Abelian GLSM’s, gerbes, nc resolutions, and homological projective duality

Eric Sharpe
Virginia Tech

T Pantev, ES, hepth/0502027, 0502044, 0502053
S Hellerman, A Henriques, T Pantev, ES, M Ando, hepth/0606034
R Donagi, ES, arxiv: 0704.1761
N Addington, E Segal, ES, arXiv: 1211.2446
GLSM’s

Today: gauged linear sigma models (GLSM’s).

These are two-dimensional gauge theories, generalizing the susy \mathbb{CP}^N model.

We add a superpotential to the \mathbb{CP}^N model, and the resulting theory flows in the IR to e.g. a nonlinear sigma model on a hypersurface in \mathbb{CP}^N.
I’m going to focus on a particular class of examples of abelian GLSM’s, which in one phase describe a complete intersection of quadrics.

We’ll see that in other phases,
* geometry is realized via nonperturbative effects
* sometimes one gets a CFT realizing a ‘noncommutative resolution’ of a singular space
 -- new physical realization of noncomm’ geom’
* phases not necessarily birational
Outline:

* Warm-up: GLSM for $\mathbb{P}^3[2,2] = T^2$

* Detour through physics of strings on stacks & gerbes in order to understand that GLSM

 * In higher dim'l examples, we'll see nc resolutions appear.

* Interpret via `homological projective duality' replacing `birational'

* D-brane probes of abstract CFT's for nc res'ns
We’ll begin with the GLSM for $\mathbb{P}^3[2,2]$ (= T^2):

GLSM’s are families of 2d gauge theories that RG flow to families of CFT’s.

In this case:

one-parameter Kahler moduli space

$$r \gg 0$$

NLSM on $\mathbb{P}^3[2,2]$

$$r \ll 0$$

LG point
GLSM for $\mathbb{P}^3[2,2] (=T^2)$:

Briefly, the GLSM consists of:

* 4 chiral superfields $\Phi_i = (\phi_i, \psi_i, F_i)$, one for each homogeneous coordinate on \mathbb{P}^3, each of charge 1 w.r.t. a gauged U(1)

* 2 chiral superfields $P_a = (p_a, \psi_{pa}, F_{pa})$, (one for each of the $\{Q_a = 0\}$), each of charge -2

* a superpotential

$$W = \sum_a p_a Q_a(\phi) = \sum_{ij} \phi_i A^{ij}(p) \phi_j$$
The GLSM describes a symplectic quotient:

Moment map (D term):

\[\sum_i |\phi_i|^2 - 2 \sum_a |p_a|^2 = r \]

\(r \gg 0 : \phi_i \) not all zero

Critical locus of superpotential \(W = \sum_a p_a Q_a(\phi) \) is

\[p_a \frac{\partial Q_a}{\partial \phi_i} = Q_a = 0 \]

but smooth \(\Rightarrow \) \(Q_a, \frac{\partial Q_a}{\partial \phi_i} \) not both zero, hence

\[p_a = Q_a = 0 : \text{NLSM on CY CI} = \mathbb{P}^3[2,2] = T^2 \]

The other limit is more interesting....
Moment map (D term):

\[\sum_i |\phi_i|^2 - 2 \sum_a |p_a|^2 = r \]

\[r \ll 0 : \quad p_a \text{ not all zero} \]

\[W = \sum_a p_a Q_a(\phi) = \sum_{ij} \phi_i A^{ij}(p) \phi_j \]

implies that \(\phi_i \) massive (since deg 2)

NLSM on \(P^1 \) ????

That can't be right, since other phase is CY.
The correct analysis of the \(r \ll 0 \) limit is more subtle.

One subtlety is that the \(\phi_i \) are not massive everywhere.

Write

\[
W = \sum_a p_a Q_a(\phi) = \sum_{ij} \phi_i A^{ij}(p) \phi_j
\]

then they are only massive away from the locus

\[
\{ \det A = 0 \} \subset \mathbb{P}^1
\]

But that just makes things more confusing....
A more important subtlety is the fact that the p’s have nonminimal charge, so over most of the \mathbb{P}^1 of p vevs, we have a nonminimally-charged abelian gauge theory, meaning massless fields have charge -2, instead of 1 or -1.

Mathematically, this is a string on a \mathbb{Z}_2 gerbe, a special kind of stack, itself a generalized space.

