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Basics of string compactifications on stacks

Cluster decomposition conjecture for strings 
on gerbes:                                         
CFT(gerbe) = CFT(disjoint union of spaces)

Application to GLSM’s; realization of 
Kuznetsov’s homological projective duality

LG models; h.p.d. via matrix factorizations

Outline



Stacks

Stacks are a mild generalization of spaces.

One would like to understand strings on stacks:

-- new string compactifications

-- better understand certain existing string 
compactifications

Next:  how to construct QFT’s for
strings propagating on stacks?



Stacks
How to make sense of strings on stacks concretely?

Most (smooth, Deligne-Mumford) stacks can be 
presented as a global quotient

[X/G]

for    a space and    a group.X G

To such a presentation, associate a 
``G-gauged sigma model on X.’’

Problem:  such presentations not unique

(G need not be finite; need not act effectively.)



Stacks
If to [X/G] we associate ``G-gauged sigma model,’’

then:

[C2/Z2]

[X/C×]

defines a 2d theory with a symmetry
called conformal invariance

defines a 2d theory
w/o conformal invariance

Potential presentation-dependence problem:
fix with renormalization group flow

(

X =

C
2
× C×

Z2

)

!==

Same stack, different physics!

(Can’t be checked explicitly, though.)



Renormalization (semi)group flow

Constructs a series of theories that are 
approximations to the previous ones, valid at longer 

and longer distance scales.

The effect is much like starting with 
a picture and then standing further 
and further away from it, to get 

successive approximations; final result 
might look very different from start.

Problem:  cannot follow it explicitly.



Renormalization group

Longer 
distances

Lower
energies

Space of physical theories



Renormalization group

-- is a powerful tool, but unfortunately we really 
can’t follow it completely explicitly in general.

-- can’t really prove in any sense that two theories 
will flow under renormalization group to same point.

Instead, we do lots of calculations, 
perform lots of consistency tests,

and if all works out,
then we believe it.



The problems here are analogous to the derived-
categories-in-physics program.

There, to a given object in a derived category,
one picks a representative with a physical description

(as branes/antibranes/tachyons).
Alas, such representatives are 

not unique.

It is conjectured that different representatives give 
rise to the same low-energy physics, 

via boundary renormalization group flow.
Only indirect tests possible, though.



Stacks

This was the subject of several papers.

For the rest of today’s talk, 
I want to focus on special kinds of stacks, namely,

gerbes.
(= quotient by noneffectively-acting group)

Other issues:  deformation theory

To justify application of stacks to physics,
need to conduct tests of presentation-dependence,

understand issues above.

massless spectra



Gerbes
Gerbes have add’l problems when viewed from this 

physical perspective.

Example:  The naive massless spectrum calculation 
contains multiple dimension zero operators,

which manifestly violates cluster decomposition,
one of the foundational axioms of quantum field 

theory.

There is a single known loophole:  if the target space 
is disconnected.  We think that’s what’s going on....



General decomposition 
conjecture

Consider [X/H ] where

1 −→ G −→ H −→ K −→ 1

and G acts trivially.

We now believe, for (2,2) CFT’s,

(together with some B field), where
Ĝ is the set of irreps of G

CFT([X/H ]) = CFT
([

(X × Ĝ)/K
])



Decomposition 
conjecture

For banded gerbes, K acts trivially upon Ĝ

so the decomposition conjecture reduces to

where the B field is determined by the image of

H2(X, Z(G))
Z(G)→U(1)

−→ H2(X, U(1))

CFT(G − gerbe on X) = CFT





∐

Ĝ

(X, B)







 Banded Example:

Consider [X/D4] where the center acts trivially.

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1

The decomposition conjecture predicts

One of the effective orbifolds has vanishing discrete 
torsion, the other has nonvanishing discrete torsion.

CFT ([X/D4]) = CFT
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)

Z([X/D4]) = Z
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)

Checks:  can show partition functions match:



Check genus one partition functions:

D4 = {1, z, a, b, az, bz, ab, ba = abz}

Z2 × Z2 = {1, a, b, ab}

Z(D4) =
1

|D4|

∑

g,h∈D4,gh=hg

Zg,h

Each of the Zg,h twisted sectors that appears,
is the same as a Z2 × Z2 sector, appearing with
multiplicity |Z2|

2
= 4 except for the

g

h

a

b

a

ab

b

ab

sectors.



Partition functions, cont’d

Z(D4) = |Z2×Z2|
|D4|

|Z2|2 (Z(Z2 × Z2) − (some twisted sectors))

= 2 (Z(Z2 × Z2) − (some twisted sectors))

(In ordinary QFT, ignore multiplicative factors,
but string theory is a 2d QFT coupled to gravity,

and so numerical factors are important.)

