1. Show that

$$\Gamma(-n+\epsilon) = \frac{(-)^n}{n!} \left[ \frac{1}{\epsilon} + F(n) + \mathcal{O}(\epsilon) \right]$$

where F is the digamma function  $(F(z) = \psi(z+1))$ , n is a positive integer, and  $\epsilon$  is small. Use the identity

$$F(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \gamma$$

( $\gamma$  the Euler-Mascheroni constant) and think inductively.

2. Derive the "Jacobi-Angier" expansion

$$\exp(ix\cos\theta) = \sum_{n=-\infty}^{\infty} i^n J_n(x) \exp(in\theta)$$

This is an expansion of a plane wave in a series of cylindrical waves. (This is also problem 14.1.5 in the text.)

3. Use the integral representation of the Hankel function

$$H_0^{(1)}(x) = \frac{2}{i\pi} \int_0^\infty \exp(ix \cosh s) ds$$

to show that

(a)

$$J_0(x) = \frac{2}{\pi} \int_1^\infty \frac{\sin xt}{\sqrt{t^2 - 1}} dt$$

(b)

$$N_0(x) = -\frac{2}{\pi} \int_1^\infty \frac{\cos xt}{\sqrt{t^2 - 1}} dt$$

4. Show that a series

$$\sum_{n=1}^{\infty} \frac{A_n}{x^n}$$

is asymptotic to f(x) if and only if it is also asymptotic to  $f(x) + \exp(-x)$ .

5. The modified Bessel function  $K_0(x)$  has the integral representation

$$K_0(x) = \int_0^\infty \exp(-x \cosh t) dt$$

Use this integral representation and the method of steepest descent to derive the leading term in an asymptotic expansion of  $K_0(x)$ . For full credit you must use the method of steepest descent.

6. Define the Sharpe polynomials  $S_n(x)$  by the generating function

$$\sum_{n=0}^{\infty} S_n(x)t^n = \frac{\exp(xt)}{1-t}, |t| < 1$$

- (a) Compute  $S_n(0)$  for all n.
- (b) Derive the recurrence relations

$$S'_n = S_{n-1}$$
  
 $(n+1)S_{n+1} = xS_n + [S_n + S_{n-1} + \dots + S_0]$ 

- (c) Describe a Schläfli-type (contour integral) representation of  $S_n(x)$ .
- (d) Find a closed-form expression for  $S_n(x)$ .
- 7. Show that

$$\int_0^x L_n(t)dt = L_n(x) - L_{n+1}(x)$$

where  $L_n$  denotes the *n*th Laguerre polynomial.

8. Let  $P_n(x)$  denote the Legendre polynomials and  $U_n(x)$  denote the type II Chebyshev polynomials. Show that

$$U_{2n} = (P_n)^2 + 2P_{n-1}P_{n+1} + 2P_{n-2}P_{n+2} + \dots + 2P_0P_{2n}$$
  

$$U_{2n+1} = 2P_nP_{n+1} + 2P_{n-1}P_{n+2} + \dots + 2P_0P_{2n+1}$$

for all n. (Hint: use the generating functions.)

9. Define the generalized hypergeometric functions by

$$_{p}F_{q}(\alpha_{1},\cdots,\alpha_{p},\beta_{1},\cdots,\beta_{q};x) = \sum_{n=0}^{\infty} \frac{(\alpha_{1})_{n}\cdots(\alpha_{p})_{n}}{(\beta_{1})_{n}\cdots(\beta_{q})_{n}} \frac{x^{n}}{n!}$$

Show that

$$\int_{0}^{z} {}_{p}F_{q}(\alpha_{1}, \cdots, \alpha_{p}, \beta_{1}, \cdots, \beta_{q}; x) dx = \frac{(\beta_{1} - 1)(\beta_{2} - 1) \cdots (\beta_{q} - 1)}{(\alpha_{1} - 1)(\alpha_{2} - 1) \cdots (\alpha_{p} - 1)} \left[ {}_{p}F_{q}(\alpha_{1} - 1, \cdots, \alpha_{p} - 1, \beta_{1} - 1, \cdots, \beta_{q} - 1; z) - 1 \right]$$