
Physics 5455 – Problem set 7

1. Calculate the matrix representation of the angular momentum operators Lx, Ly, Lz,
~L2 on states of ℓ = 3/2. (You should get a set of 4× 4 matrices.) Verify explicitly that
the matrices satisfy the commutation relations

[Lx, Ly] = ih̄Lz, [~L2, Lz] = 0

The next several problems concern the Legendre and associated Legendre polynomials.
You will need to make use of the generating function
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and particular values

P2n(0) =
(−)n(2n)!

22n(n!)2
, P2n+1(0) = 0

for the ordinary Legendre polynomials.

2. Show that
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3. A function f(x) is expanded in a Legendre series
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∞
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for constants an. Show that
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4. Expand the Dirac delta function in a series of Legendre polynomials along the interval
[−1, 1]. (In other words, compute the an’s of the previous problem for f(x) = δ(x).)
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5. Show that
∫
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for m < n.

6. Show that
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where the associated Legendre polynomial Pm
n (x) is defined by
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7. The associated Legendre polynomial Pm
n (x) satisfies the self-adjoint ordinary differen-

tial equation
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From the differential equation show that
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for k 6= m.
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