Let’s briefly review strings on stacks & gerbes, to understand implications.
Disambiguation:

Just as a bundle is both,
* a place to hang gauge fields, and also
* a space on which strings can propagate

A gerbe is both,
* a place to hang B fields, and also
* a (generalized) space (= stack) on which strings can propagate.

I'm referring to gerbes in the second sense.
How to define the QFT for a string on a stack?

Every* (smooth, Deligne-Mumford) stack can be presented as a global quotient $[X/G]$, for X a space and G a group.

To such a presentation, associate a G-gauged sigma model on X.

Use RG flow in 2d to wash out presentation-dependence. (Now thoroughly checked in 2d.)

A gerbe is defined by a quotient $[X/G]$, in which a subgroup of G acts trivially on X.

(* with minor caveats)
Physically, why is such a gauge theory any different at all from a gauge theory in which one quotients by the effectively-acting coset?

Answer: nonperturbative effects

Specialize to gerbes:
A gerbe is defined by a G-gauge theory in which a subgroup of G acts trivially.

Mathematics/stacks remembers even trivial actions, but why should physics?

First issue:
Physically, why is such a gauge theory any different at all from a gauge theory in which one quotients by the effectively-acting coset?

Answer: nonperturbative effects
To illustrate, imagine an analogue of the \mathbb{CP}^{N-1} model but in which all chiral superfields have charge k instead of charge 1.

Example: Anomalous global $U(1)$'s

$$\mathbb{P}^{N-1} : U(1)_A \rightarrow \mathbb{Z}_{2N}$$

Here: $$U(1)_A \rightarrow \mathbb{Z}_{2kN}$$

Example: A model correlation functions

$$\mathbb{P}^{N-1} : \langle X^{N(d+1)-1} \rangle = q^d$$

Here: $$\langle X^{N(kd+1)-1} \rangle = q^d$$

Example: quantum cohomology

$$\mathbb{P}^{N-1} : \mathbb{C}[x]/(x^N - q)$$

Here: $$\mathbb{C}[x]/(x^{kN} - q)$$

Different physics
General argument:

Compact worldsheet:
To specify Higgs fields completely, need to specify what bundle they couple to.

If the gauge field \(\sim L \)
then \(\Phi \) charge \(Q \) implies
\[
\Phi \in \Gamma(L \otimes Q)
\]

Different bundles \(\Rightarrow \) different zero modes
\(\Rightarrow \) different anomalies \(\Rightarrow \) different physics

For noncpt worldsheets, analogous argument exists.

Strings on gerbes, cont’d

So far, we’ve outlined how physics sees ineffective group actions (via nonperturbative effects) -- so physics distinguishes gerbes from spaces.

There’s another way of thinking about strings on gerbes, which brings the second issue into focus:

string on gerbe

= string on space but with a restriction on nonperturbative sectors

Ex: \mathbb{CP}^{N-1} model with fields of charge k,

= ordinary \mathbb{CP}^{N-1} but with instantons restr’ to degrees divisible by k
Strings on gerbes, cont’d

Second issue:
The resulting theories violate `cluster decomposition’,
one of the foundational axioms of QFT.
How is that consistent?

Answer:
strings on gerbes = strings on disjoint unions of spaces
Consider $[X/H]$ where

$$1 \rightarrow G \rightarrow H \rightarrow K \rightarrow 1$$

and G acts trivially.

We now believe, for (2,2) CFT's,

$$\text{CFT}([X/H]) = \text{CFT} \left(\left[\left(X \times \hat{G} \right) / K \right] \right)$$

(together with some B field), where

\hat{G} is the set of irreps of G
Decomposition conjecture

For banded gerbes, K acts trivially upon \hat{G} so the decomposition conjecture reduces to

\[\text{CFT}(G - \text{gerbe on } Y) = \text{CFT} \left(\bigsqcup_{\hat{G}} (Y, B) \right) \]

\[(Y = [X/K])\]

where the B field is determined by the image of

\[H^2(Y, Z(G)) \xrightarrow{Z(G) \rightarrow U(1)} H^2(Y, U(1)) \]
Basic point:

Maps into \mathbb{Z}_k gerbe over X

= maps into X of degree divisible by k

Compare path integral into disjoint union of k copies of X, with variable B fields:

* if degree not divisible by k,
 then proportional to sum over kth roots of unity
 \[= 0 \quad -- \text{cancel out} \]

