
Appendix C

Integral transforms

C.1 Fourier transform

Given a real-valued function f(x) on the real line, define the Fourier transform of f(x) to be

f̃(k) =

∫ ∞

−∞
f(x) exp(ikx)dx (C.1)

Then it can be shown that

f(x) =

∫ ∞

−∞

dk

2π
f̃(k) exp(−ikx) (C.2)

known as the inverse Fourier transform. Precise factors of 2π vary from source to source; what is
important is that in a Fourier transform followed by an inverse Fourier transform, there should be
an overall factor of 1/(2π).

A useful identity is the following expression for the Dirac delta function:

δ(x) =
1

2π

∫ ∞

−∞
exp(ikx)dk (C.3)

One way to derive this expression is as the inverse Fourier transform of the Fourier transform of
the Dirac delta function.

A useful identity is known as Parseval’s theorem:

∫ ∞

−∞
|f(x)|2dx =

1

2π

∫ ∞

−∞
|f̃(k)|2dk

This can be derived using inverse Fourier transforms:

∫ ∞

−∞
|f(x)|2dx =

∫ ∞

−∞
dx

[
1

2π

∫ ∞

−∞
f̃(k)∗ exp(+ikx)dk

] [
1

2π

∫ ∞

−∞
f̃(k′) exp(−ik′x)dk′

]

=
1

(2π)2

∫ ∞

−∞
dk

∫ ∞

−∞
dk′f̃(k)∗f̃(k′)

∫ ∞

−∞
dx exp(i(k − k′)x)

573
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=
1

(2π)2

∫ ∞

−∞
dk

∫ ∞

−∞
dk′f̃(k)∗f̃(k′)(2π)δ(k − k′)

=
1

2π

∫ ∞

−∞
|f̃(k)|2dk

There is also a notion of convolution. Given functions f(x), g(x), define

(f ∗ g)(x) =

∫ ∞

−∞
g(y)f(x− y)dy

It is straightforward to check that the Fourier transform of the convolution of f(x), g(x), is the
ordinary product of the Fourier transforms:

˜(f ∗ g)(k) =

∫ ∞

−∞
(f ∗ g)(x) exp(ikx)dx

=

∫ ∞

−∞
dx exp(ikx)

∫ ∞

−∞
g(y)f(x− y)dy

=

∫ ∞

−∞
g(y) exp(iky)dy

∫ ∞

−∞
f(x− y) exp(ik(x− y))dx

=

[∫ ∞

−∞
g(y) exp(iky)dy

] [∫ ∞

−∞
f(x′) exp(ikx′)dx′

]

= f̃(k)g̃(k)

Similarly, if we define the convolution

(f̃ ∗ g̃)(ω) =
1

2π

∫ ∞

−∞
g̃(k′)f̃(k − k′)dk′

then its inverse Fourier transform is the ordinary product of f(x) and g(x):

∫ ∞

−∞
(f̃ ∗ g̃)(k) exp(−ikx)dk

2π
=

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dk′

2π
g̃(k′)f̃(k − k′) exp(−ikx)

=

∫ ∞

−∞

dk′

2π
g̃(k′) exp(−ik′x)

∫ ∞

−∞

dk

2π
f̃(k − k′) exp(−i(k − k′)x)

=

[∫ ∞

−∞

dk′

2π
g̃(k′) exp(−ik′x)

] [∫ ∞

−∞

dk′′

2π
f̃(k′′) exp(−ik′′x)

]

= f(x)g(x)

***** Should I say something about causality and the Titchmarsh theorem? (see p 193 of
mathmeth06.pdf)

C.2 Fourier series

In the special case that f(x) is periodic, we can derive an alternative form of the Fourier
transform, known as the Fourier series.
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Suppose f(x) is periodic, of period L:

f(x + L) = f(x)

