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Outline:

* A, B topological twists of Landau-Ginzburg models 
on nontrivial spaces

* Stacks in physics:  how to build the QFT, 
puzzles and problems w/ new string compactifications

* Strings on gerbes:  decomposition conjecture

* Application of decomposition conj’ to LG & GLSM’s:  
physical realization of Kuznetsov’s homological 

projective duality, 
GLSM’s for K’s noncommutative resolutions

* Heterotic LG models



A Landau-Ginzburg model is a nonlinear sigma model 
on a space or stack X plus a ``superpotential’’ W.

S =

∫

Σ

d2x
(

gi∂φi∂φ
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
+Dzψ

i
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+ψj
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+ψ
−

Dı∂W
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W : X −→ CThe superpotential is holomorphic,
(so LG models are only interesting when X is 

noncompact).

There are analogues of the A, B model TFTs for 
Landau-Ginzburg models.....



LG B model:

The states of the theory are Q-closed (mod Q-exact) 
products of the form

b(φ)j1···jm

ı1···ın

ηı1
· · · ηınθj1 · · · θjm

where η, θ are linear comb’s of ψ

Identify ηı
↔ dzı, θj ↔

∂

∂zj
, Q ↔ ∂

so the states are hypercohomology

Q · φi
= 0, Q · φı

= ηı, Q · ηı
= 0, Q · θj = ∂jW, Q2

= 0

H
·

(

X, · · · −→ Λ
2TX

dW
−→ TX

dW
−→ OX

)



Quick checks:

1) W=0, standard B-twisted NLSM

H
·

(

X, · · · −→ Λ
2TX

dW
−→ TX

dW
−→ OX

)

!→ H · (X, Λ·TX)

2) X=Cn, W = quasihomogeneous polynomial

Seq’ above resolves fat point {dW=0}, so

H
·

(

X, · · · −→ Λ
2TX

dW
−→ TX

dW
−→ OX

)

!→ C[x1, · · · , xn]/(dW )



LG A model:

Defining the A twist of a LG model is more 
interesting.

Producing a TFT from a NLSM involves changing what 
bundles the   couple to, e.g.ψ

ψ ∈ Γ(Σ,
√

KΣ ⊗ φ∗TX) #→ Γ(Σ, φ∗TX), Γ(Σ, KΣ ⊗ φ∗TX)

The two inequivalent possibilities are the A, B twists.
To be consistent, the action must remain well-defined 

after the twist.

True for A, B NLSM’s & B LG, but not A LG....

(Fan, Jarvis, Ruan) (Ito; J Guffin, ES) 



LG A model:

The problem is terms in the action of the form

ψi
+ψj

−
Di∂jW

If do the standard A NLSM twist,
this becomes a 1-form on   ,
which can’t integrate over    .

Σ

Σ

Fix:  modify the A twist.



LG A model:

There are several ways to fix the A twist,
and hence, several different notions of a LG A model.

One way:  multiply offending terms in the action
by another 1-form.

Another way:  use a different prescription for 
modifying bundles.

The second is advantageous for physics, so I’ll use it,
but,

disadvantage:  not all LG models admit A twist
in this prescription.



To twist, need a U(1) isometry on X w.r.t. which the
superpotential is quasi-homogeneous.

Twist by ``R-symmetry + isometry’’

Let Q(ψi) be such that

W (λQ(ψi)φi) = λW (φi)

then twist: ψ !→ Γ
(

original⊗ K
−(1/2)QR

Σ ⊗ K
−(1/2)QL

Σ

)

where QR,L(ψ) = Q(ψ) +







1 ψ = ψi
+, R

1 ψ = ψi
−

, L
0 else



Example:  X = Cn, W quasi-homog’ polynomial

Here, to twist, need to make sense of e.g. K
1/r
Σ

Options:  * couple to top’ gravity (FJR)

* don’t couple to top’ grav’ (GS)
-- but then usually can’t make sense of K1/r

Σ

I’ll work with the latter case.

where r = 2(degree)



LG A model:
A twistable example:

LG model on X = Tot(                )E
∨ π

−→ B

with s ∈ Γ(B, E)W = pπ∗s,

Accessible states are Q-closed (mod Q-exact) prod’s:
b(φ)ı1···ınj1···jm

ψı1
−
· · ·ψın

−
ψ

j1
+ · · ·ψ

jm

+

Q · φi
= ψi

+, Q · φı
= ψı

−
, Q · ψi

+ = Q · ψı

−
= 0, Q2

= 0

where

ψi

+ ↔ dzi, ψı

−
↔ dzı, Q ↔ dIdentify

φ ∼ {s = 0} ⊂ B ψ ∼ TB|{s=0}

so the states are elements of H
m,n(B)|{s=0}



Correlation functions:

B-twist:

Integrate over X, weight by

exp
(

−|dW |2 + fermionic
)

and then perform transverse Gaussian,
to get the standard expression.

