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Twentieth-century physics saw two foundational 
advances:

General relativity
(special relativity)

Quantum field theory
(quantum mechanics)

Problem:  They contradict each other!

This will be a talk about string theory,
so lemme motivate it....



String theory...
... is a physical theory that 

reconciles  GR & QFT,
by replacing elementary 

particles by strings.



The typical sizes of the strings are very small -- of 
order the Planck length.  To everyday observers, the 

string appears to be a pointlike object.



From dim’l analysis,
Planck energy = (h c^5 / G)1/2 ~ 1019 GeV

How big is that?
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String theory predicts the universe
is actually ten-dimensional.

But, we only see 3 space dims + 1 time dim.

The other 6 dims are believed to be rolled up
on a `small’ compact space.

10D spacetime = R4 x (6-manifold)



So long as you work at wavelengths much larger than 
the size of the compact space, 

spacetime looks like R4.

Compactification 
scenario

Assume 10d spacetime has form R4 x M
where M is some (small) (compact) 6d space



Properties of the `internal’ 6 dim space determine 
features of the resulting 4 dim universe.

Ex:  light 4 dim particles counted by,
additive part of de Rham cohomology ring of 6-mfld

Ex:  couplings between those particles determined by 
product structure of cohomology ring of 6-mfld

& more



In short, learn about physics by studying 
mathematical structure of the 6-manifold.



I’ve just told you why math is interesting to 
physicists,

but the reverse has also turned out to be true:

Thinking about the resulting physics has led to new 
mathematics, which is what I’ll outline today.



Outline:

Review of ordinary mirror symmetry (Greene, 
Plesser, Morrison, Aspinwall, Candelas, de la Ossa, Berglund, Hubsch, 
Vafa, Hori, Givental, Yau, ....)

Heterotic mirror symmetry (Blumenhagen, Sethi, Adams, 
Basu, ES, Guffin, Clarke, ....)

Landau-Ginzburg models & the 
renormalization group



Mirror symmetry

Sometimes strings can’t distinguish two spaces....
.... such spaces are called mirrors

This turns out to have fun math applications....



Mirror symmetry
What sorts of spaces can be mirror?

Usually we mean, complex Kahler manifolds
with holomorphically-trivializable canonical bundle.

These are ``Calabi-Yau’’ manifolds.

Exs:  T2, quartic hypersurface in P3, 
quintic hypersurface in P4

(= special Ricci-flat Riemannian mflds)



When two Calabi-Yau mflds M, W are mirror,
they turn out to be very closely related.

Mirror symmetry

(but topologically distinct)

Ex:  dim M = dim W

After all, if strings are unable to distinguish one from 
the other, then the compactified theory should be 

the same
 -- in particular, the dimension of the compactified 

theory had better not change



Mirror symmetry
Since the spectrum of light 4 dim particles is 

determined by de Rham cohomology,
we can conclude that

dim H*dR(M) =      dim H*dR(W)
∑ ∑

where  HndR(M) = (closed deg n diff’ forms)/(exact)



Mirror symmetry
A refinement of the last statement exists.

On a cpx Kahler mfld, we can decompose the space of 
deg n diff’ forms 

bi1···in
dx

i1 ∧ · · · ∧ dx
in

into (p,q) forms

ca1···apa1···aq
dz

a1 ∧ · · · ∧ dz
ap ∧ dz

a1 ∧ · · · ∧ dz
aq



Mirror symmetry

For M a cpx mfld, we can define a group Hp,q(M) 
consisting of the (p,q) differential forms on M (closed 

mod exact), and for M a cpx Kahler mfld,

dim H
n(M) =

∑

p+q=n

dim H
p,q(M)



Mirror symmetry

The reason I’m mentioning all this is that
one of the basic properties of mirror symmetry is 

that it exchanges (p,q) differential forms with
(n-p,q) differential forms

(n = cpx dim)

dim Hp,q(M) = dim Hn-p,q(W)



Mirror symmetry

The dimensions of the spaces of (p,q) forms can be 
organized more neatly into ``Hodge diamonds.’’