* if degree is divisible by k,
 then add instead of cancelling out

Result is same as path integral on gerbe.
Banded Example:

Consider $[X/D_4]$ where the center acts trivially.

$$1 \longrightarrow \mathbb{Z}_2 \longrightarrow D_4 \longrightarrow \mathbb{Z}_2 \times \mathbb{Z}_2 \longrightarrow 1$$

The decomposition conjecture predicts

$$\text{CFT}([X/D_4]) = \text{CFT} \left([X/\mathbb{Z}_2 \times \mathbb{Z}_2] \bigsqcup [X/\mathbb{Z}_2 \times \mathbb{Z}_2] \right)$$

One of the effective orbifolds has vanishing discrete torsion, the other has nonvanishing discrete torsion.

Let's check explicitly....
Check genus one partition functions:

\[D_4 = \{1, z, a, b, az, bz, ab, ba = abz\} \]

\[Z_2 \times Z_2 = \{1, \overline{a}, \overline{b}, \overline{ab}\} \]

\[Z(D_4) = \frac{1}{|D_4|} \sum_{g, h \in D_4, gh = hg} Z_{g,h} \]

Each of the \(Z_{g,h} \) twisted sectors that appears, is the same as a \(Z_2 \times Z_2 \) sector, appearing with multiplicity \(|Z_2|^2 = 4 \) except for the sectors.
Partition functions, cont’d

\[Z(D_4) = \left| \frac{Z_2 \times Z_2}{D_4} \right| \left| Z_2 \right| ^2 (Z(Z_2 \times Z_2) - \text{some twisted sectors}) \]
\[= 2 (Z(Z_2 \times Z_2) - \text{some twisted sectors}) \]

(In ordinary QFT, ignore multiplicative factors, but string theory is a 2d QFT coupled to gravity, and so numerical factors are important.)

Discrete torsion acts as a sign on the twisted sectors

\[
\begin{array}{ccc}
\overline{a} & \overline{a} & \overline{b} \\
\overline{b} & \overline{ab} & \overline{ab} \\
\end{array}
\]

so we see that

\[Z([X/D_4]) = Z\left([X/Z_2 \times Z_2] \bigcup [X/Z_2 \times Z_2]\right) \]

with discrete torsion in one component.
Quick consistency check:

A sheaf on a banded G-gerbe
is the same thing as

a twisted sheaf on the underlying space,
twisted by image of an element of $H^2(X,\mathbb{Z}(G))$

This implies a decomposition of D-branes (\sim sheaves),
which is precisely consistent with the decomposition conjecture.
Gromov-Witten prediction

Notice that there is a prediction here for Gromov-Witten theory of gerbes:

GW of $[X/H]$

should match

GW of $[(X \times \hat{G})/K]$

Checked by H-H Tseng, Y Jiang, et al in
0812.4477, 0905.2258, 0907.2087, 0912.3580, 1001.0435, 1004.1376,
GLSM’s

Let’s now return to our analysis of GLSM’s.

Example: \(CP^3[2,2] \)

Superpotential: \[\sum_a p_a Q_a(\phi) = \sum_{ij} \phi_i A^{ij}(p) \phi_j \]

\(r \ll 0 : \)

* mass terms for the \(\phi_i \), away from locus \(\{ \det A = 0 \} \).

* leaves just the \(p \) fields, of charge \(-2\)

* \(\mathbb{Z}_2 \) gerbe, hence double cover
The Landau-Ginzburg point: \((r \ll 0) \)

Because we have a \(\mathbb{Z}_2 \) gerbe over \(\mathbb{C}P^1 \).
The Landau-Ginzburg point: \((r \ll 0) \)

Double cover \(\{ \det = 0 \} \)

Result: branched double cover of \(\mathbb{CP}^1 \)
So far:

The GLSM realizes:

\[\mathbb{CP}^3[2,2] \quad \text{Kahler} \quad \text{branched double cover of } \mathbb{CP}^1 \]

where RHS realized at LG point via local \(\mathbb{Z}_2 \) gerbe structure + Berry phase.