Let us compute the Fourier transform of this function:

f̃(k) =

∫ ∞

−∞
f(x) exp(ikx)dx

=
∞∑

n=−∞

∫ L

0
f(x) exp(ik(x− nL))dx

To further simplify at this point, we can use an identity known as the Poisson resummation
formula:

∞∑

n=−∞

exp(inx) = 2π
∞∑

n=−∞

δ(x − 2πn) (C.4)

which is closely related to the expression (C.3) for the Fourier transform of the Dirac delta
function. Using the Poisson resummation formula (C.4), our Fourier transform becomes

f̃(k) = 2π
∞∑

n=−∞

∫ L

0
f(x) exp(ikx)δ(kL − 2πn)dx

=
2π

L

∞∑

n=−∞

δ

(
k − 2πn

L

)∫ L

0
f(x) exp(ikx)

Seen in this form, the Fourier transform has delta-function support at frequencies ω that are
multiples of an integer. With that in mind, we can define the Fourier series of the periodic
function f(x) by

f̃n =
2π

L

∫ L

0
f(x) exp

(
2πin

L
x

)
dx (C.5)

(the coefficients of the delta functions above).

Then, the inverse Fourier transform of the function

∞∑

n=−∞

f̃nδ

(
k − 2πn

L

)

is easily checked to be

∫ ∞

−∞

(
∞∑

n=−∞

f̃nδ

(
k − 2πn

L

))
exp(−ikx)dk

2π
=

1

2π

∞∑

n=−∞

f̃n exp

(
−2πin

L
x

)
(C.6)

Simplifying this expression, we find

1

2π

∞∑

n=−∞

f̃n exp

(
−2πin

L
x

)
=

1

L

∞∑

n=−∞

∫ L

0
f(x′) exp

(
2πin(x′ − x)

L

)
dx′
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Applying the Poisson resummation formula (C.4), this becomes

1

2π

∞∑

n=−∞

f̃n exp

(
−2πin

L
x

)
=

1

L

∞∑

n=−∞

∫ L

0
f(x′)δ

(
x′ − x

L
− n

)
dx′

=
∞∑

n=−∞

∫ L

0
f(x′)δ(x′ − x− nL)dx′

= f(x)

Thus, we recover the standard result for Fourier series:

f(x) =
1

2π

∞∑

n=−∞

f̃n exp

(
−2πin

L
x

)
(C.7)

and so we see that Fourier series are special cases of Fourier transforms.

When checking that the series tranformation and its inverse are indeed inverses in the opposite
direction, a useful identity that plays the same role as Poisson resummation is

∫ 2π/L

0
eikL(n−m)dk =

2π

L
δn,m (C.8)

Since Fourier series are special cases of Fourier transforms, they have many of the same
properties. For example, there is a form of Parseval’s theorem, here given by

1

L

∫ L

0
|f(x)|2dx =

1

(2π)2

∞∑

n=−∞

|f̃n|2

This can be proven in almost exactly the same manner as for Fourier transforms.

Similarly, there is also a notion of convolution for Fourier series. If one defines, for two periodic
functions f(x), g(x) both of period L,

(f ∗ g)(x) =
2π

L

∫ L

0
g(y)f(x− y)dy

then using the same methods as for Fourier transforms it is straightforward to check that

˜(f ∗ g)n = f̃ng̃n

Similarly, if one defines
(
f̃ ∗ g̃

)
n

=
1

2π

∞∑

m=−∞

g̃mf̃n−m

then it is straightforward to check that

1

2π

∞∑

n=−∞

(
f̃ ∗ g̃

)
n

exp

(
−2πinx

L

)
= f(x)g(x)
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C.3 Discrete Fourier transform

***** Also mention somewhere that the discrete Fourier transform is effectively the *same* as a
Fourier series, but with momentum space exchanged with coordinate space.

In the special case that f(x) is a sum of delta functions, or equivalently that the function is only
defined at integral points, we can derive an alternative form of the Fourier transform, known as
the discrete Fourier transform.

