(a) Show that the Fourier cosine series expansion for cosax on [0, 7] is given by
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(b) From the preceding result show that
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Cultural note: this last expression also gives a relationship between the zeta function
and the Bernoulli numbers, using the fact that
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. The electrostatic potential of a charged conducting disk is known to have the general
form

for —m<zxz<m

p,z) = [ exp(—k|zl) Jo(kp) S (k)dk

with f(k) unknown. At large distances (z — oo) the potential must approach the
Coulomb potential Q/(4mepz). Show that

lim f(k) = 2
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(Hint: at large distances, one can approximate p = 0.)

. A calculation of the magnetic field of a circular current loop leads to the integral
/ exp(—kz)kJy(ka)dk
0

Show that this integral equals
a
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This is problem 20.8.12 in the text.

. Heaviside expansion theorem. If the Laplace transform f(s) may be written as a ratio

9(s)
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where g(s), h(s) are analytic functions, h(s) having simple isolated zeroes at s = s;,
show that
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This is problem 20.10.11 in the text.



5. A Fredholm equation of the first kind has a kernel exp(—(z — t)?):
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Show that the solution is
1
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in which H,(z) is an nth order Hermite polynomial. This is problem 21.2.8 in the text.

6. The Kronig-Penney model

In this problem we shall study a simple model of electrons in a one-dimensional crystal,
interacting only weakly with the ion cores. Begin with Schrodinger’s equation for a
particle of mass m in one-dimension:
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where F is the energy of the particle, a constant.

(a) First, show that
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where U and 1) are the Fourier transforms of U and v, respectively.
(b) What kind of integral equation is this?
(c) Assume that the potential is periodic with period a, described by delta functions:
Uz) = A Y d(z+na)
Show that the integral equation above reduces to
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(d) Define
> Y(w + 2mn/a)
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Show that

(522) f)
(w+2mn/a)® — 2mE /h?

U(w+2mnja) = —



(e) Sum over all n to derive the constraint
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(f) Use the identity
> 1
cotr = Z
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and trig identities (differences of cotangents, products of pairs of sines and cosines)
to show that the constraint above can be rewritten as

A
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K

where
2mFE

K = 2
The left-hand side of the equation above can only take values between —1 and —+1,
whereas the right-hand side can take values outside that range. That means there
are some values of K, and hence FE, for which Schrodinger’s equation does not have
a solution. In fact, the allowed solutions break up into bands — stretches of allowed
energies (known as bands) separated by gaps (the band gaps).

Attached are a pair of figures showing these gaps. The top figure is a plot of the right-
hand side of the equation above, as a function of K. In the second figure the relation
above has been inverted to compute the energy F as a function of w. The band gaps
are clearly visible in the second plot, as places where the energy periodically jumps at
certain w.

Although this model is very simple (one-dimensional crystal, potential described by
delta functions), it has correctly captured a typical qualitative characteristic of metals,
the bands and band gaps. Whether a given metal is an insulator or a conductor depends
upon the occupancy of the bands: if all bands are either full or empty, the metal is an
insulator, whereas if some bands are only partially full, the metal is a conductor.
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