
Gegenbauer polynomials

1 Definition

Generating function:
1

(1− 2xt+ t2)α
=

∞
∑

n=0

C(α)
n (x)tn

for α 6= 0.

The Gegenbauer polynomials C(α)
n (x) are also known as ultraspherical polynomials (see

Arfken-Weber-Harris section 18.4).

The Gegenbauer polynomials include a number of polynomials we have seen previously as
special cases: for example, α = 1/2 gives the Legendre polynomials, and α = 1 gives the
type II Chebyshev polynomials. The case α = 0 gives the type I Chebyshev polynomials,
though this case must be handled differently than α 6= 0. Specifically, one defines

C(0)
n (x) = lim

α→0

C(α)
n

α

and the relation to type I Chebyshev polynomials is discussed in Arfken-Weber-Harris section
18.4.

The first few Gegenbauer polynomials are

C
(α)
0 (x) = 1

C
(α)
1 (x) = 2αx

C
(α)
2 (x) = −α + 2α(1 + α)x2

C
(α)
3 (x) = −2α(1 + α)x +

4

3
α(1 + α)(2 + α)x3

By comparison, note that the first few Legendre polynomials (α = 1/2) are given by (Arfken-
Weber-Harris table 15.1)
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(
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)



and the first few type II Chebyshev polynomials (α = 1) are given by (Arfken-Weber-Harris
table 18.4)

U0(x) = 1

U1(x) = 2x

U2(x) = 4x2 − 1

U3(x) = 8x3 − 4x

In terms of hypergeometric functions,
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)
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Normalization:
∫ 1

−1
(1− x2)α−1/2[C(α)

n (x)]2dx = 21−2απ
Γ(n+ 2α)

(n+ α)Γ(α)2Γ(n+ 1)

for α > −1/2.

A few relations include

d

dx
C(α)

n (x) = 2αC
(α+1)
n−1 (x)

nC(α)
n (x) = 2(n+ α− 1)xC

(α)
n−1(x) − (n+ 2α− 2)C

(α)
n−2(x) for n ≥ 2

2 Exercises

1. Check that the normalization condition stated above for Gegenbauer polynomials re-
duces for α = 1/2 to the normalization condition for Legendre polynomials

∫ 1

−1
Pn(x)Pn(x)dx =

2

2n+ 1
(Arfken-Weber-Harris (15.38)

and for α = 1 to the normalization condition for type II Chebyshev polynomials

∫ 1

−1
(1− x2)1/2Un(x)Un(x)dx =

π

2
(Arfken-Weber-Harris (18.118)



2. Check that the recursion relation

nC(α)
n (x) = 2(n+ α− 1)xC

(α)
n−1(x) − (n+ 2α− 2)C

(α)
n−2(x) for n ≥ 2

reduces to known statements about Legendre and type II Chebyshev polynomials.

3. Show that
d

dx
C(α)

n (x) = 2αC
(α+1)
n−1 (x)
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