Physics 5714 - Problem set 2

$(\mathrm{AWH}=$ Arfken-Weber-Harris, 7 th edition $)$
Note: my conventions (and those of the lecture notes 5714 vc .pdf) differ slightly from AWH. I'll be following my own conventions.

1. The velocity of a two-dimensional flow of liquid is given by

$$
\vec{V}=\hat{x} u(x, y)-\hat{y} v(x, y)
$$

If the liquid is incompressible and the flow is irrotational, show that

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

2. (AWH 3.6.10) Show that $\nabla \times(\varphi \nabla \varphi)=0$.
3. (AWH 3.6.15) Show that any solution of the equation

$$
\nabla \times(\nabla \times \vec{A})-k^{2} \vec{A}=0
$$

automatically satisfies the vector Helmholtz equation

$$
\nabla^{2} \vec{A}+k^{2} \vec{A}=0
$$

and the solenoidal condition $\nabla \cdot \vec{A}=0$. (Hint: let $\nabla \cdot$ operate on the first equation.)
4. Compute the line integral

$$
\int_{C}\left(x^{3}+y\right) d s
$$

for C the curve described by $x=3 t, y=t^{3}, t \in[0,1]$.
5. Compute the line integral

$$
\int_{C}(\sin x+\cos y) d s
$$

where C is the line segment from $(0,0)$ to $(\pi, 2 \pi)$.
6. Compute the line integral

$$
\int_{C}(y d x+x d y)
$$

for C the curve $y=x^{2}, x \in[0,1]$.
7. Compute the line integral

$$
\int_{C}(x z d x+(y+z) d y+x d z)
$$

for C the curve $x=\exp t, y=\exp (-t), z=\exp (2 t), 0 \leq t \leq 1$.
8. For the vector field

$$
\vec{F}=-(\exp (-x))(\ln y) \hat{x}+(\exp (-x))\left(y^{-1}\right) \hat{y}
$$

show that it is conservative (meaning, $\nabla \times \vec{F}=0$) and then find a function $f(x, y)$ such that $\vec{F}=\nabla f$.
9. For the vector field

$$
\vec{F}=3 x^{2} \hat{x}+6 y^{2} \hat{y}+9 z^{2} \hat{z}
$$

show that it is conservative (meaning, $\nabla \times \vec{F}=0$) and then find a function $f(x, y)$ such that $\vec{F}=\nabla f$.
10. Show that the line integral

$$
\int_{(-1,2)}^{(3,1)}\left[\left(y^{2}+2 x y\right) d x+\left(x^{2}+2 x y\right) d y\right]
$$

is independent of path, and then use that fact to evaluate the line integral. (Hint: the last couple of problems are what I have in mind here.)
11. Show that if

$$
\vec{F}(x, y, z)=g\left(x^{2}+y^{2}+z^{2}\right)(x \hat{x}+y \hat{y}+z \hat{z})
$$

for some function $g(t)$, then \vec{F} is conservative, meaning $\nabla \times \vec{F}=0$. Hint: show that $\vec{F}=\nabla f, f(x, y, z)=\frac{1}{2} h\left(x^{2}+y^{2}+z^{2}\right), h(u)=\int g(u) d u$.