Let f(n) be a function defined only over the integers. From that, we can define a function on the
real line by

f(x) ≡
∞∑

n=−∞

f(n)δ(x − nL)

where L is assumed to be a nonzero constant. The Fourier transform of f(x) is given by

f̃(k) =
∞∑

n=−∞

f(n) exp(iknL)

and so we define the discrete Fourier transform of f(n) to be the function above:

f̃(k) ≡
∞∑

n=−∞

f(n) exp(iknL) (C.9)

Note that the function f̃(k) is periodic, of period 2π/L.

Then, the inverse discrete Fourier transform is computed using the ordinary inverse Fourier
transform:

f(x) =
∞∑

n=−∞

f(n)δ(x − nL) =

∫ ∞

−∞
f̃(k) exp(−ikx)dk

2π

Since f̃(k) is periodic, we can apply the ideas of the previous section, and write

∫ ∞

−∞
f̃(k) exp(−ikx)dk

2π
=

∞∑

n=−∞

∫ 2π/L

0
f̃(k) exp

(
−i
(
k − 2πn

L

)
x

)
dk

2π

Finally, using the Poisson resummation formula, we have

∫ ∞

−∞
f̃(k) exp(−ikx)dk

2π
= L

∞∑

n=−∞

∫ 2π/L

0
f̃(k) exp(−ikx)δ(x − nL)

dk

2π

from which we read off that

f(n) = L

∫ 2π/L

0
f̃(k) exp(−iknL)

dk

2π
(C.10)

known as the inverse discrete Fourier transform.
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There is an analogue of Parseval’s theorem for discrete Fourier transforms, given by

∞∑

n=−∞

|f(n)|2 = L

∫ 2π/L

0
|f̃(k)|2 dk

2π

which is proven in almost exactly the same fashion as before.

Similarly, there are also notions of convolution. If we define

(f ∗ g)(n) ≡
∞∑

m=−∞

g(m)f(n −m)

then it is straightforward to compute that the discrete Fourier transform of the convolution is the
ordinary product of the discrete Fourier transforms:

˜(f ∗ g)(ω) = f̃(ω)g̃(ω)

Similarly, if we define

(f̃ ∗ g̃)(k) ≡ L

∫ 2π/L

0

dk′

2π
g̃(k′)f̃(k − k′)

then the inverse discrete Fourier transform of the convolution is the ordinary product of the
inverse discrete Fourier transforms:

L

∫ 2π/L

0

dk

2π
(f̃ ∗ g̃)(k) exp(−iknL) = f(n)g(n)

**** Say something about z-transform, causality?

C.4 Discrete Fourier series

Let us put together the two notions of Fourier series and discrete Fourier transform. Suppose we
have a function f(x) that is defined only over the integers:

f(x) ≡
∞∑

n=−∞

f(n)δ(x − n)

and which is also periodic, of period N (an integer), meaning f(x+N) = f(x) or equivalently
f(n+N) = f(n).

The Fourier series of this function is given by

f̃n =
2π

N

∫ N

0
f(x) exp

(
2πinx

N

)
dx

=
2π

N

N−1∑

m=0

f(m) exp

(
2πinm

N

)
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Note that, unlike ordinary Fourier series coefficients, the coefficients here are periodic of period
N , meaning

f̃n = f̃n+N .

As a check, we can compute the inverse transform:

1

2π

∞∑

n=−∞

f̃n exp

(
−2πinx

N

)
=

1

N

∞∑

n=−∞

N−1∑

m=0

f(m) exp

(
2πinm

N

)
exp

(
−2πinx

N

)

=
N−1∑

m=0

f(m)
∞∑

n=−∞

δ (x − m + nN)

= f(x)

where in the above we have used the Poisson resummation formula (C.4).