* novel realization of geometry
(as something other than critical locus of W)
Branched double cover of \mathbb{CP}^1 over deg 4 locus

So our GLSM for $\mathbb{CP}^3[2,2]$ relates

$T^2 \leftrightarrow \text{Kahler} \leftrightarrow T^2$ (no surprise)
Next simplest example:

GLSM for $\mathbb{CP}^5[2,2,2] = K3$

At LG point, have a branched double cover of \mathbb{CP}^2, branched over a degree 6 locus

--- another K3

K3 \[\text{Kahler}\] K3

(no surprise)
So far:

* geometry realized at LG,

but **not** as the critical locus of a superpotential.

For physics, this is already neat, but there are much more interesting examples yet....
The next example in the pattern is more interesting.

GLSM for $\mathbb{C}P^7[2,2,2,2] = \text{CY 3-fold}$

At LG point, naively, same analysis says get branched double cover of $\mathbb{C}P^3$, branched over degree 8 locus.

-- another CY (Clemens’ octic double solid)

Here, different CY’s; not even birational
However, the analysis that worked well in lower dimensions, hits a snag here:

The branched double cover is singular, but the GLSM is smooth at those singularities. Hence, we’re not precisely getting a branched double cover; instead, we’re getting something slightly different.

We believe the GLSM is actually describing a ‘noncommutative resolution’ of the branched double cover.
What's a `noncommutative resolution'?

Briefly, I'm referring to one of the mathematical ideas for generalizing spaces. Here, spaces defined by category of sheaves.

-- Literally. That's not enough to define a CFT, but what we're going to find is that the B-branes in our CFT = those defining the nc res'n, hence we identify the CFT as a realization of the nc res'n.

Specifically, I'm thinking of a nc res'n of the branched double cover defined by Kuznetsov....
K’s noncomm’ res’n is defined by \((P^3, B)\), where B is the sheaf of even parts of Clifford algebras associated with the universal quadric over \(P^3\) defined by the GLSM superpotential.

\[(P^3, B) = (\text{branched double cover, sheaf of Azumaya algebras}); \]
for the next bit of analysis, easier to work with \((P^3, B)\)

B is analogous to the structure sheaf;
other sheaves are B-modules.

(ie, B ∼ ring of functions, but it’s noncomm’, hence “noncommutative geometry”)

Physics?......
Physics picture of K’s noncomm’ space:

Matrix factorization for a quadratic superpotential: even though the bulk theory is massive, one still has D0-branes with a Clifford algebra structure.

Here: a `hybrid LG model’ fibered over \mathbb{P}^3, gives sheaves of Clifford algebras (determined by the universal quadric / GLSM superpotential) and modules thereof.

So: open string sector duplicates Kuznetsov’s def’n.
Disambiguation:

* no large B field (Seiberg-Witten not relevant)

* not about Dirac operators
 (Roggenkamp-Wendland not relevant)

* This is a third realization of a notion of noncomm' geom' in physics
Summary so far:

This GLSM realizes:

\[\mathbb{CP}^7[2,2,2,2] \leftrightarrow \text{Kahler} \quad \text{nc res’n of} \]

\[\text{branched double cover of } \mathbb{CP}^3 \]

where RHS realized at LG point via local \(\mathbb{Z}_2 \) gerbe structure + Berry phase.

(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., '07)

Non-birational twisted derived equivalence

Physical realization of a nc resolution

Geometry realized differently than critical locus
More examples:

CI of \(n \) quadrics in \(\mathbb{P}^{2n-1} \)

(possible nc res'n of) branched double cover of \(\mathbb{P}^{n-1} \), branched over deg 2n locus

Both sides CY

Kahler
More examples:

CI of 2 quadrics in the total space of
\(P \left(\mathcal{O}(-1, 0)^{\oplus 2} \oplus \mathcal{O}(0, -1)^{\oplus 2} \right) \longrightarrow P^1 \times P^1 \)

branched double cover of \(P^1 \times P^1 \times P^1 \),
branched over \(\deg (4,4,4) \) locus

* In fact, the GLSM has 8 Kahler phases,
 4 of each of the above.
A non-CY example:

CI 2 quadrics in \mathbb{P}^{2g+1}

branched double cover of \mathbb{P}^1, over deg $2g+2$
($= \text{genus } g \text{ curve}$)

Here, r flows -- not a parameter.

Semiclassically, Kahler moduli space falls apart into 2 chunks.

Positively curved

Negatively curved

r flows: \[\rightarrow\]

Kahler

\[\rightarrow\]
Overall pattern:

These different (generalized) geometric phases are not, in general, birational to one another.