For ex, for cpx dim 2, this is
h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

h2,1 h1,2

h2,2

Mirror symmetry acts as a rotation about diagonal



Example:  T2

T2 is self-mirror topologically;
cpx, Kahler structures interchanged

1

1 1

1

Hodge diamond:

Note this symmetry is 
specific to genus 1;

for genus g:

1

g g

1

h
0,1

h
1,1



Example:  Quartics in P3

K3 is self-mirror topologically;
cpx, Kahler structures interchanged 

(

x2 + y2 + z2
− aw2

)2
−

(

3a−1

3−a

)

pqts = 0

p = w − z −

√

2x

q = w − z +
√

2x

t = w + z +
√

2y

s = w + z −

√

2y

a = 1.5

Kummer surface

1

0 0

1 20 1

0 0

1

Hodge diamond:

(known as K3 mflds)

h
1,1

h
1,1



Example:  Quintic in P4

The quintic (deg 5) hypersurface in P4 
is mirror to

(res’n of) a deg 5 hypersurface in P4/(Z5)3

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

1

0 0

0 101 0

1 1 1 1

0 101 0

0 0

1

Quintic Mirror



How many Calabi-Yau’s ?
Hundreds of thousands of families

Horizontal axis: 2(h1,1 - h2,1) 
Vertical axis:    h1,1 + h2,1

-- numerical evidence for
mirror symmetry

Shown are 3-folds:

= 2 (# Kahler - # cpx defs)

Mirror symm’
==> symm’ across vert’ axis

(Klemm, Schimmrigk, NPB 411 (‘94) 559-583)



How to find mirrors?
One of the original methods:  

``Greene-Plesser orbifold construction’’

Q5 ⊂ P
4 ˜Q5/Z

3

5

mirror

but only applicable in relatively special cases



How to find mirrors?
Batyrev’s construction:

For a hypersurface in a toric variety,
mirror symmetry exchanges

polytope of 
ambient 

toric variety

dual polytope,
for ambient t.v. 

of mirror



Example of Batyrev’s construction:  
T2 as deg 3 hypersurface in P2

P2:

P 0
= {y | 〈x, y〉 ≥ −1 ∀x ∈ P}

= P
2/Z3

Result:
deg 3 hypersurface in P2

mirror to
Z3 quotient of deg 3 hypersurface

(Greene-Plesser)



Enumerative geometry
Mirror symmetry exchanges:

classical computations on M

sums over minimal area (holomorphic) curves on W

-- In other words, mirror symmetry makes
predictions for mathematics



Deg k nk

1 2875
2 609250
3 317206375

These three degrees were the state-of-the-art
before mirror symmetry

 (deg 2 in ‘86, deg 3 in ‘91)

Then, after mirror symmetry,
the list expanded...

Shown: numbers of rat’l curves in the quintic in P4,
of fixed degree.



Deg k nk

1 2875
2 609250
3 317206375
4 242467530000
5 229305888887625
6 248249742118022000
7 295091050570845659250
8 375632160937476603550000
9 503840510416985243645106250
10 704288164978454686113488249750 
... ...



Understanding the nature of these calculations, and 
turning them into rigorous mathematics was an 

industry in the algebraic geometry community for 
several years.

So, physics makes (lots of!) math predictions.

``Gromov-Witten’’

``Gopakumar-Vafa’’

``Donaldson-Thomas’’



The predictions that
string theory makes 

for enumerative 
geometry gives 

physicists a kind of 
experimental test:

Conversely:

by checking whether
its predictions are true,

we learn whether
string theory is self-

consistent.



Why holomorphic 
curves?

To explain this, I need to describe a tiny bit of 
physics.

When I speak of strings propagating on spaces,
what I’m secretly thinking of are 2d ``quantum field 

theories.’’



In a quantum field theory, one calculates `correlation 
functions,’ closely analogous to correlation functions in 

statistics:

In string theory, we also calculate correlation
functions:

< fg > =

∫
[Dφ] exp(iS(φ))f(φ)g(φ)

< fg > =
∑

events

prob(event) f(event) g(event)

where theφ are maps from a Riemann surface
into the space



The real reason I’m talking about sums over maps is 
b/c this is the stringy version of quantum mechanics.

Cultural aside

One description of ordinary quantum mechanics is as 
a sum over maps from the `worldline’ of a particle 

into the space.

That sum over maps is 
weighted by phases; 
dominant contribution 
from classical paths.



In the string sum over maps, minimal-area curves in 
the target space play a special role.

These can be described by holomorphic maps.

For certain special correlation functions,
the (ill-defined) path integral reduces to

an integral over a moduli space of holomorphic maps:

< fgh > =
∑

d

∫
Md

exp(−d(Area))fgh

(= A model TFT correlation f’ns)



The fact that an (ill-defined) sum over all maps 
reduces to something that looks nearly well-defined 

is a consequence of a physical property of the 
theory called ``supersymmetry,’’ as a result of 
which most fluctuations cancel each other out, 
leaving only contributions from zero-energy 

(minimal-area) curves.



Technical complications:

To make sense of expressions involving integrals over 
moduli spaces,

the moduli spaces need to be compact.

Problem is, they’re not.
Ex:  Space of deg 1 hol’ maps P1 -> P1 is SL(2,C)

So, part of the story here involves compactifying
moduli spaces.

