Gegenbauer polynomials

1 Definition

Generating function:
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for a # 0.

The Gegenbauer polynomials C(®(x) are also known as ultraspherical polynomials (see
Arfken-Weber-Harris section 18.4).

The Gegenbauer polynomials include a number of polynomials we have seen previously as
special cases: for example, @ = 1/2 gives the Legendre polynomials, and « = 1 gives the
type II Chebyshev polynomials. The case a = 0 gives the type I Chebyshev polynomials,
though this case must be handled differently than o # 0. Specifically, one defines
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and the relation to type I Chebyshev polynomials is discussed in Arfken-Weber-Harris section
18.4.

The first few Gegenbauer polynomials are
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By comparison, note that the first few Legendre polynomials (o« = 1/2) are given by (Arfken-
Weber-Harris table 15.1)
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and the first few type II Chebyshev polynomials (o« = 1) are given by (Arfken-Weber-Harris
table 18.4)
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In terms of hypergeometric functions,
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A few relations include
d a
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nCz) = 2(n+a— 1):60,(101)1(90) — (n+2a — 2)0}1@2(%) forn > 2

2 Exercises

1. Check that the normalization condition stated above for Gegenbauer polynomials re-
duces for a = 1/2 to the normalization condition for Legendre polynomials
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/_1 P,(z)P,(x)dx = 1 (Arfken-Weber-Harris (15.38)

and for a = 1 to the normalization condition for type II Chebyshev polynomials
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2. Check that the recursion relation
nC(z) = 2(n+a—1)zC? (z) — (n+ 2a —2)C\ Y,y (z) for n > 2
reduces to known statements about Legendre and type II Chebyshev polynomials.

3. Show that J
—C9(2) = 200,717 ()
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