A-twist:

Similar:  integrate over MX

and weight as above.



Witten equ’n in A-twist:
BRST: δψi

−
= −α

(

∂φi
− igi∂W

)

implies localization on sol’ns of

∂φi
− igi∂W = 0 (``Witten equ’n’’)

On complex Kahler mflds, there are 2 independent 
BRST operators:

δψi
−

= −α+∂φi
+ α

−
igi∂W

which implies localization on sol’ns of

∂φi = 0

gi∂W = 0

which is what
we’re using.



Sol’ns of Witten equ’n:
∫

Σ

∣

∣∂φi − igi∂W
∣

∣

2

=

∫

Σ

(

∣

∣∂φi
∣

∣

2
+ |∂iW |2

)

LHS = 0    iff    RHS = 0

hence sol’ns of Witten equ’n
same as the moduli space we’re looking at.



LG A model, cont’d

The MQ form rep’s a Thom class, so

In prototypical cases,

-- same as A twisted NLSM on {s=0}

Not a coincidence, as we shall see shortly....

〈O1 · · ·On〉 =

∫

M

ω1∧· · ·∧ωn

∫

dχpdχp
exp

(

−|s|2 − χpdziDis − c.c. − Fidzidzχpχp
)

︸ ︷︷ ︸

Mathai−Quillen form

〈O1 · · · On〉 =
∫
M ω1 ∧ · · · ∧ ωn ∧ Eul(N{s=0}/M)

=
∫
{s=0} ω1 ∧ · · · ∧ ωn



Renormalization (semi)group flow

Constructs a series of theories that are 
approximations to the previous ones, valid at longer 

and longer distance scales.

The effect is much like starting with 
a picture and then standing further 
and further away from it, to get 

successive approximations; final result 
might look very different from start.

Problem:  cannot follow it explicitly.



Renormalization group

Longer 
distances

Lower
energies

Space of physical theories



Furthermore, RG preserves TFT’s.

If two physical theories are related by RG,
then, correlation functions in a top’ twist of one

=
correlation functions in corresponding twist of other.



Example:

LG model on X = Tot(                )E
∨ π

−→ B

with   W = p s

NLSM on {s = 0}   B⊂

where s ∈ Γ(E)

Renormalization
group 
flow

This is why correlation functions match.



Another way to associate LG models to NLSM.

S’pose, for ex, the NLSM has target space
= hypersurface {G=0} in Pn of degree d

Associate LG model on [Cn+1/Zd]
with  W = G

* Not related by RG flow

* But, related by Kahler moduli,
so have same B model



LG model on
Tot( O(-5) --> P4 )

with W = p s

NLSM on {s=0}   P4⊂

LG model on 
[C5/Z5]

with W = s

(RG flow)

(Kahler)

(Same
TFT)

(Only B twist same)

Relations between
LG models



RG flow interpretation:

In the case of the A-twisted correlation f’ns,
we got a Mathai-Quillen rep of a Thom form.

Something analogous happens in elliptic genera:
elliptic genera of the LG & NLSM models

are related by Thom forms.

Suggests:  RG flow interpretation in twisted theories
as Thom class.



Possible mirror symmetry application:

Part of what we’ve done is to replace NLSM’s 
with LG models that are `upstairs’ in RG flow.

Then, for example, one could imagine rephrasing 
mirror symmetry as a duality between the

`upstairs’ LG models.

-- P. Clarke, 0803.0447



Next:

* LG duals to gerbes

* decomposition conjecture for strings on gerbes

* application of gerbes to LG’s & GLSM’s as,
physical realization of Kuznetsov’s

homological projective duality

To do this, need to review how stacks appear in 
physics....