Discrete torsion acts as a sign on the

a

b

a

ab

b

ab

twisted sectors

so we see that Z([X/D4]) = Z
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)

with discrete torsion in one component.



A quick check of this example comes from 
comparing massless spectra:

Spectrum for
2

0 0

0 54 0

2 54 54 2

0 54 0

0 0

2

1

0 0

0 3 0

1 51 51 1

0 3 0

0 0

1

1

0 0

0 51 0

1 3 3 1

0 51 0

0 0

1

Sum matches.

and for each                   :[T 6/Z2 × Z2]

[T 6/D4] :



Nonbanded example:

Consider [X/H] where H is the eight-element
group of quaternions, and a Z4 acts trivially.

1 −→ < i > (∼= Z4) −→ H −→ Z2 −→ 1

The decomposition conjecture predicts

CFT([X/H]) = CFT
(

[X/Z2]
∐

[X/Z2]
∐

X
)

Straightforward to show that this is true at the level 
of partition functions, etc.



Another class of examples:
global quotients by nonfinite groups

The banded Zk gerbe over P
N

with characteristic class
can be described mathematically as the quotient

[

C
N+1 − {0}

C×

]

which physically can be described by a U(1) susy 
gauge theory with N+1 chiral fields, of charge k

where the C
× acts as rotations by k times

−1 mod k

How can this be different from ordinary P
N model?



To specify Higgs fields completely, need to specify 
what bundle they couple to.  

If the gauge field     
then    charge    implies 

  

Different bundles => different zero modes 
=> different anomalies => different physics 

∼ L

Φ Q

Φ ∈ Γ(L⊗Q)

The difference lies in nonperturbative effects.
(Perturbatively, having nonminimal charges makes no 

difference.)

(Noncompact worldsheet - theta angle)
(J Distler, R Plesser)



P
N−1 : U(1)A !→ Z2N

Here : U(1)A !→ Z2kN

Example:  Anomalous global U(1)’s

P
N−1

: < XN(d+1)−1 > = qd

Here : < XN(kd+1)−1 > = qd

Example:  A model correlation functions

Example:  quantum cohomology
P

N−1 : C[x]/(xN
− q)

Here : C[x]/(xkN
− q)

Different
physics

Return to the example
[

C
N+1 − {0}

C×

]



Other tests:

* K theory:
XH-equivariant K theory of

twisted K-equivariant K theory of X × Ĝ
=

* Sheaf theory
A sheaf on a banded G-gerbe

a twisted sheaf on the underlying space,
twisted by image of an element of H2(X,Z(G))

=

& Ext groups follow the decomposition.



Gromov-Witten prediction
Notice that there is a prediction here for Gromov-

Witten theory of gerbes:
GW of [X/H ]

should match

GW of
[

(X × Ĝ)/K
]

Banded Zk gerbes:  
E Andreini, Y Jiang, H-H Tseng, 0812.4477



Quantum cohomology
Some old results of Morrison-Plesser (q.c. from gauge 
theory) generalize from toric varieties to toric stacks.

Let the toric stack be described in the form
[

C
N

− E

(C×)n

]

then Batyrev’s conjecture becomes               
C[σ1, · · · , σn] modulo the relations

E some exceptional set
the weight of the ith 

vector under ath

N
∏

i=1

(

n
∑

b=1

Qb
iσb

)Qa

i

= qa

Qa

i

C
×

(ES, T Pantev, ‘05)



Quantum cohomology
Ex:  Quantum cohomology ring of PN is 

C[x]/(xN+1 - q)

Quantum cohomology ring of Zk gerbe over PN

with characteristic class -n mod k is
C[x,y]/(yk - q2, xN+1 - ynq1)

Aside: these calculations give us a check of the 
massless spectrum -- in physics, can derive q.c. ring 

w/o knowing massless spectrum.



Mirrors to stacks

Standard mirror constructions now produce 
character-valued fields, a new effect, which ties into 

the stacky fan description of (BCS ‘04).

(ES, T Pantev, ‘05)

There exist mirror constructions for any model 
realizable as a 2d abelian gauge theory.

For toric stacks (BCS ‘04), there is such a description.



Toda duals
Ex:  The LG mirror of PN is described by the 

holomorphic function
W = exp(−Y1) + · · · + exp(−YN ) + exp(Y1 + · · · + YN )

The analogous duals to Zk gerbes over PN are
described by

W = exp(−Y1) + · · · + exp(−YN ) + Υn exp(Y1 + · · · + YN )

where Υ is a character-valued field

(ES, T Pantev, ‘05;
E Mann, ‘06)

(discrete Fourier transform of components in decomp’ conjecture)



Summary so far:

string compactifications on stacks exist

CFT(string on gerbe) 
= CFT(string on disjoint union of spaces)



GLSM’s
This result can be applied to understand GLSM’s.

