Physics 5714 - Problem set 5

1. Find two linear operators T, U on \mathbf{R}^{2} such that $T U=0, U T \neq 0$.
2. Let T be the (unique) linear operator on \mathbf{C}^{3} for which

$$
T \epsilon_{1}=(1,0, i), \quad T \epsilon_{2}=(0,1,1), \quad T \epsilon_{3}=(i, 1,0)
$$

where the ϵ_{i} are the standard basis vectors. Is T invertible?
3. Let T be a linear transformation from \mathbf{R}^{3} into \mathbf{R}^{2}, and let U be a linear transformation from \mathbf{R}^{2} into \mathbf{R}^{3}. Show that the linear transformation $U T$ is not invertible.
4. Let V, W be vector spaces over a field F, and let U be an isomorphism of V onto W. Show that $T \mapsto U T U^{-1}$ is an isomorphism of $L(V, V)$ onto $L(W, W)$.
5. Let θ be a real number. Show that the following two matrices are similar over the field of complex numbers:

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right],\left[\begin{array}{cc}
\exp (i \theta) & 0 \\
0 & \exp (-i \theta)
\end{array}\right]
$$

6. (AWH 2.2.7) For square matrices A, B, C, verify the Jacobi identity

$$
[A,[B, C]]=[B,[A, C]]-[C,[A, B]]
$$

where $[A, B]=A B-B A$.
7. (AWH 2.2.11) The three Pauli spin matrices are

$$
\sigma_{1}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Show that
(a) $\left(\sigma_{i}\right)^{2}=1$
(b) $\sigma_{j} \sigma_{k}=i \sigma_{\ell},(j, k, \ell)=(1,2,3),(2,3,1),(3,1,2)$
(c) $\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} 1$
8. Using the Pauli σ_{i} of the last exercise, show that

$$
(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b})=(\vec{a} \cdot \vec{b}) 1+i \vec{\sigma} \cdot(\vec{a} \times \vec{b})
$$

where $\vec{\sigma}=\sigma_{1} \hat{x}+\sigma_{2} \hat{y}+\sigma_{3} \hat{z}$.