Ex:  SL(2,C) -> CP3 as,  
[

a b

c d

]

!→ [a, b, c, d]



We can calculate correlation f’n for cpx Kahler mflds
that aren’t necessarily Calabi-Yau.

Example:  CPN

For degree d maps, Md = CP
(N+1)(d+1)−1

< xk >d =
∫

Md
(deg 2k form)

=







qd k = dimC Md

= N + d(N + 1)
0 else

where q = exp(−Area)



Quantum cohomology
The results of the previous calculation
can be summarized more compactly.

< x
d(N+1)

x
N

> = q
d

x is identified with generator of H2(CP
N ,C)

so if we identify x
N+1

∼ q

then we can recover the correlation f’ns above from

< x
N

> =

∫
CPN

x
N

= 1



Quantum cohomology
In effect, we can encode the sum over holomorphic 

maps in a deformation of the classical
cohomology ring,

known as the ``quantum cohomology ring.’’

Classical cohomology ring for CPN:  C[x]/(xN+1 - 0)

Quantum cohomology ring for CPN:  C[x]/(xN+1 - q)

In limit area -> infinity, q -> 0, 
=>  quantum -> classical



Quantum cohomology
Since I described curve counting in the quintic 

earlier....
For the quintic hypersurface in CP4, the quantum 

cohomology ring is almost the same as the classical 
cohomology ring, except that a rel’n is modified:

H2 = (F0) L H hyperplane class
L a line

F0 = 5 + 2875q + ...
(F0 = 5 is the classical case)



Ordinary mirror symmetry is pretty well understood
nowadays.

However, there are some extensions of mirror 
symmetry that are still being actively studied.

One example:  heterotic mirror symmetry

Purely mathematical description exists 
 (Givental, Yau et al)



is a conjectured generalization that exchanges pairs

Heterotic mirror 
symmetry

(X1, E1) ↔ (X2, E2)

where the    are Calabi-Yau manifolds
and the           are holomorphic vector bundles

Xi

Ei → Xi

Constraints: ch2(E) = ch2(TX)E stable,

Why ``heterotic’’ ?
b/c appears in heterotic string theories



Heterotic mirror 
symmetry

The (2d) quantum field theories defining heterotic 
strings, include those of other (``type II’’) string

theories as special cases.

Hence, heterotic mirror symmetry ought to reduce
to ordinary mirror symmetry in a special case,

& that turns out to be when  
Ei

∼
= TXi



Heterotic mirror 
symmetry

Instead of exchanging (p,q) forms,
heterotic mirror symmetry exchanges bundle-valued 

differential forms (= `sheaf cohomology’):

Note when Ei
∼
= TXi this reduces to

(for Xi Calabi-Yau)

H
d−1,1(X1) ↔ H

1,1(X2)

Hj(X1, Λ
i
E1) ↔ Hj(X2, (Λ

i
E2)

∨)



Heterotic mirror 
symmetry

Not much is known about heterotic mirror symmetry, 
though a few basics have been worked out.

Ex:  numerical
    evidence

Horizontal:

Vertical:

h
1(E) − h

1(E∨)

h
1(E) + h

1(E∨)

where E is rk 4

(Blumenhagen, Schimmrigk, Wisskirchen, 
NPB 486 (‘97) 598-628)



Heterotic mirror 
symmetry

Mirror constructions:

* an analogue of the Greene-Plesser construction
(quotients by finite groups) is known

* but, no known analogue of Batyrev’s dual polytopes 
construction

(Blumenhagen, Sethi, NPB 491 (‘97) 263-278)



Heterotic mirror 
symmetry

Heterotic quantum cohomology rings 
have been worked out.

These are a deformation of classical product 
structures on the groups of bundle-valued differential 

forms

H ·(X, Λ·E∨)

Another bit of progress:

(Combine minimal-area curves & gauge instantons.)

(ES, Katz, Sethi, Basu, Guffin, 
Melnikov, Adams, Distler)

``quantum
sheaf 

cohomology’’



Quantum sheaf cohomology arises from 
correlation functions in a heterotic generalization of 

the A model TFT.

Std quantum cohomology:

〈O1 · · ·On〉 =
∑

d

∫
Md

H
p1,q1(Md) ∧ · · · ∧ H

pm,qm(Md)

Heterotic quantum cohomology:
〈O1 · · ·Om〉 =

∑
d

∫
Md

Hp1 (Md, Λ
q1F∨) ∧ · · · ∧ Hpm (Md, Λ

qmF∨)

=
∑

d

∫
Md

(top − form)

Use
ΛtopE∨ ∼= KX

ch2(E) = ch2(TX)

}

GRR
=⇒ Λtop

F
∨ ∼= KM



Quantum sheaf 
cohomology

In computing ordinary quantum cohomology rings,
tech issues such as compactifying moduli spaces of

holomorphic maps into a cpx manifold arise.

