A-tw Isted Landau-Ginzburg
models, gerbes, and
Kuznetsov® homological
proje ctive duality

Eric Sharpe
Virginia Tech

J. Gufbn, ES arXiv: 0801.3836, 0803 .3955

T Pantev, ES hepth/ 0502027, 0502044 , 0502053
S Hellerman A Henriques, T Pantev, ES M Andog hepth/ 0606034

A Caldararu, J Distler, S Hellerman T Pantev, ES arXiv: 07 09.3855



Outline:
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on nontr Ivial spaces

* St acks in physics. how t o build the QF T,
puzzles and problems w n ew str ing compeact iPcat ions

* Str Ings on gerbes. de compostition conjecture

* Applicat ion of de composition conjCt 0 LG & GLSMe
physical r ealization of K uznetsov®homological
proe ctive duality,

GLSMSfor KQ noncommutat ive r esolut ions

* Heterotic LG models



A Landau-Ginzburg model is a n onlinear sigma model
on a space or stack X pl us a ““super potent ial @N.

S = /d% (gir! """ + igir#t, DH: + iga# D #' + -
by
+ oML WL W + #i# DA W + ##T DA W

The superpotential W : X —— C is holomor phic,

(so LG moaodels are only interesting when X is
noncompact ).

There are analogues of the A, B model TFTs for
Landau-Ginzburg models.....



LG B model:

The states of the theo ry are Q-closed (mod Q-exact)
products of the f orm
(gl n™ - -0y, - - -0

1188,

m

are linear comb®of ¥
Q.nzz O’ QHJ:@JW, Q2:O

#
o

where !,
Q ¢ =0 O Ty

| dert ify (s L Q — #

sSo the states are hypercohomology

HE X, .. 250 208 O,



Quick checks:

1)W=0, standard B-tw Iisted NLSM

HE X,. 05 de 2w B0 sl
iy ) S
2) X=C", W = quasihomageneous polynomial
Seg@bove resolves fat p oint {dW=0}, so
HY X ... L R T
— Cla1, 2l /(W)



LG A model:
Debning the Atw ist ofa L G maodel is more
iInterest ing.

Producing a TFT fr om a NLSM involves changing what
bundles the ¥ ouple to, e.g.

Y €T, K ®¢'TX) = I'(5,¢'TX),[(5 K Q¢ TX)

he tw o Inequivalent p ossibilities are the A, B tw ists.

0 be consigent, the a ction must r emain well- debned
after the tw Ist.

Truefor A, BNLSMO&BLG butnot ALG..



LG A model:

The problem isterms in the action of the f orm

L LD W

If do the s tandard A NLSM tw Ist,
this becomes a 1-formon !,
which can®in tegrate over !.

Fix: modify the A tw Ist.



LG A model:

There are several ways to bx the A tw ist,
and hence, several different n otions of a L G A model.

One way:. multiply of fending t erms in the a ction
by another 1-form.

Another way: use adifferent p rescription for
maodifyin g bundles.

The second is advantageous for physics, so | @ use it,
but,
disadvantage: not all LG models admit A tw ist
In th IS prescript ion.



To tw ist, need a U(1) iIsometr y on X w.r.t. which the
super potential iIs qua si-homaogeneous.

Twist b y “"R-symmetr y + iso metr y©

Let Q(?;) be such that
WA g) = AW ()

then tw Ist: Y | (Original® Kg(l/z)QR @Kg(l/z)QL>
1 1 w e wl—|—! R
where  Qp (1) = QW) +, 1 v=4i,L

0 else



Example: X = €", W quasi-homogQ olynomial

Here, t o tw ist, need t o make sense of e.g. K!ll :

where r = 2( degree)

Options. * couple t o topQyravity

* don®c ouple t o topQyravC

-- b ut then u sualy can®make sense of K!l/r

@ work with the | atter case.



