Physics 5714 - Problem set 6

1. For the matrix A below, either diagonalize or put in Jordan normal form. In other words, compute a matrix P and a matrix Λ that is either diagonal or in Jordan normal form, such that $A=P \Lambda P^{-1}$.

$$
A=\left[\begin{array}{cc}
3 / 2 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]
$$

2. For the matrix A below, either diagonalize or put in Jordan normal form. In other words, compute a matrix P and a matrix Λ that is either diagonal or in Jordan normal form, such that $A=P \Lambda P^{-1}$.

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-4 & 5
\end{array}\right]
$$

3. For the matrix A below, either diagonalize or put in Jordan normal form. In other words, compute a matrix P and a matrix Λ that is either diagonal or in Jordan normal form, such that $A=P \Lambda P^{-1}$.

$$
A=\left[\begin{array}{ccc}
5 / 2 & -1 / 2 & 0 \\
1 / 2 & 3 / 2 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

4. Compute

$$
\exp \left[\begin{array}{cc}
3 / 2 & -1 / 2 \\
-1 / 2 & 3 / 2
\end{array}\right]
$$

5. Compute

$$
\exp \left[\begin{array}{cc}
1 & 1 \\
-4 & 5
\end{array}\right]
$$

6. (AWH 2.2.34) If A, B are Hermitian matrices, show that $(A B+B A), i(A B-B A)$ are also Hermitian.
7. (AWH 2.2.37) Two matrices A, B are each Hermitian. Find a necessary and sufficient condition for their product $A B$ to be Hermitian.
8. Two matrices U, H are related by $U=\exp (i a H)$ with a real. If H is Hermitian, show that U is unitary.