Example:  P7[2,2,2,2]

GLSM’s are families of 2d gauge theories
that RG flow to families of CFT’s.

one-parameter
Kahler moduli space

NLSM on
P7[2,2,2,2]

LG
point



GLSM’s
Example, cont’d:  P7[2,2,2,2]

Have 8 fields    of charge 1 (homog’ coords on P7),
plus another 4 fields    of charge -2.

φi

pa

W =
∑

a

paGa(φ)Superpotential

D-terms D =

∑

i

|φi|
2 − 2

∑

a

|pa|
2 − r

r ! 0 ==> NLSM on P7[2,2,2,2]



GLSM’s
Example, cont’d:  P7[2,2,2,2]

At the Landau-Ginzburg point, have superpotential
∑

a

paGa(φ) =
∑

ij

φiA
ij(p)φj

* mass terms for the    , away from locus             .φi {detA = 0}

* leaves just the p fields, of charge -2

* Z2 gerbe, hence double cover



The Landau-Ginzburg point:

{ det = 0 }P3

Because we have a Z2 gerbe over P3 - det....



The Landau-Ginzburg point:

Double 
cover

{ det = 0 }P3 Berry phase

Result:  branched double cover of P3



Branched double cover of P1 over deg 4 locus

XX

XX

XX

XX

So a GLSM for P3[2,2] relates

T2 T2Kahler (no surprise)

CP1 CP1= T2

Aside:  analogue for GLSM for P3[2,2]:



where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, ‘06; R Donagi, ES, ‘07;
A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., arXiv:  0709.3855)

The GLSM realizes:

P7[2,2,2,2]
branched double cover

of P3

(Clemens’ octic double solid)

Kahler

Novel physical realization of geometry

Back to P7[2,2,2,2].  Summary so far:  

Non-birational twisted derived equivalence



Rewrite with Landau-Ginzburg models:

)
LG model on 

Tot( O(-2)4 --> P7)
LG model on

Tot( O(-1)8 --> P3[2,2,2,2] 

GLSM
Kahler

NLSM on 
P7[2,2,2,2]

NLSM on
branched double cover

of P3,
branched over deg 8 locus

RG
RG

GLSM for P7[2,2,2,2]large
radius

LG

RG RG



We believe the GLSM is actually describing
a `noncommutative resolution’ of the branched double 

cover worked out by Kuznetsov.

Kuznetsov has defined 
`homological projective duality’ 

that relates P7[2,2,2,2] to the noncommutative 
resolution above.

Puzzle:

the branched double cover will be singular, 
but the GLSM is smooth at those singularities.

Solution?....



Check that we are seeing K’s noncomm’ resolution:

K defines a `noncommutative space’ via its sheaves 
-- so for example, a Landau-Ginzburg model can be a 

noncommutative space via matrix factorizations.

Here, K’s noncomm’ res’n = (P3,B)
where B is the sheaf of even parts of Clifford 

algebras associated with the universal quadric over P3 
defined by the GLSM superpotential.

B ~ structure sheaf; other sheaves ~ B-modules.

Physics?......



What are the B-branes at the LG point of GLSM?

To answer this, we back up the RG flow to an 
intermediate point, a Landau-Ginzburg model 

(ie, integrate out gauge field of GLSM).

Then, compute B-branes in LG (= matrix factorizations)

LG model on 
Tot( O(-2)k --> Pn)

LG model on
Tot( O(-1)n+1 --> Pk-1[2,...,2] )

GLSM
Kahler

============ GLSM for Pn[2,...,2] ===============
RG RG

RG RG
NLSM

on Pn[2,...,2]
branched double cover

of Pk-1
GLSM
Kahler



Physics:

B-branes in the RG limit theory 
 = B-branes in the intermediate LG theory.

Claim:  matrix factorizations in intermediate LG 
 = Kuznetsov’s B-modules

K has a rigorous proof of this;
B-branes = Kuznetsov’s nc res’n sheaves.

Intuition....



Local picture:

Matrix factorization for a quadratic superpotential: 
even though the bulk theory is massive, one still has 

D0-branes with a Clifford algebra structure.

Here: a `hybrid LG model’ fibered over P3,
gives sheaves of Clifford algebras (determined by the 

universal quadric / GLSM superpotential)
and modules thereof. 

So:  open string sector duplicates Kuznetsov’s def’n.

(Kapustin, Li)



Note we have a physical
realization of nontrivial examples of Kontsevich’s 

`noncommutative spaces’
realized in gauged linear sigma models.

Furthermore, after `backing up’ RG flow to 
Landau-Ginzburg models,

h.p.d. (on linear sections) becomes an
Orlov/Walcher/Hori-type equivalence of matrix 
factorizations in LG models on birational spaces.

(? Kuznetsov = Orlov ?)



Other notes:

* It is now possible in principle to compute GW 
invariants of a noncommutative resolution
-- compute them in the LG model upstairs,

use the fact that A model is invariant under RG.