LG A model:

A tw Istable example:

LG modelon X =Tot( & -3)B
with W = pr’s, s € I'(B, &)

Accessible states are Q-closed (mod Q-exact) prode

b1 )eblage-- o LA T - I
where
Q ~ {S:O} b N TB‘{S:O}

Q-¢ =), Q- =42, Q- ¥, =Q-y2 =0, Q* =0
| dert ify !i gy R e O o d

so the states are elements of H"™"(B)|rs=0)



Carelation fu nctions

B-tw Ist:
Integrate over X, weig ht by
exp (! AW |* + fermionic)
and then p erf orm tr ans\erse Gaussian,
to get the s tandard expression.
A-tw Ist:

Similar: integrate over M x
and weight a s above.



Witten equ’n in A-twist:
BRST daj +— &= (5gbi - igi'r(’)rW)

implies localizat ion on solOns of

1"t g W = 0 (CWitten equbd)

On complex Kahler mf3ds, the re are 2 in dependen
BRST @erators:

U 3, 5% 4 #igISW

which implies localizat ion on solOns of
a9’

O  whichis what
0 wee using.



SolOns ofwitten equOn:
FUG Waen 5 1|2 2
/ |8¢ — g 385W| = / (|8¢‘ + |0; W] )
> 5
LHS=0 1ff RHS=0

hence solOns ofWitten equOn
same as the mo duli space we®e |ooking at.



LG A model, cont'd

In p rototypi cal cases,

(O1---Op) :] wl/\"'/\wn/ dxPdx? exp (—|s|* — xPdz'D;s — c.c. — Fzdz'dz/xPx?
M NG

Mathai! Quillen form

The MQ f orm rep®a Thom class, so
e

fj\/l RN N /\Eul(N{S:O}/M)
f{s:()}wl A A

--same as A tw isted NLSM on {s=0}

Not a coincidence, as we shall see shortl y....



Renormalization (semi)group flow

Condr ucts a series of theo ries thatare
approxima ions to the p revious ones, valid at | onger
and |onger distance scales.

The effect is m uch like starting with
a picture and then standing further
and further away fr om it, t o get
successive approximat ions Pnal r esult
might | ook very different fr om start.

Problem: cannot f ollow it e xplicitl y.



Renor malizat ion group

Longer
distances

Lower
energies

A ——————————————
Space of ph ysical theories



Futhermae, RG preserves TFTQ

If tw o physical theories are related by RG,
then, correlation fu nctions in a t opQw ist of o ne

correlation fu nctions in corresponding tw ist of o ther.



Example:

LG modelon X = Tat( & ) B
with W=ps

Renor malizat ion

group
Row

NLSM on {s = 0} (B
where s €! (£)

This 1s why correlat ion fu nctions méa ch.



Another way t o asscciate LG models to NLSM.

SOgpse, for e x, the NLSM ha s target space
= hypersurf ace {G=0} in P" of degree d

Assaiate LG model on [C™Y Z]
with W =G

* Not related by RG Row

* But, related by Kahler moduli,
so have same B model



LG model on
Tot( O(- 5) --> P*)

with W=ps
(Same
TET) RER)

\ 4

NLSM on {s=0}C pP*

Relations between
LG models

LG model on

[C>/ Zs5]
with W = s



RG flow interpretation:

In the ¢ ase of the A-tw isted correlation f Ons
we got a Ma thai-Quil len rep of a Thom form.

Someth ing analogous happens in elliptic genera:
elliptic genera of the L G & NLSM models
are related by Thom forms

Suggests: RG Bow Iinterpretation in tw isted theories
as Thom class



Possible mirror symmetry application:

Part of w hat weQre done is t o replace NLSMO
with L G madels that are “upstairsGn RG Row.

Then, f or e xample, one could imagine r ephrasing
mirror symmetr y as a duality be tween the
‘upstairs@.G models.

-- P. Clarke, 0803.0447



Next:

* de compostt ion conjecture for str ings on gerbes

*LG dualstogerbes

* application of g erbes to LGO& GLSMO as,
physical r ealization of K uznetsov®
homological proje ctive duality

To do this, need t o review how stacks appear in
physics....



String compactifications on stacks

First, mot ivat 1on:

-- N ew str Ing compeact iPcat ions

-- be tter u nderstand certain existing str ing
compect ibcat ions

Next: ho wto condr uct QF TOfor
str Ings propagat ing on stacks?



Stacks

How t 0 make sense of str ings on stacks concretely?

