
Elliptic functions

See [1][section 4.5] and [2] for more information.

1 Definition

An elliptic function is a single-valued doubly-periodic function of a single complex variable
which is analytic except at poles and whose only singularities in the finite plane are poles.

Such functions are called elliptic because they define functions on the two-torus. Imagine
building a two-torus (a doughnut) by taking a square and identifying opposing sides – that
means a function on the complex plane which is periodic in two directions can be thought
of as a function on a square, periodic at opposing sides, and hence is a function on the
two-torus.

Given an angle ϕ, define

u =
∫ ϕ

0

dθ
(

1 − m sin2 θ
)1/2

where m is the parameter, a real number in the interval 0 ≤ m ≤ 1. In terms of the elliptic
integrals discussed in A-W section 5.8, u = F (sin ϕ|m) where F is the elliptic integral of the
first kind. The angle ϕ corresponding to u is known as the amplitude of u, and is denoted
am u. Then, define the Jacobi elliptic functions

sn u = sin ϕ

cn u = cos ϕ

dn u =
(

1 − m sin2 ϕ
)1/2

In the case m = 0, note that

sn u = sin u

cn u = cos u

dn u = 1

and in the special case m = 1,

sn u = tanhu

cn u =
1

cosh u

dn u =
1

cosh u



Now, in order to be an elliptic function, these functions must possess a double periodicity.
Let

K(m) =
∫ π/2

0

dθ
(

1 − m sin2 θ
)1/2

be the complete elliptic integral of the first kind, and define

K ′(m) =
∫ π/2

0

dθ
(

1 − m1 sin2 θ
)1/2

where m1 = 1 − m is known as the complementary parameter. In this context, K(m) is
known as the real quarter-period, and iK ′(m) is known as the imaginary quarter-period.
Then, it can be shown that

sn u = sn (u + 4K(m)) = sn (u + 2iK ′(m)) = sn (u + 4K(m) + 4iK ′(m))

cn u = cn (u + 4K(m)) = cn (u + 4iK ′(m)) = cn (u + 2K(m) + 2iK ′(m))

dn u = dn (u + 2K(m)) = dn (u + 4iK ′(m)) = dn (u + 4K(m) + 4iK ′(m))

Since these functions are periodic in two directions on the complex plane, they are elliptic
functions.

Given these elliptic functions, one can define the additional Jacobi elliptic functions

cd u = cn u

dn u
dc u = dn u

cn u
ns u = 1

sn u

sd u = sn u

dn u
nc u = 1

cn u
ds u = dn u

sn u

nd u = 1

dn u
sc u = sn u

cn u
cs u = cn u

sn u

Put simply, if p, q, r are any three of the letters s, c, d, n, then

pq u =
pr u

qr u

with the convention that when any two letters are the same, e.g. pp u, then that is set to 1.

Define the theta functions as follows:

θ1(z, q) = 2q1/4
∞
∑

n=0

(−)nqn(n+1) sin[(2n + 1)z]

=
∞
∑

n=−∞

(−)n−1/2q(n+1/2)2 exp((2n + 1)iz)

θ1(z + π, q) = −θ1(z, q)

θ1(z + πγ, q) = −Nθ1(z, q)



θ2(z, q) = 2q1/4
∞
∑

n=0

qn(n+1) cos[(2n + 1)z]

=
∞
∑

n=−∞

q(n+1/2)2 exp((2n + 1)iz)

θ2(z + π, q) = −θ2(z, q)

θ2(z + πγ, q) = Nθ2(z, q)

θ3(z, q) = 1 + 2
∞
∑

n=1

qn2

cos(2nz)

=
∞
∑

n=−∞

qn2

exp(2niz)

θ3(z + π, q) = θ3(z, q)

θ3(z + πγ, q) = Nθ3(z, q)

θ4(z, q) = 1 + 2
∞
∑

n=1

(−)nqn2

cos(2nz)

=
∞
∑

n=−∞

(−)nqn2

exp(2niz)

θ4(z + π, q) = θ4(z, q)

θ4(z + πγ, q) = −Nθ4(z, q)

θ2(z, q) = θ1(z + (1/2)π, q)

θ3(z, q) = θ4(z + (1/2)π, q)

where q = exp(iπγ), Re γ > 0, N = q−1 exp(−2iz).

Some relations between squares of the theta functions:

θ2
1(z)θ2

4(0) = θ2
3(z)θ2

2(0) − θ2
2(z)θ2

3(0)

θ2
2(z)θ2

4(0) = θ2
4(z)θ2

2(0) − θ2
1(z)θ2

3(0)

θ2
3(z)θ2

4(0) = θ2
4(z)θ2

3(0) − θ2
1(z)θ2

2(0)

θ2
4(z)θ2

4(0) = θ2
3(z)θ2

2(0) − θ2
2(z)θ2

2(0)

θ4
3(0) = θ4

2(0) + θ4
4(0)

where we have omitted the q for brevity.

The theta functions are not precisely doubly-periodic: after periods, they shift by phases.
However, such phases can be cancelled by taking ratios. For example, it can be shown that

sn u =
θ3(0, q)

θ2(0, q)

θ1(z, q)

θ4(z, q)

cn u =
θ4(0, q)

θ2(0, q)

θ2(z, q)

θ4(z, q)



dn u =
θ4(0, q)

θ3(0, q)

θ3(z, q)

θ4(z, q)

where
z =

u

(θ3(0, q))
2

and q = exp(−πK ′(m)/K(m)).

In addition to the Jacobi elliptic functions, another class of elliptic functions known as the
Weierstrass elliptic functions also exists, though we shall not discuss them here.

2 Exercises

1. Show that sn2u + cn2u = 1.

2. Show that sn (−u) = −sn u.

3. Show that sn u = sn (u + 4K(m)).

4. Show that

θ1(z + π, q) = −θ1(z, q)

θ1(z + πγ, q) = −Nθ1(z, q)

5. Show that the ratio
θ1(z, q)

θ4(z, q)

is invariant under z 7→ z + 2π and under z 7→ z + πγ.
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