Physics 5455 - Problem set 7

1. Calculate the matrix representation of the angular momentum operators L_{x}, L_{y}, L_{z}, \vec{L}^{2} on states of $\ell=3 / 2$. (You should get a set of 4×4 matrices.) Verify explicitly that the matrices satisfy the commutation relations

$$
\left[L_{x}, L_{y}\right]=i \hbar L_{z}, \quad\left[\vec{L}^{2}, L_{z}\right]=0
$$

The next several problems concern the Legendre and associated Legendre polynomials. You will need to make use of the generating function

$$
\left(1-2 y t+t^{2}\right)^{-1 / 2}=\sum_{\ell=0}^{\infty} P_{\ell}(y) t^{\ell}
$$

orthogonality relation

$$
\int_{-1}^{1} P_{m}(y) P_{n}(y) d y=\frac{2 \delta_{m, n}}{2 n+1}
$$

Rogrigues' formula

$$
P_{n}(y)=\frac{1}{2^{n} n!}\left(\frac{d}{d y}\right)^{n}\left(y^{2}-1\right)^{n}
$$

and particular values

$$
P_{2 n}(0)=\frac{(-)^{n}(2 n)!}{2^{2 n}(n!)^{2}}, \quad P_{2 n+1}(0)=0
$$

for the ordinary Legendre polynomials.
2. Show that

$$
P_{n}^{\prime}(1)=\frac{1}{2} n(n+1)
$$

3. A function $f(x)$ is expanded in a Legendre series

$$
f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x)
$$

for constants a_{n}. Show that

$$
\int_{-1}^{1}(f(x))^{2} d x=\sum_{n=0}^{\infty} \frac{2 a_{n}^{2}}{2 n+1}
$$

4. Expand the Dirac delta function in a series of Legendre polynomials along the interval $[-1,1]$. (In other words, compute the a_{n} 's of the previous problem for $f(x)=\delta(x)$.)
5. Show that

$$
\int_{-1}^{1} x^{m} P_{n}(x) d x=0
$$

for $m<n$.
6. Show that

$$
P_{n}^{-m}(x)=(-)^{m} \frac{(n-m)!}{(n+m)!} P_{n}^{m}(x)
$$

where the associated Legendre polynomial $P_{n}^{m}(x)$ is defined by

$$
P_{n}^{m}(x)=\frac{1}{2^{n} n!}\left(1-x^{2}\right)^{m / 2}\left(\frac{d}{d x}\right)^{n+m}\left(x^{2}-1\right)^{n}
$$

7. The associated Legendre polynomial $P_{n}^{m}(x)$ satisfies the self-adjoint ordinary differential equation

$$
\left(1-x^{2}\right) \frac{d^{2}}{d x^{2}} P_{n}^{m}(x)-2 x \frac{d}{d x} P_{n}^{m}(x)+\left(n(n+1)-\frac{m^{2}}{1-x^{2}}\right) P_{n}^{m}(x)=0
$$

From the differential equation show that

$$
\int_{-1}^{1} P_{n}^{m}(x) P_{n}^{k}(x) \frac{d x}{1-x^{2}}=0
$$

for $k \neq m$.