Most ( smaoth, D eligne-Mumford) stacks can be
presened as a global quotient

X/ G
for Xa spa ce anc

(G need not be Pn ite; neec

Ga g roup.
not act e ffectively.)

To such a preserntat ion, assciate a
“Ggauged sigma model on X.©@

Problem: such presemntations not u nigue



Stacks

If t o [X/ G]we assaiate “~G-gauged sigma maodel,@
then:

dePnes a 2d theo ry with a sym metr y
called confor mal in variance

X/ C*] dePnes a 2d.theo_ry
w/ 0 confor mal in variance

C*/Z)

Same stack, different physics!

Potent ial presertat ion- dependence problem:
Px with r enor malization group 3ow

(Car©be ¢ hecked explicitl y, tho ugh.)



The problems here are analogous t o the de rived-
cat egor ies-in-ph ysics program.

There, to a given object in a de rived category,
one picks a r epresentative with a ph ysical de scription
(as branes/ant ibranes/tachyons).

ﬂ Alas, such represenatives are

not u nique.

It iIs c onjectured thatdifferent r epresemntat ives give
rise to the same low-energy physics,
via boundary r enor malizat ion group f3ow.

Only indirect t ests p ossible, tho ugh.



Stacks

Other issues. deformaion theory
massless spectr a

To ju stify a pplicat ion of stacks t o physics,
need t o conduct t ests of p reserntat ion-dependence,
under stand Issues above.

This was the subje ct of se veral papers.

For the r est of t oday®talk,
| wantt o focus on special kin ds of stacks, namely,
gerbes.

(= quaient b y noneffectively-acting group)



Gerbes

Gerbes have addOproblems when viewed fr om this
physical p erspect ive.

Example: The naive massless spectr um calculat ion
contains mult iple dimension zero operators,
which manifestl y violat es cluster de compostt ion,
one of the f oundat ional ax ioms of quantu m beld
theory.

There is a single known loophole: ifthet arget space
is disconnected. We think that@ what@ going on....



Decompostt ion
conjecture

Cansider | X/H| where

] —G — H — K — 1
and G acts tr ivially.
Claim
CRT([X/HF e X O K

(together w ith so me B Peld), where
Q is the set of ir reps of G



For b and

SO the ¢

CFT(G!

where the

H*(X,Z(G))

Decompostt ion
conjecture

A

ed gerbes, K actstr ivially upon G

e compostt ion conjecture reduces to
 # :
gerbeon X) = CFT (X,B)Y
of

B Peld is de termined by the ima ge of

Z(G) U(1) HZ(X U(l))



Banded Example:
Consider | X/D4] where the c enter acts tr ivially.
1l — 29 — Dy — Zo X2y — 1

The decomposition conjecture predicts
OFT ([X /D) B CHT ([X/z2 x Zo] [[[X/Z5 x z2])

One of the e ffective orbifolds has vanishing discrete
torsion, the o ther has nonvanishing discrete t orsion.

Checks: can show partition fu nctions mach:
Z(X/Da)) = 2 ([X/22" 22 [[[X/25" 25))



Ancther quick check-- c ompare massless spectr a:

Spectr um for [T°/D,]: ] !

0 54 0

0 54 0

and for each [T/ Zy x Zs]

1 1

0 0 0 0
0 3 0 0 51 0
1 51 51 1 1 3 3 1
0 3 0 0 51 0
0 0 0 0
1 1

Sum ma ches. \/



Nonbanded example:

Casider [X/H] where H is the eig ht-el ement
group of quaternions, and a Z, acts tr ivially.

1l —<i>(=224) —H — Z, — 1

The decomposition conjecture predicts
CFT([X/H]) = CFT ([X/zg] [10x/Z,) Hx)

Straightf orward t o show thatth isis tr ue at the | evel
of partition fu nctions, as before.



Another class of examples:
global quotients by nonfinite groups

The banded Zk gerbe over P
with ¢ haracteristic class ! 1 mod k

can be described mathematically as the quotient
'CN +1 {O}_
C!

where the C”~ acts asrotations by k t imes

which physically can be described by a U(1) susy
gauge theory with N+1 chiral Pelds, of ¢ harge k

How can this be different fr om ordinary P Y model?



