ffiffiffi
g

p @i
ffiffiffi
g

p
gij@jY ¼ �lðlþ 4ÞY; l ¼ 0; 1; 2 . . .

(E2)

where

Y ¼ ein��ein

einc c�ð�ÞUðÞ (E3)

and

�ð�Þ¼ ð1�cos�Þð1=2Þjnc�n
jð1þcos�Þð1=2Þjncþn
j
2F1

�
�
�n�;n�þ2jnc jþ1;1þjnc þn
j;1þcos�

2

�
;

UðÞ¼ ðsinÞ2jnc jþ2n�ðcosÞjn��2nc j
2F1

�ð�n;l�nþ2;1þjn��2nc j;cos2Þ
l¼jn��2nc jþ2jnc jþ2n�þ2n (E4)

and where n
 � jnc j.
In the black hole background [11–13]

ds210d;E ¼ kðrÞð1=4Þ
�
r2
�
��2r2fðrÞ

kðrÞ ðdtþ dyÞ2

� fðrÞ
kðrÞ dt

2 þ dy2

kðrÞ þ d~x2
�
þ dr2

r2fðrÞ
þ ðd�þ sin2!3Þ2

kðrÞ þ ds2
CP2

�
; (E5)

one of the simplest fluctuations, which decouples from the
rest, is the metric fluctuation �g1

2 � g22�g12ðt; y; ~x; rÞ�
Yð�;; c ; �; 
Þ, which in the Einstein frame obeys the
equation of motion

h10d;E�g1
2 ¼ 0: (E6)

The other Einstein equations impose additional constraints,
namely �g1

2 must be independent of x1, x2 coordinates.
Substituting the spherical harmonics and the black hole
metric into (E6) leads to
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�
h5d;KK � kðrÞ�ð1=3Þ

�
lðlþ 4Þ þ ðkðrÞ � 1Þn2�

��
�g1

2 ¼ 0;

(E7)

where the D’Alembert operator h5d;KK is written with

respect to the appropriately rescaled noncompact space
metric, such that the 5d Einstein-Hilbert action is properly
normalized upon performing a standard Kaluza-Klein re-
duction on the black hole background:

ds25d;KK ¼ kðrÞð1=3Þ
�
r2
�
��2r2fðrÞ

kðrÞ ðdtþ dyÞ2

� fðrÞ
kðrÞ dt

2 þ dy2

kðrÞ þ d~x2
�
þ dr2

r2fðrÞ
�
: (E8)

In momentum space, and in Minkwoski signature the
equation of motion for the metric fluctuation reads

�g1
2 � Fð!;py; ~p¼ 0;uÞ;
F� u�ð1�uÞðð�i!Þ=ð2ÞÞð1þuÞð!Þ=ð2ÞHðuÞ;

H00 þ
�
�

u
þ �

u� 1
þ "

uþ 1

�
H0 þ ��u�q

uðu� 1Þðuþ 1ÞH¼ 0;

�¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ!Þ2 þ lðlþ 4Þ

4

s
;

���rþ; !� !

2rþ
; py �

py

2rþ
; (E9)

where the H equation is of Heun type, with parameters

� ¼ 1� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ!Þ2 þ lðlþ 4Þ

4

s
;

� ¼ 1� i!E; " ¼ 1þ!;

� ¼ � ¼ 1� i

2
!þ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ!Þ2 þ lðlþ 4Þ

4

s
;

q ¼ � 1þ i

2
!

2
42

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�2ðpy þ!Þ2 þ lðlþ 4Þ

4

s
� 1

3
5

þ!2 � p2
y �

n2��
2

4
: (E10)

(We hope that the parameter of the Heun function, �, is not
confused with the parameter � of the black hole metric,
which is now appearing through �.)
In (E9) we have retained only the solution which be-

haves like an incoming wave at the horizon. The case of the
trivial spherical harmonic (l ¼ 0) was discussed in [11,12],
and was the template for the minimally coupled massless
scalar fluctuation equation of motion (of course, the metric
fluctuations transform as a rank 2 symmetric tensor, and
this is the reason for the additional constraints which were
placed on �g1

2). Here we are interested in the equation of
motion obeyed by massive fluctuations in the black hole
background, which is why we considered the most general
type of scalar spherical harmonic, leading to the equation
of motion (E7). Since the S5 factor is squashed in the 10d
black hole geometry, both l and n� quantum numbers

appear in (E7). However, it is reassuring that despite the
complexity of the metric and of the peculiarities of the
equation of motion for the massive fluctuations, the solu-
tion can still be obtained through Heun’s functions.
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