First, motivation:

-- new string compactifications

-- better understand certain existing string 
compactifications

String compactifications on stacks

Next:  how to construct QFT’s for
strings propagating on stacks?



Stacks
How to make sense of strings on stacks concretely?

Most (smooth, Deligne-Mumford) stacks can be 
presented as a global quotient

[X/G]

for    a space and    a group.X G

To such a presentation, associate a 
``G-gauged sigma model on X.’’

Problem:  such presentations not unique

(G need not be finite; need not act effectively.)



Stacks
If to [X/G] we associate ``G-gauged sigma model,’’

then:

[C2/Z2]
defines a 2d theory with a symmetry

called conformal invariance

[X/C×] defines a 2d theory
w/o conformal invariance

Potential presentation-dependence problem:
fix with renormalization group flow
(Can’t be checked explicitly, though.)

Same stack, different physics!



The problems here are analogous to the derived-
categories-in-physics program.

There, to a given object in a derived category,
one picks a representative with a physical description

(as branes/antibranes/tachyons).
Alas, such representatives are 

not unique.

It is conjectured that different representatives give 
rise to the same low-energy physics, 

via boundary renormalization group flow.
Only indirect tests possible, though.



Stacks

This was the subject of several papers.

For the rest of today’s talk, 
I want to focus on special kinds of stacks, namely,

gerbes.
(= quotient by noneffectively-acting group)

Other issues:  deformation theory

To justify application of stacks to physics,
need to conduct tests of presentation-dependence,

understand issues above.

massless spectra



Gerbes
Gerbes have add’l problems when viewed from this 

physical perspective.

Example:  The naive massless spectrum calculation 
contains multiple dimension zero operators,

which manifestly violates cluster decomposition,
one of the foundational axioms of quantum field 

theory.

There is a single known loophole:  if the target space 
is disconnected.  We think that’s what’s going on....



Decomposition 
conjecture

Consider [X/H ] where

1 −→ G −→ H −→ K −→ 1

and G acts trivially.

Claim

(together with some B field), where
Ĝ is the set of irreps of G

CFT([X/H ]) = CFT
([

(X × Ĝ)/K
])



Decomposition 
conjecture

For banded gerbes, K acts trivially upon Ĝ

so the decomposition conjecture reduces to

where the B field is determined by the image of

H2(X, Z(G))
Z(G)→U(1)

−→ H2(X, U(1))

CFT(G − gerbe on X) = CFT





∐

Ĝ

(X, B)







 Banded Example:

Consider [X/D4] where the center acts trivially.

1 −→ Z2 −→ D4 −→ Z2 × Z2 −→ 1

The decomposition conjecture predicts

One of the effective orbifolds has vanishing discrete 
torsion, the other has nonvanishing discrete torsion.

CFT ([X/D4]) = CFT
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)

Z([X/D4]) = Z
(

[X/Z2 × Z2]
∐

[X/Z2 × Z2]
)

Checks:  can show partition functions match:



Another quick check-- compare massless spectra:

Spectrum for
2

0 0

0 54 0

2 54 54 2

0 54 0

0 0

2

1

0 0

0 3 0

1 51 51 1

0 3 0

0 0

1

1

0 0

0 51 0

1 3 3 1

0 51 0

0 0

1

Sum matches.

and for each                   :[T 6/Z2 × Z2]

[T 6/D4] :



Nonbanded example:

Consider [X/H] where H is the eight-element
group of quaternions, and a Z4 acts trivially.

1 −→ < i > (∼= Z4) −→ H −→ Z2 −→ 1

The decomposition conjecture predicts

CFT([X/H]) = CFT
(

[X/Z2]
∐

[X/Z2]
∐

X
)

Straightforward to show that this is true at the level 
of partition functions, as before.



Another class of examples:
global quotients by nonfinite groups

The banded Zk gerbe over P
N

with characteristic class
can be described mathematically as the quotient

[

C
N+1 − {0}

C×

]

which physically can be described by a U(1) susy 
gauge theory with N+1 chiral fields, of charge k

where the C
× acts as rotations by k times

−1 mod k

How can this be different from ordinary P
N model?



To specify Higgs fields completely, need to specify 
what bundle they couple to.  

If the gauge field     
then    charge    implies 

  

Different bundles => different zero modes 
=> different anomalies => different physics 

∼ L

Φ Q

Φ ∈ Γ(L⊗Q)

The difference lies in nonperturbative effects.
(Perturbatively, having nonminimal charges makes no 

difference.)

