Physics 5455 - Problem set 9

1. Landau levels. In class, we derived the energy eigenvalues of a charged particle in a constant magnetic field $\vec{B}=B \hat{e}_{z}$. In this problem you will study the wavefunctions.
(a) From the expression

$$
H=\frac{1}{2 m}\left(\vec{p}-\frac{e}{c} \vec{A}\right)^{2}+e \Phi
$$

derive the form

$$
H=-\frac{\hbar^{2}}{2 m} \nabla^{2}-\frac{e B}{2 m c} L_{z}+\frac{e^{2} B^{2}}{8 m c^{2}}\left(x^{2}+y^{2}\right)
$$

(b) Separate variables, and derive a differential equation for the radial part in cylindrical coordinates. Compare the result to the two-dimensional symmetric harmonic oscillator discussed in class.
2. Crossed homogeneous electric and magnetic fields. Consider a charged particle in an electric field $\vec{E}=E_{0} \hat{e}_{x}$ and magnetic field $\vec{B}=B \hat{e}_{z}$, with E_{0} and B constant. Take $\vec{A}=B x \hat{e}_{y}$.
Show that $\left[H, p_{y}\right]=0=\left[H, p_{z}\right]$. Find the energy eigenstates and eigenvalues for this problem.
Hint: a suitable separation ansatz leads to a one-dimensional problem; complete the square in x in the ensuing Hamiltonian.
3. Conserved current for particle in electromagnetic field. Let a particle with mass m, charge e in an electromagnetic field be described by the wavefunction $\psi(\vec{x})$.
(a) Define charge and current densities as

$$
\begin{gathered}
\rho(\vec{x})=e|\psi|^{2} \\
\vec{\jmath}(\vec{x})=\frac{\hbar e}{2 m i}\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}-\frac{2 i e}{\hbar c} \vec{A}|\psi|^{2}\right)
\end{gathered}
$$

Show that these satisfy the continuity equation

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot \vec{\jmath}=0
$$

(b) Verify that ρ and $\vec{\jmath}$ are invariant under gauge transformations

$$
\begin{gathered}
\Phi \mapsto \Phi^{\prime}=\Phi-\frac{1}{c} \frac{\partial \Lambda}{\partial t}, \quad \vec{A} \mapsto \vec{A}^{\prime}=\vec{A}+\nabla \Lambda \\
\psi \mapsto \psi^{\prime}=\exp \left(\frac{i e}{\hbar c} \Lambda\right) \psi
\end{gathered}
$$

4. Plane rotator in a magnetic field. In cylindrical coordinates, the Hamiltonian for a plane rotator about the z axis with fixed distance $\rho=a$ from the origin is

$$
H=\frac{L_{z}^{2}}{2 m a^{2}}=-\frac{\hbar^{2}}{2 m a^{2}} \frac{\partial^{2}}{\partial \phi^{2}}
$$

using the fact that in cylindrical coordinates,

$$
L_{z}=\frac{\hbar}{i} \frac{\partial}{\partial \phi}
$$

(a) Find the energy eigenfunctions and associated energy eigenvalues.
(b) Compute the energy eigenfunctions and eigenvalues in the presence of a magnetic field described by the vector potential

$$
\vec{A}(\rho, \phi)=\frac{B}{2} \hat{e}_{\phi}\left\{\begin{array}{cc}
\rho & \rho \leq b \\
b^{2} / \rho & \rho>b
\end{array}\right\} \equiv A_{\phi} \hat{e}_{\phi}
$$

with $b<a$. What is the associated magnetic field?