Instead, they are all related by Kuznetsov’s "homological projective duality" (hpd).

And there are more examples of hpd relating GLSM phases....
More Kuznetsov duals:

Another class of examples, also realizing Kuznetsov’s h.p.d., were realized in GLSM’s by Hori-Tong.

\[G(2,7)[1^7] \quad \xrightarrow{\text{Kahler}} \quad \text{Pfaffian CY} \]

(Rodland, Kuznetsov, Borisov-Căldararu, Hori-Tong)

* unusual geometric realization
(sia strong coupling effects in nonabelian GLSM)

* non-birational
More Kuznetsov duals:

\[G(2,5)[1^4] = \text{deg 5 del Pezzo} \]

Vanishing locus in \(P^3 \) of Pfaffians

\[G(2,5)[1^6] \]

Vanishing locus in \(P^5 \) of Pfaffians

Positively curved

Negatively curved

\(r \) flows:
More Kuznetsov duals:

\[G(2,N)[1^m] \quad \text{(N odd)} \quad \text{vanishing locus in } \mathbb{P}^{m-1} \text{ of Pfaffians} \]

Check \(r \) flow:

\[K = O(m-N) \quad \text{Kahler} \quad K = O(N-m) \]

Opp sign, as desired, so all flows in same direction.
Based on all of these abelian & nonabelian examples of GLSM’s realizing examples of hpd, it’s natural to conjecture that phases of GLSM’s are related by hpd (replacing ‘birational’).

This seems to be borne out by recent work, eg:

Ballard, Favero, Katzarkov, 1203.6643
D-brane probes of nc resolutions

Let's now return to the branched double covers and nc resolutions thereof.

I'll outline next some work on D-brane probes of those nc resolutions.

(w/ N Addington, E Segal)

Idea: `D-brane probe' = roving skyscraper sheaf; by studying spaces of such, can sometimes gain insight into certain abstract CFT’s.
Setup:

To study D-brane probes at the LG points, we’ll RG flow the GLSM a little bit, to build an ‘intermediate’ Landau-Ginzburg model. (D-brane probes = certain matrix fact’ns in LG)

\(\mathbb{P}^n[2,2,\ldots,2] \) (k intersections) is hpd to LG on \(\text{Tot} \left(\mathcal{O}(-1/2)^{n+1} \rightarrow \mathbb{P}^{k-1}_{[2,2,\ldots,2]} \right) \) with superpotential

\[
W = \sum_a p_a Q_a(\phi) = \sum_{i,j} \phi_i A^{ij}(p) \phi_j
\]
Our D-brane probes of this Landau-Ginzburg theory will consist of (sheafy) matrix factorizations:

\[
\begin{align*}
\mathcal{E}_0 & \xrightarrow[P]{Q} \mathcal{E}_1 \\
P & \circ \quad Q \\
P \circ Q, Q \circ P = W \text{ End}
\end{align*}
\]

where

\[
\text{up to a constant shift}
\]

(equivariant w.r.t. \(\mathbb{C}^*_\mathbb{R} \))

In a NLSM, a D-brane probe is a skyscraper sheaf. Here in LG, idea is that we want MF’s that RG flow to skyscraper sheaves.

That said, we want to probe nc res’ns (abstract CFT’s), for which this description is a bit too simple.
First pass at a possible D-brane probe:
(wrong, but usefully wrong)

\[
\mathcal{O}_x \\
\downarrow \downarrow \\
0
\]

where \(x \) is any point.

Since \(W|_x \) is constant, \(0 = W|_x \) up to a const shift, hence skyscraper sheaves define MF's.

This has the right `flavor' to be pointlike, but we're going to need a more systematic def'n....
When is a matrix factorization `pointlike`?

One necessary condition: contractible off a pointlike locus.

Example: \(X = \mathbb{C}^2 \) \(W = xy \)

There exist maps \(s, t \) s.t.

\[
1 = ys + tx
\]

namely \(t = 0, s = y^{-1} \)

Sim`ly, contractible on \(\{ x \neq 0 \} \): \(x \neq 0 \)

hence support lies on \(\{ x = y = 0 \} \)
When is a matrix factorization `pointlike'?

Demanding contractible off a point,
gives set-theoretic pointlike support,
but to distinguish fat points, need more.

To do this, compute Ext groups.