We can also extract the individual f(n)’s, using the identity

N−1∑

n=0

exp

(
2πinm

N

)
= Nδm,0

(a statement about roots of unity, closely analogous to Poisson resummation (C.4) and the
Fourier transformation of the Dirac delta function (C.3)) which can be used to show that

f(m) =
1

2π

N−1∑

n=0

f̃n exp

(
−2πimn

N

)

As the reader should expect, there is an analogue of Parseval’s theorem, which here is the
statement that

1

N

N−1∑

n=0

|f(n)|2 =
1

(2π)2

N−1∑

n=0

|f̃n|2

and can be proven in the same manner as for previous appearances of Parseval’s theorem.

There are also analogues of convolution. For two periodic functions f(x), g(x), both of period N
and both nonzero only over the integers, define

(f ∗ g)(n) =
2π

N

N−1∑

m=0

g(m)f(n −m)

Then, using the same methods as elsewhere, it is straightforward to check that

˜(f ∗ g)n = f̃ng̃n

Similarly, if we define
(
f̃ ∗ g̃

)
n

=
1

2π

N−1∑

m=0

g̃mf̃n−m



APPENDIX C. INTEGRAL TRANSFORMS 580

then it is straightforward to check that

1

2π

N−1∑

n=0

(
f̃ ∗ g̃

)
n

exp

(
−2πimn

N

)
= f(m)g(m)

***** describe next as going on to higher-dim’l analogues of Fourier series in the next section.

C.5 Fourier series and discrete Fourier transforms in higher

dimensions (Brillouin zones)

C.5.1 Bravais lattices

We shall model crystalline solids with what is called Bravais lattices, and the corresponding
Fourier transforms will yield Brillouin zones in momentum space.

A Bravais lattice in d dimensions is an infinite array of discrete points such that every point has a
position vector of the form

~R = n1~a1 + · · · + nd~ad

where the ni are integers and ~a1, · · · ,~ad are a set of d fixed vectors. The vectors ~a1, · · · ,~ad are
said to be primitive vectors and are said to generate or span the lattice. (Any given set of
primitive vectors is not unique, as any linearly independent integral linear combination is also a
set of primitive vectors.)

Note that a Bravais lattice is closed under vector addition and subtraction. In particular, a
Bravais lattice looks the same in all directions from each point of the lattice.

The simplest example of a Bravais lattice is a square lattice. We have illustrated an example in
figure C.1, with two primitive vectors drawn. A somewhat more complicated example of a Bravais
lattice is illustrated in figure C.2, again with a set of primitive vectors drawn. (We leave it to the
reader to verify explicitly that the vectors drawn in figure C.2 do generate the lattice.)

Not every lattice in d dimensions has the property that it can be spanned by d vectors. An
example is given in figure C.3.

Intuitively, a lattice is Bravais if it appears exactly the same from anywhere on the lattice.

C.5.2 Reciprocal lattices, Bragg planes, and Brillouin zones

For a given Bravais lattice, the reciprocal lattice is defined to be the set of vectors ~k such that for
every ~r in the original Bravais lattice, exp(i~k · ~r) = 1.

The Bravais lattice that determines a given reciprocal lattice is sometimes called the direct lattice,
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Figure C.1: An example of a Bravais lattice – a square lattice – with a set of primitive vectors
drawn.

Figure C.2: Another example of a Bravais lattice, with a set of primitive vectors drawn.

Figure C.3: A two-dimensional (hexagonal) lattice that is not generated by two vectors, and hence
is not Bravais.
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It can be shown that the reciprocal lattice is itself a Bravais lattice; the reciprocal of the
reciprocal is the original direct lattice. Note ~0 is always an element of the reciprocal lattice.

**** Show that the reciprocal is Bravais, and that the reciprocal of the reciprocal is the original.

Define a Bragg plane to be the perpendicular bisector of a line segment joining ~0 to an element of
the reciprocal lattice. (Thus, for each element of the reciprocal lattice, you get a Bragg plane.)

The first Brillouin zone is defined to be the set of points in ~k space that are closer to ~0 than any
other reciprocal lattice point.

