Physics 5714 – Problem set 4

1. Let V be the vector space of all 2×2 matrices over a field F. Show that V has dimension 4 by exhibiting a basis with 4 elements.

2. Let V be a vector space over a subfield F of the complex numbers. Suppose α, β, γ are linearly independent vectors in V. Show that $(\alpha + \beta), (\beta + \gamma), (\gamma + \alpha)$ are linearly independent.

3. Show that the vectors

 \begin{align*}
 \alpha_1 &= (1, 1, 0, 0) \\
 \alpha_2 &= (0, 0, 1, 1) \\
 \alpha_3 &= (1, 0, 0, 4) \\
 \alpha_4 &= (0, 0, 0, 2)
 \end{align*}

 form a basis for \mathbb{R}^4. Find the coordinates of each of the standard basis vectors in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$.

4. Let $B = \{\alpha_1, \alpha_2, \alpha_3\}$ be the ordered basis for \mathbb{R}^3 consisting of

 \begin{align*}
 \alpha_1 &= (1, 0, -1) \\
 \alpha_2 &= (1, 1, 1) \\
 \alpha_3 &= (1, 0, 0)
 \end{align*}

 What are the coordinates of the vector (a, b, c) in the ordered basis B?

5. Let V be the vector space over the complex numbers of all functions $\mathbb{R} \rightarrow \mathbb{C}$, i.e. the space of all complex-valued functions on the real line. Let $f_1(x) = 1$, $f_2(x) = \exp(ix)$, $f_3(x) = \exp(-ix)$.

 (a) Show that f_1, f_2, f_3 are linearly independent.

 (b) Let $g_1(x) = 1$, $g_2(x) = \cos x$, $g_3(x) = \sin x$. Find an invertible 3×3 matrix P such that

 \[g_j(x) = \sum P_{ij} f_i(x) \]

6. Let V be the real vector space of all polynomial functions $\mathbb{R} \rightarrow \mathbb{R}$ of degree 2 or less, i.e. the space of all functions f of the form

 \[f(x) = c_0 + c_1 x + c_2 x^2 \]

 Let t be a fixed real number, and define

 \begin{align*}
 g_1(x) &= 1, \\
 g_2(x) &= x + t, \\
 g_3(x) &= (x + t)^2
 \end{align*}

 Show that $B = \{g_1, g_2, g_3\}$ is a basis for V. If $f(x) = c_0 + c_1 x + c_2 x^2$, what are the coordinates of f in this ordered basis B?
7. Let \(\alpha_1 = (1,1,-2,1), \alpha_2 = (3,0,4,-1), \alpha_3 = (-1,2,5,2) \). Let \(\alpha = (4,-5,9,-7), \beta = (3,1,-4,4), \gamma = (-1,1,0,1) \). Which of the vectors \(\alpha, \beta, \gamma \) are in the subspace of \(\mathbb{R}^4 \) spanned by the \(\alpha_i \)?

8. Find the range, rank, null space, and nullity for the zero transformation and the identity transformation on a finite-dimensional vector space \(V \).

9. Describe the range and null space of the differentiation transformation on the vector space of polynomials.

10. Is there a linear transformation \(T : \mathbb{R}^3 \to \mathbb{R}^2 \) such that \(T(1,-1,1) = (1,0), T(1,1,1) = (0,1) \)?

11. Let \(V \) be the vector space of all \(n \times n \) matrices over a field \(F \), and let \(B \) be a fixed \(n \times n \) matrix. If
\[
T(A) = AB - BA
\]
verify that \(T \) is a linear transformation \(V \to V \).

12. Let \(V \) be the set of all complex numbers regarded as a vector space over the field of real numbers. Find a function \(V \to V \) which is a linear transformation on the above vector space, but which is not a linear transformation on \(\mathbb{C} \), i.e. which is not complex linear.

13. Let \(V \) be an \(n \)-dimensional vector space over the field \(F \), \(T \) a linear transformation \(V \to V \) such that range \(T = \) null space \(T \). Show that \(n \) is even.

14. Let \(V \) be a vector space, \(T : V \to V \) a linear transformation. Show that the following statements are equivalent:

(a) the intersection of the range of \(T \) and the null space of \(T \) is the zero subspace of \(V \)

(b) if \(T(T\alpha) = 0 \) then \(T\alpha = 0 \)

15. Find two linear operators \(T, U \) on \(\mathbb{R}^2 \) such that \(TU = 0, UT \neq 0 \).

16. Let \(T \) be the (unique) linear operator on \(\mathbb{C}^3 \) for which
\[
T\epsilon_1 = (1,0,i), \ T\epsilon_2 = (0,1,1), \ T\epsilon_3 = (i,1,0)
\]
where the \(\epsilon_i \) are the standard basis vectors. Is \(T \) invertible?