Physics 5714 – Problem set 5

1. Find two linear operators T, U on \mathbb{R}^2 such that $TU = 0, UT \neq 0$.

2. Let T be the (unique) linear operator on \mathbb{C}^3 for which

$T\epsilon_1 = (1, 0, i), \ T\epsilon_2 = (0, 1, 1), \ T\epsilon_3 = (i, 1, 0)$

where the ϵ_i are the standard basis vectors. Is T invertible?

3. Let T be a linear transformation from \mathbb{R}^3 into \mathbb{R}^2, and let U be a linear transformation from \mathbb{R}^2 into \mathbb{R}^3. Show that the linear transformation UT is not invertible.

4. Let V, W be vector spaces over a field F, and let U be an isomorphism of V onto W. Show that $T \mapsto UTU^{-1}$ is an isomorphism of $L(V, V)$ onto $L(W, W)$.

5. Let θ be a real number. Show that the following two matrices are similar over the field of complex numbers:

$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \ \begin{bmatrix} \exp(i\theta) & 0 \\ 0 & \exp(-i\theta) \end{bmatrix}$

6. (AWH 2.2.7) For square matrices A, B, C, verify the Jacobi identity

where $[A, B] = AB - BA$.

7. (AWH 2.2.11) The three Pauli spin matrices are

$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

Show that

(a) $(\sigma_i)^2 = 1$

(b) $\sigma_j\sigma_k = i\sigma_\ell, \ (j, k, \ell) = (1, 2, 3), (2, 3, 1), (3, 1, 2)$

(c) $\sigma_j\sigma_i + \sigma_i\sigma_j = 2\delta_{ij}1$

8. Using the Pauli σ_i of the last exercise, show that

$(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = (\vec{a} \cdot \vec{b}) \ 1 + i\vec{\sigma} \cdot (\vec{a} \times \vec{b})$

where $\vec{\sigma} = \sigma_1\hat{x} + \sigma_2\hat{y} + \sigma_3\hat{z}$.