The second Brillouin zone is defined to be the set of points that can be reached from the first
Brillouin zone by crossing only one Bragg plane.

The (n+ 1)th Brillouin zone is defined to be the set of points not in the (n− 1)th Brillouin zone
that can be reached from the nth Brillouin zone by crossing only one Bragg plane.

In figure C.4 we have drawn a simple one-dimensional Bravais lattice, with lattices elements at nL
for n an integer, its reciprocal lattice (in which the lattice points are at 2πn/L for n an integer),
and the Brillouin zones in the reciprocal lattice. The first Brillouin zone is centered on the origin,
and is the interval [−π/L, π/L]. All the higher Brillouin zones in one dimension are a union of
two separate intervals. The second Brillouin zone, for example, is the union of the intervals
[−2π/L,−π/L] and [π/L, 2π/L].

0 L−L 2L−2L 0 2π
L−2π

L
4π
L−4π

L

12 23 34 4

0 2π
L−2π

L
4π
L−4π

L

Figure C.4: On the left is a one-dimensional Bravais lattice, generated by the primitive vector Lı̂.
In the middle is the corresponding reciprocal lattice, which is generated by the primitive vector
(2π/L)̂ı. On the right are the Bragg planes and Brillouin zones in the reciprocal lattice. Bragg
planes are drawn as the dashed vertical lines, and Brillouin zones are marked by the boxes.

A two-dimensional example is sketched in figure C.5. There, Brillouin zones in the reciprocal
lattice to a square two-dimensional Bravais lattice are marked. Points of the reciprocal lattice are
marked with dots, and Bragg planes about the origin are drawn as lines. The Brillouin zones are
marked with integers – the square in the middle is the first Brillouin zone, the union of the four
triangles on its sides form the second Brillouin zone, the union of the eight smaller triangles on
the edges of the second Brillouin zone form the third Brillouin zone, and so forth. If the original
Bravais lattice is square, generated by the vectors Le1, Le2, then the first Brillouin zone in the
reciprocal lattice is the square [

−π
L
,
π

L

]
×
[
−π
L
,
π

L

]

In performing Fourier series and discrete Fourier transforms, the Brillouin zones will be the
regions in momentum space over which one integrates. Any Brillouin zone will do – they are all
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1
2 2

2

23 3

3

3

3 3

3

3

Figure C.5: Brillouin zones in the reciprocal lattice of a two-dimensional square Bravais lattice.

equivalent for the purposes of these transforms. To emphasize this point, looking at figure C.5 for
a two-dimensional lattice, we have below sketched zone 1 together with translations of zones 2
and 3 – for all n, the components of zone n can be reassembled to give a copy of zone 1.

1 2 2
2

2 3
3

3

3

3

3

3
3

Beginning in zone 4, the varous components are no longer isomorphic to one another, but it is
still true that they all fit together to give a copy of zone 1:

(For lack of space, we have not individually labelled each component “4”, but implicitly each
piece above is part of zone 4.)

**** Revise the corresponding homework exercise, now that I’ve added pictures to the text.

C.5.3 Fourier series and discrete Fourier transforms in higher dimensions

Both Fourier series and discrete Fourier transforms have elegant higher-dimensional
generalizations in the language of Brillouin zones.

Let us first outline the generalization of Fourier series. Fix a Bravais lattice in d dimensions,
defined by vectors ~R. Let f(~x) be a function with the periodicity of the Bravais lattice, meaning,

f(~x) = f(~x + ~R)
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for every ~R in the Bravais lattice. Then, its Fourier transform is given by

f̃~n = V

∫

B̂
ddxf(~x) exp

(
i~x · ~k~n

)

and the inverse transform is given by

f(x) =
1

(2π)d

∑

~n∈Zd

f̃n exp
(
−i~x · ~k~n

)

where B is any Brillouin zone in the reciprocal lattice, B̂ is any Brillouin zone in the original
Bravais lattice, V is the volume of B, any Brillouin zone in the reciprocal lattice, and ~k~n are
lattice points in the reciprocal lattice.