(Noncompact worldsheet - theta angle -- J Distler, R Plesser)



P
N−1 : U(1)A !→ Z2N

Here : U(1)A !→ Z2kN

Example:  Anomalous global U(1)’s

P
N−1

: < XN(d+1)−1 > = qd

Here : < XN(kd+1)−1 > = qd

Example:  A model correlation functions

Example:  quantum cohomology
P

N−1 : C[x]/(xN
− q)

Here : C[x]/(xkN
− q)

Different
physics

Return to the example
[

C
N+1 − {0}

C×

]



K theory implications
This equivalence of CFT’s implies a statement about

 K theory (thanks to D-branes).

1 −→ G −→ H −→ K −→ 1

If G Xacts trivially on
then the ordinary XH-equivariant K theory of

is the same as
twisted K-equivariant K theory of X × Ĝ

* Can be derived just within K theory
* Provides a check of the decomposition conjecture



D-branes and sheaves

D-branes in the topological B model can be described 
with sheaves and, more gen’ly, derived categories.

This also is consistent with the decomp’ conjecture:

A sheaf on a banded G-gerbe
is the same thing as

a twisted sheaf on the underlying space,
twisted by image of an element of H2(X,Z(G))

Math fact:

which is consistent with the way D-branes should 
behave according to the conjecture.



D-branes and sheaves
Similarly, massless states between D-branes should be 

counted by Ext groups between the corresponding 
sheaves. 

Math fact:
Sheaves on a banded G-gerbe decompose according to 

irrep’ of G,
and sheaves associated to distinct irreps have 

vanishing Ext groups between them.

Consistent w/ idea that sheaves associated to distinct 
reps should describe D-branes on different 

components of a disconnected space.



Gromov-Witten prediction
Notice that there is a prediction here for Gromov-

Witten theory of gerbes:
GW of [X/H ]

should match

GW of
[

(X × Ĝ)/K
]

Banded Zk gerbes:  
E Andreini, Y Jiang, H-H Tseng, 0812.4477



Quantum cohomology
Some old results of Morrison-Plesser (q.c. from gauge 
theory) generalize from toric varieties to toric stacks.

Let the toric stack be described in the form
[

C
N

− E

(C×)n

]

then Batyrev’s conjecture becomes               
C[σ1, · · · , σn] modulo the relations

E some exceptional set
the weight of the ith 

vector under ath

N
∏

i=1

(

n
∑

b=1

Qb
iσb

)Qa

i

= qa

Qa

i

C
×

(ES, T Pantev, ‘05)



Quantum cohomology
Ex:  Quantum cohomology ring of PN is 

C[x]/(xN+1 - q)

Quantum cohomology ring of Zk gerbe over PN

with characteristic class -n mod k is
C[x,y]/(yk - q2, xN+1 - ynq1)

Aside: these calculations give us a check of the 
massless spectrum -- in physics, can derive q.c. ring 

w/o knowing massless spectrum.



Quantum cohomology
We can see the decomposition conjecture in the 

quantum cohomology rings of toric stacks.

Ex:  Q.c. ring of a Zk gerbe on PN is given by
C[x,y]/(yk - q2, xN+1 - ynq1)

In this ring, the y’s index copies of the quantum 
cohomology ring of PN with variable q’s.

The gerbe is banded, so this is exactly what we 
expect -- copies of PN, variable B field.



Quantum cohomology
More generally, a gerbe structure is indicated from 
this quotient description whenever Cx charges are 

nonminimal.
In such a case, from our generalization of Batyrev’s 
conjecture, at least one rel’n will have the form 

pk = q
where p is a rel’n in q.c. of toric variety, 

and k is the nonminimal part. 

Can rewrite this in same form as for gerbe on PN,
and in this fashion can see our decomp’ conj’ in our 

gen’l of Batyrev’s q.c.



Mirrors to stacks

Standard mirror constructions now produce 
character-valued fields, a new effect, which ties into 

the stacky fan description of (BCS ‘04).

(ES, T Pantev, ‘05)

There exist mirror constructions for any model 
realizable as a 2d abelian gauge theory.

For toric stacks (BCS ‘04), there is such a description.



