1. The functions $u(x, y), v(x, y)$ are the real, imaginary parts of a holomorphic (equivalently, analytic) function $w(z)$.

 (a) Assuming the required derivatives exist, show that
 \[
 \nabla^2 u = \nabla^2 v = 0
 \]
 Solutions of Laplace’s equation such as $u(x, y), v(x, y)$ are called harmonic functions.

 (b) Show that
 \[
 u_x u_y + v_x v_y = 0
 \]

2. (AWH 11.2.2) Having shown that the real part $u(x, y)$ and the imaginary part $v(x, y)$ of an analytic function $w(z)$ each satisfy Laplace’s equation, show that $u(x, y), v(x, y)$ cannot both have either a maximum or a minimum in the interior of any region in which $w(z)$ is analytic.

3. Show that
 \[
 \exp(iz) = \cos z + i \sin z
 \]
 for every complex number z.

4. For $z = x + iy$, show that
 \[
 |\sin z| \geq |\sin x|
 \]

5. Find all roots of the equation $\cos z = 2$.

6. For a complex number z, define
 \[
 \sinh z = \frac{1}{2} (\exp(z) - \exp(-z)) \quad \cosh z = \frac{1}{2} (\exp(z) + \exp(-z))
 \]
 Show that
 \[
 \sinh(2z) = 2 \sinh z \cosh z
 \]

7. Show that
 \[
 -i \sinh(iz) = \sin z, \quad \cosh(iz) = \cos z
 \]

8. For complex numbers z_1, z_2, show that
 \[
 \sinh(z_1 + z_2) = \sinh z_1 \cosh z_2 + \cosh z_1 \sinh z_2
 \]
 \[
 \cosh(z_1 + z_2) = \cosh z_1 \cosh z_2 + \sinh z_1 \sinh z_2
 \]
9. For \(z = x + iy \), show that

\[
\sinh z = \sinh x \cos y + i \cosh x \sin y \\
\cosh z = \cosh x \cos y + i \sinh x \sin y
\]

10. For \(z = x + iy \), show that

\[
|\sinh z|^2 = \sinh^2 x + \sin^2 y \\
|\cosh z|^2 = \sinh^2 x + \cos^2 y
\]

11. Show that the holomorphic function

\[
f_2(z) = \frac{1}{z^2 + 1} \quad (z \neq \pm i)
\]

is the analytic continuation of the function

\[
f_1(z) = \sum_{n=0}^{\infty} (-)^n z^{2n} \quad (|z| < 1)
\]

into the domain consisting of all points in the \(z \) plane except \(z = \pm i \).

12. Show that the function \(f_2(z) = z^{-2} (z \neq 0) \) is the analytic continuation of the function

\[
f_1(z) = \sum_{n=0}^{\infty} (n + 1)(z + 1)^n \quad (|z + 1| < 1)
\]

into the domain consisting of all points in the \(z \) plane except \(z = 0 \).

13. Find the analytic continuation of the function

\[
f(z) = \int_0^\infty t \exp(-zt) dt \quad (\text{Re} \ z > 0)
\]

into the domain consisting of all points in the \(z \) plane except the origin.

14. Show that the function \((z^2 + 1)^{-1}\) is the analytic continuation of the function

\[
f(z) = \int_0^\infty \exp(-zt)(\sin t) dt \quad (\text{Re} \ z > 0)
\]

into the domain consisting of all points in the \(z \) plane except \(z = \pm i \).