Physics 5455 – Problem set 8

- 1. Charged particle in a homogeneous electric field. A particle with mass m and charge q is placed in a homogeneous electric field $\vec{E} = E_0 \hat{x}$ (in three dimensions).
 - (a) What is its potential energy? What sort of energy eigenstate spectrum (*e.g.* discrete, ...) would you expect for this problem?
 - (b) Find the Hamiltonian in the momentum representation and solve the time-independent Schrödinger equation for eigenfunctions $\varphi_E(\vec{p})$. Normalize them.
 - (c) From the result in (b), obtain the corresponding spatial wavefunctions. Hint: you should arrive at Airy functions

$$\operatorname{Ai}(z) = \frac{1}{\pi} \int_0^\infty \cos\left(\frac{s^3}{3} + sz\right) ds$$

2. Cylindrical quantum wire. Consider a quantum wire along the x axis with a confining potential

$$V(\vec{r}) = \begin{cases} -V_0 & 0 \le y^2 + z^2 \le a^2 \\ 0 & y^2 + z^2 > a^2 \end{cases}$$

 $(V_0 \text{ constant}, V_0 > 0)$. Through separation of variables, obtain the form of the bound states in this potential. Write down the conditions that would determine the binding energies, but do not attempt a solution. Hint: you should arrive at Bessel functions. Second hint: asymptotically,

$$I_n(x) \sim \frac{e^x}{\sqrt{2\pi x}}, \quad K_n(x) \sim \frac{e^{-x}}{\sqrt{2\pi x}}$$

as $x \to \infty$.

3. Spherical delta shell potential. Consider a quantum particle in three dimensions, interacting with a spherical delta shell potential

$$V(r) = -\lambda\delta(r-a)$$

 $(a, \lambda > 0).$

- (a) Obtain its s-wave $(\ell = 0)$ scattering states and the reflection amplitude and coefficient for an incoming radial wave $\exp(-ikr)$.
- (b) Derive the condition relating λ to E for the existence of a bound state with $\ell = 0$. Determine its normalized wavefunction.