The difference lies In nonperturbative effects.
(Perturbat ively, having nonminimal ¢ harges makes no
difference.)

To specify Hig gs Pelds completely, need t o specify
what b undle they couple t o.

If the g auge beld ~ L
then ! ¢ harge (Jimpl ies
e (P

Different b undles => dfferent z ero modes
=> diferent an omalies => dfferent ph ysics

(Noncompect w orldsheet - the ta angle -- J Dis tler, R Plesser)



'CN+1 i {O}

Reurn to the e xample =

Example: Anomalous global U(1)®
Py 0 L) Ay
Here: U(1)a " Zown

Example: A model correlation fu nctions
P e RN
Here &g dls L = e
Example: quantu m cohomology Different
PN S RO e

. hysics
Here.. @lal@r ™ = g) o




K theory implications

This equivalence of CFT®implies a statement a bout
K theory (thanks t o D-branes).

e R S ]

If G actstr iviallyon X
then the o rdinary H -equivariant K theo ry of X

IS the same as
twisted K-equivariant Ktheo ryof X! @

*Can be derived justwithin K theory
* Provides a check of the de composttion conjecture



D-branes and sheaves

D-branes in the t opological B model can be described
with sheaves and, more gendy, derived categories.

This also is consigent w ith the de comp@onjecture:

Math f act:
A sheaf o n a banded G-gerbe

IS the same th Ing as

a tw isted sheaf o n the u nderlying space,
tw isted by image of an el ement of H 2(X,Z(GQ)

which is consigent w ith the wa y D-branes should
behave according t o the c onjecture.



D-branes and sheaves

Simlarly, massless sates between D-branes should be
counted by Ext g roups between the ¢ orresponding

sheaves.
Math f act:
Sheaves on a banded G-gerbe de compose according to
irrepdf G,

and sheaves asscciated to distinct ir reps have
vanishing Ext g roups between them .

Consident w/ | dea that sheaves assaciated t o dist inct
reps should describe D-branes on different
components of a dis connected space.



Gromov-Witten prediction

Notice that the reis a prediction here for Gr omov-
Witten theory of g erbes:

GW of [X/H]

should match
GW of [(X X CAS)/K}

Banded Z« gerbes:
E Andreini, Y Jiang, H-H Tseng, 0812.4477



Quanu m cohomology

Some old r esults of M orrison-Plesser (g.c. fr om gauge
theory) generalize fr om toric varieties to toric stacks.

Let thet oric stack be described inthe f orm

N

b (CX)n o

E some except ional set
QY the weig ht of the i ¥

vector under ath C

then Batyr ev@conjecture becomes

C[!h...

1 »] modulo the r elations

N n QF
<Z qu;)o-b> —=*{q

b=1



Quanu m cohomology

Ex: Quantum cohomology r ing of PNis
C[x}/(x"*-q )

Quantu m cohomology r ing of Zx gerbe over PN
with ¢ haracteristic class -n mod Kk Is

CIXYI/(Y¥ - g 2, xN*1-y Ng)

Aside: the se calculat ions give us a check of the
massless spectr um -- in ph ysics, can derive g.c. ring
w/ 0 knowing massless spectr um.



Quanu m cohomology

We can see the de composttion conjecture in the
guartu m cohomology r ings of t oric stacks.

Ex: Q.c.ringofa Zxgerbe on PNis given by
CIXYV(Y* - g 2, x""1-y ")

In th is ring, the y ®index copies of the quan tum
cohomology r ing of PN with v ariable 9@

The gerbe is b anded, so this is exactl y w hat we
expect -- ¢ opies of PN, variable B beld.



Quanu m cohomology

More generally, a gerbe str ucture is indicated fr om

this quotient de scription whenever C* charges are

nonmnimal. 3
In such a case, fr om our g eneralizat ion of Batyr ev®

conjecture, at | east o ne relOn vill have the f orm
= q
wherepisar elOnincc. oft oric variety,
and k is the n onminimal part.

Can rewrite th is in same form as for g erbe on PN,
and in th is fashion can see our de comp@onjQin o ur
genDof Batyr eveq.c.



Mirrors to stacks

There exist mirror condr uctions for any model
realizable as a 2d a belian gauge theory.