* We applied Born-Oppenheimer very briefly here;
it also implies a more general statement,

that matrix factorizations `behave nicely’ in families

(Guffin, ES, 0801.3836, 0801.3955)



The GLSM realizes:

P7[2,2,2,2]
branched double cover

of P3

where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S.,
arXiv:  0709.3855)

Non-birational twisted derived equivalence
Physical realization of Kuznetsov’s homological 

projective duality

Summary so far:

Kahler

Novel physical realization of geometry



More examples:

CI of
n quadrics in P2n-1

branched double 
cover of Pn-1,

branched over deg 2n 
locus 

Both sides CY

Homologically projective dual

Kahler



Rewrite with Landau-Ginzburg models:

NLSM on 
Pn[2,...,2]

NLSM on n.c. res’n of
branched double cover

of Pk-1,
branched over deg n+1 locus

LG model on 
Tot( O(-2)k --> Pn)

LG model on
Tot( O(-1)n+1 --> Pk-1[2,...,2] )

GLSM
Kahler

RG RG

Kuznetsov’s
h.p.d.



A math conjecture:

Kuznetsov defines his h.p.d. in terms of coherent 
sheaves.  In the physics language

LG model on 
Tot( O(-2)k --> Pn)

LG model on
Tot( O(-1)n+1 --> Pk-1[2,...,2] )Kahler

GLSM

Kuznetsov’s h.p.d. becomes a statement about
matrix factorizations,

analogous to those in Orlov’s work.

Math conjecture:  Kuznetsov’s h.p.d. has an 
alternative (& hopefully easier) description in

terms of matrix factorizations between LG models on 
birational spaces.



More examples:

CI of 2 quadrics in the total space of

branched double cover of P1xP1xP1,
branched over deg (4,4,4) locus

* In fact, the GLSM has 8 Kahler phases,
4 of each of the above.

* Related to an example of Vafa-Witten involving 
discrete torsion

(Caldararu, Borisov)

P
(

O(−1, 0)⊕2 ⊕O(0,−1)⊕2
)

−→ P
1 × P

1

* Believed to be homologically projective dual

Kahler



A non-CY example:

CI 2 quadrics
in P2g+1

branched double 
cover of P1,

over deg 2g+2
(= genus g curve) 

Here, r flows under RG -- not a const parameter.
Semiclassically, Kahler moduli space falls apart

into 2 chunks.
Positively
curved

Negatively
curved

r flows:

Homologically projective dual.

Kahler



Aside:

One of the lessons of this analysis is that 
gerbe structures are commonplace, 

even generic,
in the hybrid LG models arising in GLSM’s.

To understand the LG points of typical GLSM’s,
requires understanding gerbes in physics.



So far we have discussed several GLSM’s s.t.:

* the LG point realizes geometry in an unusual way

* the geometric phases are not birational

* instead, related by Kuznetsov’s homological
projective duality

We conjecture that Kuznetsov’s homological projective 
duality applies much more generally to GLSM’s.....



More Kuznetsov duals:

Another class of examples, also realizing Kuznetsov’s 
h.p.d., were realized in GLSM’s by Hori-Tong.

(Rodland, Kuznetsov, Borisov-Caldararu, Hori-Tong)

* non-birational

* unusual geometric realization
(via strong coupling effects in nonabelian GLSM)

G(2,7)[17] Pfaffian CYKahler



More Kuznetsov duals:

G(2,N)[1m]
(N odd)

vanishing locus in Pm-1

of Pfaffians

Check r flow:

K = O(m-N) K = O(N-m)

Opp sign, so r flows in same direction, 
consistent with GLSM.

Kahler

r flows:



More Kuznetsov duals:

So far we have discussed how Kuznetsov’s h.p.d. 
realizes Kahler phases of several GLSM’s with

exotic physics.

We conjecture it also applies to ordinary GLSM’s.

Ex:  flops
Some flops are already known to be related by h.p.d.;

K is working on the general case.



So far we have discussed several GLSM’s s.t.:

* the LG point realizes geometry in an unusual way

* the geometric phases are not birational

* instead, related by Kuznetsov’s homological
projective duality

Conjecture: all phases of GLSM’s are related by 
Kuznetsov’s h.p.d.



Basics of string compactifications on stacks

Cluster decomposition conjecture for strings 
on gerbes:                                      
CFT(gerbe) = CFT(disjoint union of spaces)

Application to GLSM’s; realization of 
Kuznetsov’s homological projective duality

LG models; h.p.d. & matrix factorizations

Summary



PhysicsMathematics

Geometry:
Gromov-Witten

Donaldson-Thomas
quantum cohomology

etc

Homotopy, categories:
derived categories, 

stacks, etc.

Supersymmetric
field theories

Renormalization
group


