Physics 5714 - Problem set 3

Note: my conventions (and those of the lecture notes 5714vc.pdf) differ slightly from AWH. I'll follow my own conventions.

1. Use Green's theorem to evaluate the line integral

$$
\oint_{C}\left(2 x y d x+y^{2} d y\right)
$$

where C is the closed curve formed by $y=x / 2$ and $y=\sqrt{x}$ between $(0,0)$ and $(4,2)$.
2. Use Green's theorem to evaluate the line integral

$$
\oint_{C}(x y d x+(x+y) d y)
$$

where C is the triangle with vertices $(0,0),(2,0),(0,1)$.
3. Evaluate the surface integral

$$
\iint_{G} g(x, y, z) d S
$$

for $g(x, y, z)=2 y^{2}+z$, and where G is the surface defined by $z=x^{2}-y^{2}, 0 \leq x^{2}+y^{2} \leq$ 1.
4. Let G be the sphere $x^{2}+y^{2}+z^{2}=a^{2}$. Evaluate each of the following: (Hint: use symmetries to make each trivial.)
(a)

$$
\iint_{G} z d S
$$

(b)

$$
\iint_{G} \frac{x+y^{3}+\sin z}{1+z^{4}} d S
$$

(c)

$$
\iint_{G}\left(x^{2}+y^{2}+z^{2}\right) d S
$$

(d)

$$
\iint_{G} x^{2} d S
$$

(e)

$$
\iint_{G}\left(x^{2}+y^{2}\right) d S
$$

5. Use Gauss's divergence theorem to compute

$$
\iint_{\partial S} \vec{F} \cdot \hat{n} d S
$$

for $\vec{F}=\langle z, x, y\rangle$, and S the hemisphere $0 \leq z \leq \sqrt{9-x^{2}-y^{2}}$.
6. Let $\vec{F}=\langle x, y, z\rangle$ and let S be a solid for which Gauss's divergence theorem applies. Show the volume of S is given by

$$
\operatorname{Vol}(S)=\frac{1}{3} \iint_{\partial S} \vec{F} \cdot \hat{n} d S
$$

7. Use Stokes's theorem to compute

$$
\iint_{S}(\nabla \times \vec{F}) \cdot \vec{n} d S
$$

where $\vec{F}=\left\langle x z^{2}, x^{3}, \cos (x z)\right\rangle$ and S is the part of the ellipsoid $x^{2}+y^{2}+3 z^{2}=1$ below the $x y$ plane, \vec{n} the lower normal.
8. Use Stokes's theorem to compute

$$
\oint_{C} \vec{F} \cdot \vec{T} d s
$$

for $\vec{F}=\langle 2 z, x, 3 y\rangle, C$ the ellipse that is the intersection of the plane $z=x$ and the cylinder $x^{2}+y^{2}=4$, oriented clockwise as seen from above.
9. Compute

$$
\int_{-\infty}^{\infty}\left(\frac{d^{2}}{d x^{2}} \delta(x)\right) f(x) d x
$$

10. If \mathbf{C} is the field of complex numbers, which vectors in \mathbf{C}^{3} are linear combinations of $(1,0,-1),(0,1,1),(1,1,1) ?$
11. Let V be the set of all pairs (x, y) of real numbers, and let F be the field of real numbers. Define

$$
\begin{aligned}
(x, y)+\left(x_{1}, y_{1}\right) & =\left(x+x_{1}, y+y_{1}\right) \\
c(x, y) & =(c x, y)
\end{aligned}
$$

Is V, with these operations, a vector space over the field of real numbers?
12. On \mathbf{R}^{n}, define the operations

$$
\begin{aligned}
\alpha \oplus \beta & =\alpha-\beta \\
c \cdot \alpha & =-c \alpha
\end{aligned}
$$

for $\alpha, \beta \in \mathbf{R}^{n}$ and c a scalar. Which of the axioms for a vector space are satisfied by $\left(\mathbf{R}^{n}, \oplus, \cdot\right) ?$
13. Show that the only subspaces of \mathbf{R} are \mathbf{R} itself and the zero subspace.
14. Let V be the vector space of all functions from \mathbf{R} to \mathbf{R}. Let V_{e} be the subset of even functions, $f(-x)=f(x)$. Let V_{o} be the subset of odd functions, $f(-x)=-f(x)$. Show that V_{e}, V_{o} are subspaces of V.