Let us check briefly that this reduces to our previous expressions in the case of one dimension.
Consider the special case that the Bravais lattice vectors are Rn = Ln, so that B̂ = [−L/2, L/2],
then it is straightforward to check that the reciprocal lattice vectors are kn = 2πn/L, and
V = 2π/L. Then the expressions above reduce to

f̃n =
2π

L

∫ L/2

−L/2
dxf(x) exp

(
2πin

L

)

f(x) =
1

2π

∞∑

n=−∞

f̃n exp

(
−2πin

L

)

which match expressions (C.5), (C.7) for Fourier series in one dimension.

The result above can be derived from a repeated Fourier transform in higher dimensions, just as
we originally derived the one-dimensional Fourier series. To derive it, the higher-dimensional
analogue of the Poisson resummation formula is useful:

∑

~n∈Zd

exp
(
i~x · ~k~n

)
=

(2π)d

V

∑

~n∈Zd

δd
(
~x − ~R~n

)
(C.11)

in the same conventions as above. Because

V = Vol(B) =
(2π)d

Vol(B̂)

we have to be slightly careful in switching the original and reciprocal lattices in the
expression C.11. The correct dualized expression is

∑

~n∈Zd

exp
(
i~x · ~R~n

)
= V

∑

~n∈Zd

δd
(
~x − ~k~n

)

As a check, note that in one-dimension as previously, equation (C.11) becomes

∞∑

n=−∞

exp

(
2πinx

L

)
= L

∞∑

n=−∞

δ(x− nL)
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and it is straightforward to check that this is equivalent to the one-dimensional version (C.4) of
the Poisson resummation formula.

Another handy identity is the result
∫

B
ddk exp

(
i~k ·

(
~R~n − ~R~n′

))
= V δn,n′ (C.12)

As a check, note that in one dimension as above this reduces to the statement
∫ π/L

−π/L
dk exp

(
ikL(n− n′)

)
=

2π

L
δn,n′

which is easily checked to be correct.

**** Include Parseval and convolution? Mention derivation from full Fourier transform, as
homework exercise?

There is an analogous generalization of discrete Fourier transforms in higher dimensions. Suppose
one has a function defined at the lattice points of some Bravais lattice, as above. We shall
describe the function as f(~n), where the ~n corresponds to the lattice point

~R~n = n1~a1 + · · · + nd~ad

and the ai are primitive vectors generating the Bravais lattice. Then, the discrete Fourier
transform of f is given by

f̃(~k) =
∑

~n∈Zd

f(~n) exp(i~k · ~R~n)

Note that f̃(~ω) has the periodicity of the reciprocal lattice: for any vector ~k in the reciprocal
lattice,

f̃(~k) = f̃(~k + ~k)

The inverse discrete Fourier transform is given by

f(~n) =
1

V

∫

B
ddkf̃(~k) exp(−i~k · ~R~n)

where B is any Brillouin zone in the reciprocal lattice, and V its volume.

The higher-dimensional discrete Fourier transform above can be derived from repeated full
Fourier transforms, just as in the one-dimensional case.

**** include Parseval and convolution? Mention derivation from full Fourier transform as
homework exercise?

As a check, in one dimension the formulas above reduce to

f̃(k) =
∞∑

n=−∞

f(n) exp (iknL)

f(n) =
L

2π

∫ π/L

−π/L
dkf̃(k) exp (−iknL)

which are precisely equation (C.9), (C.10) for the one-dimensional discrete Fourier transform.
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C.6 The Fourier-Bessel transform

In this section we will describe how functions in three dimensions can be expanded in infinite
series involving spherical Bessel functions and spherical harmonics. We will loosely refer to these
as Fourier-Bessel series and transforms, though more properly that name is ordinarily reserved
for the special case of functions in one dimension on a finite interval expanded in a basis of Bessel
function.

