Physics 5714 - Problem set 4

1. Find three vectors in \mathbf{R}^{3} which are linearly dependent, and are such that any two of them are linearly independent.
2. Let V be the vector space of all 2×2 matrices over a field F. Show that V has dimension 4 by exhibiting a basis with 4 elements.
3. Let V be a vector space over a subfield F of the complex numbers. Suppose α, β, γ are linearly independent vectors in V. Show that $(\alpha+\beta),(\beta+\gamma),(\gamma+\alpha)$ are linearly independent.
4. Show that the vectors

$$
\begin{aligned}
& \alpha_{1}=(1,1,0,0) \\
& \alpha_{2}=(0,0,1,1) \\
& \alpha_{3}=(1,0,0,4) \\
& \alpha_{4}=(0,0,0,2)
\end{aligned}
$$

form a basis for \mathbf{R}^{4}. Find the coordinates of each of the standard basis vectors in the ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$.
5. Let $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be the ordered basis for \mathbf{R}^{3} consisting of

$$
\begin{aligned}
& \alpha_{1}=(1,0,-1) \\
& \alpha_{2}=(1,1,1) \\
& \alpha_{3}=(1,0,0)
\end{aligned}
$$

What are the coordinates of the vector (a, b, c) in the ordered basis \mathcal{B} ?
6. Let V be the vector space over the complex numbers of all functions $\mathbf{R} \rightarrow \mathbf{C}$, i.e. the space of all complex-valued functions on the real line. Let $f_{1}(x)=1, f_{2}(x)=\exp (i x)$, $f_{3}(x)=\exp (-i x)$.
(a) Show that f_{1}, f_{2}, f_{3} are linearly independent.
(b) Let $g_{1}(x)=1, g_{2}(x)=\cos x, g_{3}(x)=\sin x$. Find an invertible 3×3 matrix P such that

$$
g_{j}(x)=\sum_{i} P_{i j} f_{i}(x)
$$

7. Let V be the real vector space of all polynomial functions $\mathbf{R} \rightarrow \mathbf{R}$ of degree 2 or less, i.e. the space of all functions f of the form

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}
$$

Let t be a fixed real number, and define

$$
g_{1}(x)=1, \quad g_{2}(x)=x+t, \quad g_{3}(x)=(x+t)^{2}
$$

Show that $\mathcal{B}=\left\{g_{1}, g_{2}, g_{3}\right\}$ is a basis for V. If $f(x)=c_{0}+c_{1} x+c_{2} x^{2}$, what are the coordinates of f in this ordered basis \mathcal{B} ?
8. Let $\alpha_{1}=(1,1,-2,1), \alpha_{2}=(3,0,4,-1), \alpha_{3}=(-1,2,5,2)$. Let $\alpha=(4,-5,9,-7)$, $\beta=(3,1,-4,4), \gamma=(-1,1,0,1)$. Which of the vectors α, β, γ are in the subspace of \mathbf{R}^{4} spanned by the α_{i} ?
9. Find the range, rank, null space, and nullity for the zero transformation and the identity transformation on a finite-dimensional vector space V.
10. Describe the range and null space of the differentiation transformation on the vector space of polynomials.
11. Is there a linear transformation $T: \mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ such that $T(1,-1,1)=(1,0), T(1,1,1)=$ $(0,1)$?
12. Let V be the vector space of all $n \times n$ matrices over a field F, and let B be a fixed $n \times n$ matrix. If

$$
T(A)=A B-B A
$$

verify that T is a linear transformation $V \rightarrow V$.
13. Let V be the set of all complex numbers regarded as a vector space over the field of real numbers. Find a function $V \rightarrow V$ which is a linear transformation on the above vector space, but which is not a linear transformation on \mathbf{C}, i.e. which is not complex linear.
14. Let V be an n-dimensional vector space over the field F, T a linear transformation $V \rightarrow V$ such that range $T=$ null space T. Show that n is even.
15. Let V be a vector space, $T: V \rightarrow V$ a linear transformation. Show that the following statements are equivalent:
(a) the intersection of the range of T and the null space of T is the zero subspace of V
(b) if $T(T \alpha)=0$ then $T \alpha=0$

