Physics 5714 - Problem set 6

1. (AWH 2.2.20) If A^{-1} has elements

$$
\left(A^{-1}\right)_{i j}=\frac{1}{\operatorname{det} A}(-)^{i+j} M_{j i}
$$

(where the $M_{j i}$ are the minors, transposed), then show that $A^{-1} A=1$. (To be clear, since this is A^{-1}, of course $A^{-1} A=1$. What I want you to do is to check that this follows from the expression above for A^{-1}, to better understand minors and cofactors. Answers stating simply that " A^{-1} is the inverse of A " will receive zero credit.)
2. Show that $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det} A)^{-1}$.
3. Let V be the vector space of polynomials of degree ≤ 2, i.e.

$$
c_{0}+c_{1} x+c_{2} x^{2}
$$

with dot product defined by

$$
f(x) \cdot g(x)=\int_{0}^{1} f(x) g(x) d x
$$

Use the Gram-Schmidt procedure to construct an orthonormal basis from the linearly independent vectors

$$
\left\{1, x+1, x^{2}+x\right\}
$$