Part of this we observed in section **** CITE *** on spherical harmonics: any function f(θ, ϕ)
can be expressed in the form

f(θ, ϕ) =
∑

n,m

anmY
m
n (θ, ϕ)

with coefficients anm that can be determined by the orthonormality result *** CITE *** for
spherical harmonics, namely

∫ 2π

ϕ=0

∫ π

θ=0
Y m1∗

n1
(θ, ϕ)Y m2

n2
(θ, ϕ) sin θdθdϕ = δn1,n2δm1,m2 (C.13)

A related useful orthonormality result for spherical harmonics is [Jackson][p.108, equ’n (3.56)]:

∞∑

n=0

n∑

m=−n

(
Y m

n (θ′, ϕ′)
)∗
Y m

n (θ, ϕ) = δ(ϕ − ϕ′)δ(cos θ − cos θ′) (C.14)

Now, before considering functions defined over all space, let us consider the special case of
functions forced to vanish on a spherical shell of radius R. A function f(r, θ, ϕ) inside that shell
can be expressed as the sum

f(r, θ, ϕ) =
∑

nmp

Anmp jn(knpr)Y
m
n (θ, ϕ) (C.15)

for some constants Anmp, where knp is 1/R times the pth zero of jn(x). We can determine the
constants Anmp using orthonormality relations for the spherical harmonics and spherical Bessel
functions. The latter can be derived from the identity

∫ R

0
Jν(kνpr)Jν(kνqr)rdr =

R2

2
(Jν+1(kνp))

2 δp,q (C.16)

which in terms of spherical Bessel functions implies

2

π

∫ R

0
jn(knpr)jn(knqr)r

2dr =
R2

2knp
(jn+1(knp))

2 δp,q (C.17)

Using these orthogonality results, let us derive the values of the constants Anmp. Assuming
completeness (i.e. equation (C.15)), we have

∫ 2π

ϕ=0

∫ π

θ=0
Y m∗

n (θ, ϕ)f(r, θ, ϕ) sin θdθdϕ =
∑

p

Anmp jn(knpr)
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hence

∫ R

0

∫ 2π

ϕ=0

∫ π

θ=0
Y m∗

n (θ, ϕ)jn(knpr)f(r, θ, ϕ)r2 sin θdθdϕdr =
πR2

4knp
(jn+1(knp))

2Anmp

and so

Anmp =
4knp

πR2

1

(jn+1(knp))
2

∫ R

0

∫ 2π

ϕ=0

∫ π

θ=0
Y m∗

n (θ, ϕ)jn(knpr)f(r, θ, ϕ)r2 sin θdθdϕdr

Now, instead of functions inside a sphere of radius R, constrained to vanish on the boundary,
consider functions in space that are constrained to vanish at infinity. The analogue of
equation (C.16) is [Jackson][equ’n (3.108)]

∫ ∞

0
Jν(kx)Jν(k′x)xdx =

1

k
δ(k − k′) (C.18)

and the corresponding analogue of equation (C.17) is [Jackson][equ’n 3.112]

∫ ∞

0
jn(kr)jn(k′r)r2dr =

π

2k2
δ(k − k′) (C.19)

Using these orthonormality relations, if we expand

f(r, θ, ϕ) =
∑

n,m

∫ ∞

0
dkAnm(k) jn(kr)Y m

n (θ, ϕ)

then we find ∫ 2π

ϕ=0

∫ π

θ=0
Y m∗

n (θ, ϕ)f(r, θ, ϕ) sin θdθdϕ =

∫ ∞

0
dkAnm(k) jn(kr)

hence ∫ ∞

0

∫ 2π

ϕ=0

∫ π

θ=0
Y m∗

n (θ, ϕ)jn(kr)f(r, θ, ϕ)r2 sin θdθdϕdr =
π

2k2
Anm(k)

and so we find

Anm(k) =
2k2

π

∫ ∞

0

∫ 2π

ϕ=0

∫ π

θ=0
Y m∗

n (θ, ϕ)jn(kr)f(r, θ, ϕ)r2 sin θdθdϕdr

**** fill in

C.7 Further reading

More information on discrete Fourier transforms, discrete Fourier series, and the related notion of
the z transform can be found in, for example, [PM]. More information on Bravais lattices can be
found in [AM][chapter 5.....].
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C.8 Exercises