Toda duals
Ex:  The LG mirror of PN is described by the 

holomorphic function
W = exp(−Y1) + · · · + exp(−YN ) + exp(Y1 + · · · + YN )

The analogous duals to Zk gerbes over PN are
described by

W = exp(−Y1) + · · · + exp(−YN ) + Υn exp(Y1 + · · · + YN )

where Υ is a character-valued field

(ES, T Pantev, ‘05;
E Mann, ‘06)

(discrete Fourier transform of components in decomp’ conjecture)



GLSM’s
Decomposition conjecture can be applied to GLSM’s.

Example:  P7[2,2,2,2]

At the Landau-Ginzburg point, have superpotential
∑

a

paGa(φ) =
∑

ij

φiA
ij(p)φj

* mass terms for the    , away from locus             .φi {detA = 0}

* leaves just the p fields, of charge -2
* Z2 gerbe, hence double cover



The Landau-Ginzburg point:

{ det = 0 }P3

Because we have a Z2 gerbe over P3 - det....



The Landau-Ginzburg point:

Double 
cover

{ det = 0 }P3 Berry phase

Result:  branched double cover of P3



The GLSM realizes:

P7[2,2,2,2]
branched double cover

of P3

where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(S. Hellerman, A. Henriques, T. Pantev, ES, M Ando, ‘06; R Donagi, ES, ‘07;
A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

Non-birational twisted derived equivalence

So far:

(Clemens’ octic double solid)

Kahler

Unusual physical realization of geometry



Rewrite with Landau-Ginzburg models:

)
LG model on 

Tot( O(-2)4 --> P7)
LG model on

Tot( O(-1)8 --> P3[2,2,2,2] 

GLSM
Kahler

NLSM on 
P7[2,2,2,2]

NLSM on
branched double cover

of P3,
branched over deg 8 locus

RG
RG

GLSM for P7[2,2,2,2]large
radius

LG

RG RG



We believe the GLSM is actually describing
a `noncommutative resolution’ of the branched double 

cover worked out by Kuznetsov.

Kuznetsov has defined 
`homological projective duality’ 

that relates P7[2,2,2,2] to the noncommutative 
resolution above.

Puzzle:

the branched double cover will be singular, 
but the GLSM is smooth at those singularities.

Solution?....



Check that we are seeing K’s noncomm’ resolution:

K defines a `noncommutative space’ via its sheaves 
-- so for example, a Landau-Ginzburg model can be a 

noncommutative space via matrix factorizations.

Here, K’s noncomm’ res’n = (P3,B)
where B is the sheaf of even parts of Clifford 

algebras associated with the universal quadric over P3 
defined by the GLSM superpotential.

B ~ structure sheaf; other sheaves ~ B-modules.

Physics?......



Physics:

B-branes in the RG limit theory 
 = B-branes in the intermediate LG theory.

Claim:  matrix factorizations in intermediate LG 
 = Kuznetsov’s B-modules

K has a rigorous proof of this;
B-branes = Kuznetsov’s nc res’n sheaves.

Intuition....



Local picture:

Matrix factorization for a quadratic superpotential: 
even though the bulk theory is massive, one still has 

D0-branes with a Clifford algebra structure.

Here: a `hybrid LG model’ fibered over P3,
gives sheaves of Clifford algebras (determined by the 

universal quadric / GLSM superpotential)
and modules thereof. 

So:  open string sector duplicates Kuznetsov’s def’n.

(Kapustin, Li)



The GLSM realizes:

P7[2,2,2,2]
nc res’n of

branched double cover
of P3

where RHS realized at LG point via
local Z2 gerbe structure + Berry phase.

(A. Caldararu, J. Distler, S. Hellerman, T. Pantev, E.S., ‘07)

Non-birational twisted derived equivalence

Physical realization of Kuznetsov’s homological 
projective duality

Summary so far:

Kahler

Unusual physical realization of geometry



More examples:

CI of
n quadrics in P2n-1

branched double 
cover of Pn-1,

branched over deg 2n 
locus 

Both sides CY

Homologically projective dual

Kahler



Rewrite with Landau-Ginzburg models:

NLSM on 
Pn[2,...,2]

NLSM on n.c. res’n of
branched double cover

of Pk-1,
branched over deg n+1 locus

LG model on 
Tot( O(-2)k --> Pn)

LG model on
Tot( O(-1)n+1 --> Pk-1[2,...,2] )

GLSM
Kahler

RG RG

Kuznetsov’s
h.p.d.