For t oric stacks pthere is such a description.

Standard mirror c ondr uctions now produce
character -valued Pelds, a new effect, which ties into
the stacky f an descript ion of



Toda duals

Ex: The LG mirror of PNis described by the
holomar phic fu nction

W = exp(-Yy) + --- + exp(—Yn) + exp(Yy + :-- + Yy)

The analogous duals t o Zx gerbes over PN are
described by

W = exp(—Y1) +@@a+ exp(—Yn) + T"exp(Y: + &8+ Yn)

where Y is a character -valued Peld
(discrete Fourier tr ansform of c omponents in de comp@onjecture)



GLSM®

Decomposit ion conjecture can be applied to GLSMa

Example: P[2,2,2,2]

At the L andau-Ginzburg point, have super potential
> PaGal9) = > _ ¢:AY(p)¢;
a 1)

* mass terms for the @a way fr om locus {det A = 0}
* | eaves Ju st the p Pelds , of c harge -2

* Z> gerbe, hence double cover



The Landau-Ginzburg point:

. :
VAl s

p3 {det=0)

Because we have a Z, gerbe over P2 - det....



The Landau-Ginzburg point:

Double
cover
AN

i i

p3 Berry {plietse 0 }

Result: br anched double cover of P3



So far:

The GLSM realizes:

branched double cover

P'[2,2,2,2] A

(Clemens@ct ic double solid)

where RHS realized at L G point vi a
local Z, gerbe str ucture + Berry phase.

Non-birat ional tw isted derived equivalence
Unusua physical r ealizat ion of g eometr y



Rewrite with L andau-Ginzburg models:

LG
A e GLSM for P7[2.2,2,2]

RG RG
LG model on LG model on
Tot( O(- 2)* --> P7) Tot( O(-1)° --> Pp2222))
e
. |
NLSM on
NLSM on branched double cover
P12,2,2,2] of P3,

branched over deg 8 | ocus



Puzzle:

the br anched double cover w ill be sin gular,
but the GLSM is smo oth at tho se singularities.

Solution?...

We believe the GLSM Is a ctually describing
a “noncommutat ive r esolut ionOdf the br anched double
cover w orked out b y Kuznetsov.

Kuznetsov has debned
*homological proje ctive duality O

thatr elates P7[2,2,2,2] t o the n oncommutat ive
resolut ion above.



Check that we a re seeing K& noncomm® esolut ion:

K debnes a "noncommutat ive spaceQria its sheaves
--so f or example, a Landau-Ginzburg model can be a
noncommut at ive space via maitr ix f actorizations

lere, KO noncomm@ esOn =R3,B)
where B Is the shea f of e ven parts of Cl ifford

algebras asscciated with the u niversal quadric over P3
debned by the GLSM su per potent ial.

B ~ str ucture sheaf: other sheaves ~ B-modules.

Physics?.....



Physics.

B-branes in the R G limit theo ry
= B-branes in the Iin termediate LG theory.

Claim: matr ix f actorizations in intermediate LG
= Kuznetsov€ B-modules

K has a r igorous proof of th Is;
B-branes = Kuznetsov®nc r esOn shewes.

Intuition....



Local picture:

Matr ix f actorization for a qua dratic superpotent ial:
even though the b ulk theo ry iIs massive, one still has
DO-branes with a Cl ifford algebra str ucture.

Here: a “hybrid LG modelGpbered over P3,
gives sheaves of Clifford algebras (deter mined by the
universal quadric / GLSM su perpotential)
and modules the reof.

So: open str ing sector du plicates Kuznetsov®def On.



Summary so far:
The GLSM realizes:

nc resOn of
P7[2,2,2,2] branched double cover

of P3
where RHS realized at L G point vi a

local Z, gerbe str ucture + Berry phase.

Non-birat ional tw isted derived equivalence

Unusual physical r ealizat ion of g eometr y

Physical r ealizat ion of K uznetsov® homological
proje ctive duality



More examples:

branched double

Cl of cover of P,
n quadrics in P21 branched over deg 2n
locus
Bah si des CY

Homologically proe ctive dual



Rewrite with L andau-Ginzburg models:

LG model on
Tot( O(- 2)% --> PN

RG
NLSM on
P"2,...,.2]

Kuznetsove
h.p.d.