***** Add a problem computing 2d Brillouin zones, out to 4 or 5, and check explicitly that total
area same in all cases.

**** Need problems working through more basic props of F transforms, series, etc.

**** Also, nyquist frequency, limits of discrete sampling, etc.

1. (a) (AW 15.3.2) Let f̃(k) be the Fourier transform of f(x), and let g̃(k) be the Fourier
transform of g(x) = f(x+ a). Show that

g̃(k) = exp(−iak)f̃(k)

(b) Let f̃(k) be the discrete Fourier transform of f(n), and g̃(k) the discrete Fourier
transform of g(n) = f(n+m). Show that

g̃(k) = e−ikmLf̃(k)

2. (a) Show that the Fourier transform of f ′(x) is −ikf̃(k), where f̃(k) is the Fourier
transform of f(x).

(b) Show that the discrete Fourier transform of f(n) − f(n− 1) is

(
1 − eikL

)
f̃(k)

where f̃(k) is the discrete Fourier transform of f(n).

3. (AW 15.3.11(ab))

(a) Verify that the Fourier transform of J0(ax) is

{
2
(
a2 − k2

)−1/2 |k| < |a|
0 |k| > |a|

(b) Verify that the Fourier transform of N0(a|x|) is

{
0 |k| < a

−2
(
k2 − a2

)−1/2 |k| > a

4. (AW 15.4.3) Consider the differential equation

−Dd
2ϕ(x)

dx2
+ κ2Dϕ(x) = Qδ(x)

where D, κ, Q are constants. Solve this differential equation, as follows: apply a Fourier
transform, solve the equation in transform space, and then transform the solution back into
x space.
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5. (AW 15.5.7(ab))

(a) Given f(x) = 1 − |x/2|, |x| < 2, and 0 elsewhere, show that the Fourier transform of
f(x) is

f̃(k) =

√
2

π

(
sin k

k

)2

(b) Using the Parseval identity, compute

∫ ∞

−∞

(
sin t

t

)4

dt

6. (AW 16.2.6) Given the integral equation

exp
(
−x2

)
=

∫ ∞

−∞
exp

(
−(x− t)2

)
ϕ(t)dt

apply Fourier convolution to solve for ϕ(t).

7. Use Poisson resummation to show that

∞∑

n=−∞

exp
(
−πan2 + 2πibn

)
=

1√
a

∞∑

n=−∞

exp

(
−π
a

(n − b)2
)

where a is a positive real number.

8. Consider a two-dimensional square Bravais lattice with primitive vectors ~a1 = Lı̂, ~a2 = L̂.
Compute the volumes of each of the first three Brillouin zones in reciprocal space, and show
that they match.

9. Show that in one dimension, points along a line separated by distance a form a Bravais
lattice. Show that in two dimensions, a square lattice of side a and a square lattice of side a
with a point in the center of each square are both examples of Bravais lattices.

Show that if we tile the two dimensional plane with hexagons and identify the corners with
lattice points, then we do not get a Bravais lattice.

In each case, only a very short explanation is expected, e.g. find a set of ~ai.

10. For the following cases:

• a one-dimensional Bravais lattice of points separated by distance a

• a two-dimensional Bravais lattice of points at the corners of squares, of side length a

• the two-dimensional lattice above with points added to the center of each square

compute

• the reciprocal lattice

• sketch the lattice near ~0 and draw some of the Bragg planes

• label the first, second, and (for the first two cases only) the third Brillouin zone