A math conjecture:

Kuznetsov defines his h.p.d. in terms of coherent 
sheaves.  In the physics language

LG model on 
Tot( O(-2)k --> Pn)

LG model on
Tot( O(-1)n+1 --> Pk-1[2,...,2] )Kahler

GLSM

Kuznetsov’s h.p.d. becomes a statement about
matrix factorizations,

analogous to those in Orlov’s work.

Math conjecture:  Kuznetsov’s h.p.d. has an 
alternative (& hopefully easier) description in

terms of matrix factorizations between LG models on 
birational spaces.



More examples:

CI of 2 quadrics in the total space of

branched double cover of P1xP1xP1,
branched over deg (4,4,4) locus

* In fact, the GLSM has 8 Kahler phases,
4 of each of the above.

* Related to an example of Vafa-Witten involving 
discrete torsion

(Caldararu, Borisov)

P
(

O(−1, 0)⊕2 ⊕O(0,−1)⊕2
)

−→ P
1 × P

1

* Believed to be homologically projective dual

Kahler



A non-CY example:

CI 2 quadrics
in P2g+1

branched double 
cover of P1,

over deg 2g+2
(= genus g curve) 

Here, r flows -- not a parameter.
Semiclassically, Kahler moduli space falls apart

into 2 chunks.
Positively
curved

Negatively
curved

r flows:

Homologically projective dual.

Kahler



More examples:

Hori-Tong 0609032 found closely related phenomena 
in nonabelian GLSMs: 

G(2,7)[17]               Pfaffian CY

Also:  * novel realization of geometry
* nonbirational

* Kuznetsov’s h.p.d.

Further nonabelian examples:
Donagi, ES, 0704.1761



So far we have discussed several GLSM’s s.t.:

* the LG point realizes geometry in an unusual way

* the geometric phases are not birational

* instead, related by Kuznetsov’s homological
projective duality

Conjecture: all phases of GLSM’s are related by 
Kuznetsov’s h.p.d.



Another direction:

Heterotic Landau-Ginzburg models

We’ll begin with heterotic nonlinear sigma models....



Heterotic nonlinear sigma models:

Let X be a complex manifold,
E −→ X a holomorphic vector bundle 

such that ch2(E) = ch2(TX)

Action:
S =

∫

Σ

d2x
(

gi∂φi∂φ
+ igiψ


+Dzψ

i
+ + ih

ab
λb
−

Dzλ
a
−

+ · · ·

φ, ψ+ as before λ
a

−
∈ Γ

(

E ⊗
√

KΣ

)

Reduces to ordinary NLSM when E = TX



Heterotic Landau-Ginzburg model:

S =

∫

Σ

d2x
(

gi∂φi∂φ
+ igiψ


+Dzψ

i
+ + ih

ab
λb
−

Dzλ
a
−

+ · · ·

+ habFaF
b

+ ψi
+λa

−
DiFa + c.c.

+ h
ab

EaE
b

+ ψi
+λa

−
DiE

bhab + c.c.

)

Has two superpotential-like pieces of data
Ea

∈ Γ(E), Fa ∈ Γ(E∨)
∑

a

E
a
Fa = 0such that



Heterotic LG models are related to heterotic NLSM’s 
via renormalization group flow.

E = coker (F1 −→ F2)

A heterotic NLSM on B 
with

A heterotic LG model on X = Tot

(

F1

π

−→ B

)

E
′

= π
∗
F2 Fa ≡ 0, Ea "= 0with &

Renormalization 
group

Example:



Summary:

* A, B topological twists of Landau-Ginzburg models 
on nontrivial spaces

* Stacks in physics:  how to build the QFT, 
puzzles and problems w/ new string compactifications

* Strings on gerbes:  decomposition conjecture

* Application of decomposition conj’ to LG & GLSM’s:  
physical realization of Kuznetsov’s homological 

projective duality, 
GLSM’s for K’s noncommutative resolutions

* Heterotic LG models



PhysicsMathematics

Geometry:
Gromov-Witten

Donaldson-Thomas
quantum cohomology

etc

Homotopy, categories:
derived categories, 

stacks, etc.

Supersymmetric
field theories

Renormalization
group