LG model on
Tot( O(-1) "*t--> Pk'l[z,...,z])

NE

NLSM on n.c. resOn of
branched double cover

ofsp<
branched over deg n+1 locus



A math c onjecture:

Kuznetsov debnes his h.p.d. Int erms of coherent
sheaves. In the ph ysics language

LG model on LG model on
Tot( O(- 2)% --> PN Tot( O(-1) "+1--> Pk'l[z,...,Z])

Kuznetsov®h.p.d. becomes a statement a bout
mar ix f actorizations,
analogous to those in Orlov®work.

Math conjecture: Kuznetsov®h.p.d. has an
alternative (& hopefully easier) description in
terms of matr ix f actorizations between LG models on
birat ional spaces.



More examples:

Cl of 2 qua drics in the t otal space of
P (0(-1,00?®0(0,-1)%?) — P' x P!

branched double cover of PXxPXxP!
branched over deg (4 ,4,4) locus

*Inf act, the GLSM has 8 Kahler phases,
4 of ea ch of the a bove.

* Related to an example of Vafa-Witten involving
discrete t orsion

* Believed t o be homologically proe ctive dual



A non-CY example:
branched double

Cl 2 quadrics cover of PL
in P29+t over deg 2g+2
(= genus g curve)

Haomologically prge ctive dual.
Here, r 30 ws -- n ot a pa rameter.

Semclassically, Kahler moduli space falls apart
Into 2 ¢ hunks.
Postt ively Negat ively
curved curved



More examples:

Hari-Tong 0609032 f ound closely r elated phenomena
In nonabelian GLSMs

G(27)[1] Pf  afpan CY

Also: * n ovel r ealizat ion of g eometr y
* nonbirat ional
* Kuznetsoveh.p.d.

Furthe r n onabelian examples.
Donagi, ES, 0704.17/61



So far we ha ve discussed several GLSM© s.t.:
*the L G point r ealizes geometr y in an u nusual way

*the g eometr ic phases are not bir ational

* instead, related by Kuznetsov®homological
proje ctive duality

Cajecture: all phases of GLSM®are related by
Kuznetsov®h.p.d.



Anothe r dir ection:

Heterotic Landau-Ginzburg models

We@ begin with he teratic nonlinear sigma models....



Heterotic nonlinear sigma models:

Let X be a ¢ omplex manifold,
E!" X aholomaphic vector b undle

such that cho(E) = chy(7TX)

Act ion:

52 / Pz (350608 + gVl Detly + ihgh DA + -
2.

®, W4 as before AT v (E" \/KZ)

Reduces to ordinary NLSMwhen & = TX



Heterotic Landau-Ginzburg model:

S = /dzx (gz-_r(?qb@gb! + igrl Dyl + ihpA D AT + -
E e .
+ habFOFE + o' \*D;F, + c.c.
+ h -E%E’ + i \”D,;Ehg, + c.c.\

Has tw o superpotent ial-l ike pieces of data
E®eT(E), F,eTl(E)

such that E:Ealza = ()
a



Heterotic LG models are related t o heterotic NLSM©
via r enor malizat ion group 3o w.

Example:

A heterotic LG model on X = Tot (]—'1 - U B)
with “ELET 0 By & iy sallia = £ ()

Renor malizat ion
group

A heterotic NLSM on B
with E = coker(F; !'" Fy)



Summary:

* A, B topological tw ists of L andau-Ginzburg models
on nontr Ivial spaces

* St acks in physics. how t o build the QF T,
puzzles and problems w n ew str ing compeact iPcat ions

* Str Ings on gerbes. de compostition conjecture

* Applicat ion of de composition conjCt 0 LG & GLSMe
physical r ealization of K uznetsov®homological
proe ctive duality,

GLSMSfor KQ noncommutat ive r esolut ions

* Heterotic LG models



Mathematics

Geometry:
Gromov-Witten
Donaldson-Thomas
guartu m cohomology
etc

Homotopy, categories:

derived categories,
stacks, etc.

Physics

Supersymmetr ic
peld theories

Renor malizat ion
group



