Physics 5455 - Problem set 4

1. Superposition state and time evolution. Consider a particle of mass m confined to an infinite square well of width a. Suppose the system is initially in the state

$$
|\psi, t=0\rangle=C\left(\left|\varphi_{1}\right\rangle+2\left|\varphi_{3}\right\rangle-2\left|\varphi_{4}\right\rangle\right)
$$

where the $\left\{\left|\varphi_{n}\right\rangle\right\}$ are an orthonormal set of energy eigenstates, $H\left|\varphi_{n}\right\rangle=E_{n}\left|\varphi_{n}\right\rangle$.
(a) Determine C and $|\psi, t\rangle$ for $t>0$.
(b) Compute the mean energy $\langle H\rangle_{\psi}$ of this superposition state at time t.
(c) Compute the Heisenberg picture state $|\psi\rangle_{H}$ corresponding to the Schrödinger picture state $|\psi, t\rangle$.
(d) Briefly explain why the result in (b) does not depend upon whether one works in Heisenberg or Schrödinger picture.
2. Hermite polynomials. The Hermite polynomials $H_{n}(x)$ can be defined by a 'generating function' $g(x, t)$, as

$$
g(x, t) \equiv \exp \left(-t^{2}+2 t x\right)=\sum_{n=0}^{\infty} H_{n}(x) \frac{t^{n}}{n!}
$$

By differentiating the generating function with respect to x and t, derive the recurrence relations

$$
\begin{gathered}
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x) \\
H_{n}^{\prime}(x)=2 n H_{n-1}(x)
\end{gathered}
$$

3. Use the recurrence relations of the last problem to show that the Hermite polynomial $H_{n}(x)$ satisfies the ODE

$$
H_{n}^{\prime \prime}(x)-2 x H_{n}^{\prime}(x)+2 n H_{n}(x)=0
$$

4. From the generating function given in a previous problem, derive the orthonormality relation between Hermite polynomials

$$
\int_{-\infty}^{\infty} d x H_{m}(x) H_{n}(x) e^{-x^{2}}=2^{n} \sqrt{\pi} n!\delta_{m, n}
$$

Hint: multiply two copies of the generating function and $e^{-x^{2}}$, and integrate.