But, this can be done....

In the heterotic case, there are also sheaves     over 
those moduli spaces, which have to be extended over 
the compactification, in a way consistent with e.g.

F

Λ
top

F
∨ ∼= KM



Quantum sheaf 
cohomology

Example:
Take X = P

1
× P

1

with E a deformation of the tangent bundle:

0 −→ O ⊕O




x1 ε1x1

x2 ε2x2

0 x̃1

0 x̃2





−→ O(1, 0)2 ⊕O(0, 1)2 −→ E −→ 0

It can be shown the heterotic q. c. is 

(a def’ of the std q.c. ring of P1xP1)

X̃2 = q2

X2
− (ε1 − ε2)XX̃ = q1



Newer approaches
A more recent approach to these matters is to work

with ``Landau-Ginzburg models.’’

= strings propagating on spaces 
with `potential’ (Morse-like) functions



Landau-Ginzburg models
We can replace strings on a space X
with strings on a space Y + potential,

and if choose Y and potential correctly,
get the same correlation functions.

Can give computational advantages.



Example:

string on {s = 0}   B⊂

where s ∈ Γ(E)

Related by
``renormalization group

flow’’

LG model on X = Tot(                )E
∨ π

−→ B

with   W = p   sπ
∗



Renormalization group flow

Constructs a series of theories that are 
approximations to the previous ones, valid at longer 

and longer distance scales.

The effect is much like starting with 
a picture and then standing further 
and further away from it, to get 

successive approximations; final result 
might look very different from start.



Renormalization group

Longer 
distances

Lower
energies

Space of physical theories



Computational advantages:

For example, consider curve-counting in a
deg 5 (quintic) hypersurface in P4

-- need moduli space of curves in quintic,
rather complicated

Can replace with LG model on
Tot

(

O(−5) → P
4
)

and here, curve-counting involves moduli spaces
of curves on P4, much easier

(Kontsevich:  early ‘90s; physical LG realization: ES, Guffin, ‘08)



Application to mirror symmetry:

Instead of directly dualizing spaces,
replace spaces with corresponding LG models,

and dualize the LG models.
(P Clarke, ‘08)

* Resulting picture is often easier to understand

* Technical advantage:  also encapsulates cases in 
which mirror isn’t an ordinary space
(but still admits a LG description)



There also exist heterotic LG models:

* a space X

* a holomorphic vector bundle E → X

(satisfying same constraints as before)

* some potential-like data: 
Ea

∈ Γ(E), Fa ∈ Γ(E∨)∑

a

E
a
Fa = 0such that

(Recover ordinary LG when E = TX

and Fi = ∂iWE
a
≡ 0

,
)



Heterotic LG models are related to heterotic strings 
via renormalization group flow.

E = coker (F1 −→ F2)

A heterotic string on B 
with

A heterotic LG model on X = Tot

(

F1

π

−→ B

)

E
′

= π
∗
F2 Fa ≡ 0, Ea "= 0with &

Renormalization 
group

Example:



Because heterotic LG models are related to
ordinary heterotic strings via
renormalization group flow,

one can compute many quantities
(quantum sheaf cohomology, elliptic genera, ...)

upstairs in the LG model,
just as in the ordinary case.



One other fun application of LG models:

I’ve spoken on strings on spaces,
but in fact strings can propagate on 

more general things.

* stacks

* abstract CFT’s without any known
(pseudo-)geometric interpretation at all

& the latter are defined by (RG endpoints of) 
certain LG models



Some other occurrences of RG in string theory:

D-branes and derived categories
For any given complex in the derived category,

choose a locally-free resolution,
and map to branes/antibranes.

Problem:  different rep’s lead to different physics.

Ex: 0 −→ E
=

−→ E −→ 0 vs. 0

Solution:  RG flow....

The renormalization group (RG) plays an important 
role in LG models.



Stacks in physicsAnother ex:

Nearly every smooth DM stack has a presentation of 
the form [X/G].

To such a presentation, associate
``G-gauged sigma model on X’’

Problem:  such presentations not unique

Fix:  RG flow:
stacks classify endpoints of RG flow



PhysicsMathematics

Geometry:
Gromov-Witten

Donaldson-Thomas
quantum cohomology

etc

Homotopy, categories:
derived categories, 

stacks, etc.

Supersymmetric,
topological
quantum

field theories

Renormalization
group



Nobody knows whether string theory correctly 
describes the real world.

Conclusions

However, regardless, it has served as a source of 
ideas/inspirations for exciting new mathematics.



Where to go for more information?



Thank you for your 
time!


