1. Verify the expansion of the triple vector product
\[\vec{A} \times (\vec{B} \times \vec{C}) = \vec{B}(\vec{A} \cdot \vec{C}) - \vec{C}(\vec{A} \cdot \vec{B}) \]

2. (AWH 3.5.1) If \(S(x, y, z) = (x^2 + y^2 + z^2)^{-3/2} \), find
 (a) \(\nabla S \) at the point \((1, 2, 3) \)
 (b) the magnitude of the gradient of \(S \), \(|\nabla S| \), at \((1, 2, 3) \)
 (c) the direction cosines of \(\nabla S \) at \((1, 2, 3) \)

3. (AWH 3.5.2)
 (a) Find a unit vector perpendicular to the surface
 \[x^2 + y^2 + z^2 = 3 \]
 at the point \((1, 1, 1) \)
 (b) Derive the equation of the plane tangent to the surface at \((1, 1, 1) \)

4. (AWH 3.5.6) For a particle moving in a circular orbit \(\vec{r} = \hat{x}r \cos(\omega t) + \hat{y}r \sin(\omega t) \), \((r, \omega \) constant)
 (a) evaluate \(\vec{r} \times \dot{\vec{r}} \)
 (b) Show that
 \[\frac{d^2}{dt^2} \vec{r} + \omega^2 \vec{r} = 0 \]

5. (AWH 3.5.9) Show
 \[\nabla \cdot (\vec{A} \times \vec{B}) = \vec{B} \cdot (\nabla \times \vec{A}) - \vec{A} \cdot (\nabla \times \vec{B}) \]
 (Hint: treat as a triple scalar product.)

6. (AWH 3.6.5) Verify the vector identity
 \[\nabla \times (\vec{A} \times \vec{B}) = (\vec{B} \cdot \nabla)\vec{A} - (\vec{A} \cdot \nabla)\vec{B} - \vec{B}(\nabla \cdot \vec{A}) + \vec{A}(\nabla \cdot \vec{B}) \]
7. The velocity of a two-dimensional flow of liquid is given by
\[\vec{V} = \hat{x}u(x, y) - \hat{y}v(x, y) \]

If the liquid is incompressible and the flow is irrotational, show that
\[\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \]

8. (AWH 3.6.10) Show that \(\nabla \times (\varphi \nabla \varphi) = 0 \).

9. (AWH 3.6.15) Show that any solution of the equation
\[\nabla \times (\nabla \times \vec{A}) - k^2 \vec{A} = 0 \]
automatically satisfies the vector Helmholtz equation
\[\nabla^2 \vec{A} + k^2 \vec{A} = 0 \]
and the solenoidal condition \(\nabla \cdot \vec{A} = 0 \). (Hint: let \(\nabla \cdot \) operate on the first equation.)

10. Compute the line integral
\[\int_C (x^3 + y)ds \]
for \(C \) the curve described by \(x = 3t, y = t^3, t \in [0, 1] \).

11. Compute the line integral
\[\int_C (\sin x + \cos y)ds \]
where \(C \) is the line segment from \((0, 0) \) to \((\pi, 2\pi) \).

12. Compute the line integral
\[\int_C (ydx + xdy) \]
for \(C \) the curve \(y = x^2, x \in [0, 1] \).

13. Compute the line integral
\[\int_C (xzdx + (y + z)dy + xdz) \]
for \(C \) the curve \(x = \exp t, y = \exp(-t), z = \exp(2t), 0 \leq t \leq 1 \).