Say a matrix factorization is `homologically pointlike' if has same Ext groups as a skyscraper sheaf:

\[
\dim \text{Ext}^k_{\text{MF}}(\mathcal{E}, \mathcal{E}) = \binom{n}{k}
\]
We’re interested in Landau-Ginzburg models on
\[\text{Tot} \left(\mathcal{O}(-1/2)^{n+1} \longrightarrow \mathbb{P}^{k-1}_{[2,2,\ldots,2]} \right) \]

with superpotential \(W = \sum a \phi_a Q_a(\phi) = \sum_{i,j} \phi_i A^{ij}(p) \phi_j \)

For these theories, it can be shown that the `pointlike' matrix factorizations are of the form
\[
\mathcal{O}_U \\
\begin{pmatrix} \phi \end{pmatrix} \\
0
\]

where \(U \) is an isotropic subspace of a single fiber.
Let’s look at some examples, fiberwise, to understand what sorts of results these D-brane probes will give.

Example: Fiber $[\mathbb{C}^2/\mathbb{Z}_2]$, $W|_F = xy$

Two distinct matrix factorizations:

\[O\{y=0\} \sim O \quad x \quad y \quad \text{and} \quad O\{x=0\} \sim O \quad y \quad x \]

D-brane probes see 2 pts over base \Rightarrow double cover
Example: Family \([\mathbb{C}^2/\mathbb{Z}_2]_{x,y} \times \mathbb{C}_\alpha\)

\[W = x^2 - \alpha^2 y^2\]

Find branch locus:

\[A = \begin{bmatrix} 1 & 0 \\ 0 & -\alpha^2 \end{bmatrix} \quad \text{det } A = -\alpha^2\]

When \(\alpha \neq 0\), there are 2 distinct matrix factorizations:

\((\mathcal{O}\{x=\alpha y\} \dashrightarrow 0), \quad (\mathcal{O}\{x=-\alpha y\} \dashleftarrow 0)\)

Over the branch locus \(\{\alpha = 0\}\), there is only one.

\(\Rightarrow\) branched double cover
Global issues:
Over each point of the base, we’ve picked an isotropic subspace U of the fibers, to define our ptlike MF’s.

These choices can only be glued together up to an overall C^* automorphism, so globally there is a C^* gerbe.

Physically this ambiguity corresponds to gauge transformation of the B field; hence, characteristic class of the B field should match that of the C^* gerbe.
So far:

When the LG model flows in the IR to a smooth branched double cover, D-brane probes see that branched double cover (and even the cohomology class of the B field).
Case of an nc resolution:

Toy model: \([C^2/Z_2] x, y \times C^3_{a,b,c}\)

\[W = ax^2 + bxy + cy^2\]

Branch locus:

\[A = \begin{bmatrix} a & b/2 \\ b/2 & c \end{bmatrix}\]

\[\det A \propto b^2 - 4ac \equiv \Delta\]

so branch locus is \(\{\Delta = 0\}\)

Generically on \(C^3\), have 2 MF’s, quasi-iso to

\[\mathcal{O}_F\]

\[\begin{array}{c}
2ax+by+\sqrt{\Delta}y \\
2ax+by-\sqrt{\Delta}y
\end{array} \quad \quad \quad
\begin{array}{c}
2ax+by-\sqrt{\Delta}y \\
2ax+by+\sqrt{\Delta}y
\end{array}\]

Gen’ly on branch locus, become a single MF, but something special happens at \(\{a = b = c = 0\}\)...
Case of an nc resolution, cont’d:

Toy model: \([\mathbb{C}^2 / \mathbb{Z}_2]_{x,y} \times \mathbb{C}^3_{a,b,c}\)

\[W = ax^2 + bxy + cy^2 \]

At the point \(\{ a = b = c = 0 \} \)

there are 2 families of ptlike MF’s:

\[\mathcal{O}_F \]

where \(\phi \) is any linear comb’ of \(x, y \) (up to scale)

* 2 small resolutions (stability picks one)
I’m glossing over details, but the take-away point is that for nc resolutions (naively, singular branched double covers), D-brane probes see small resolutions. Often these small resolutions will be non-Kahler, and hence not Calabi-Yau. (closed string geometry ≠ probe geometry; also true in eg orbifolds)
Summary:

* physical realization of hpd
* detour through physics of gerbes

CI quadrics \[\longleftrightarrow\] (nc res’n of) branched double cover
as phases of abelian GLSM

* D-brane probes