
1. (a) Show that the Fourier cosine series expansion for cos ax on [0, π] is given by

cos ax =
2a sin aπ

π

[

1

2a2
− cos x

a2 − 12
+

cos 2x

a2 − 22
− · · ·

]

an = (−)n
2a sin aπ

π(a2 − n2)

(b) From the preceding result show that

aπ cot aπ = 1 − 2
∞
∑

p=1

ζ(2p)a2p

Cultural note: this last expression also gives a relationship between the zeta function
and the Bernoulli numbers, using the fact that

x cot x =
∞
∑

n=0

(−)nB2n
(2x)2n

(2n)!
for − π < x < π

2. The electrostatic potential of a charged conducting disk is known to have the general
form

Φ(ρ, z) =
∫

∞

0
exp(−k|z|)J0(kρ)f(k)dk

with f(k) unknown. At large distances (z → ∞) the potential must approach the
Coulomb potential Q/(4πǫ0z). Show that

lim
k→0

f(k) =
Q

4πǫ0

(Hint: at large distances, one can approximate ρ ∼= 0.)

3. A calculation of the magnetic field of a circular current loop leads to the integral
∫

∞

0
exp(−kz)kJ1(ka)dk

Show that this integral equals
a

(z2 + a2)3/2

This is problem 20.8.12 in the text.

4. Heaviside expansion theorem. If the Laplace transform f(s) may be written as a ratio

f(s) =
g(s)

h(s)

where g(s), h(s) are analytic functions, h(s) having simple isolated zeroes at s = si,
show that

F (t) = L−1

{

g(s)

h(s)

}

=
∑

i

g(si)

h′(si)
exp(sit)

This is problem 20.10.11 in the text.
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5. A Fredholm equation of the first kind has a kernel exp(−(x− t)2):

f(x) =
∫

∞

−∞

exp
(

−(x− t)2
)

ϕ(t)dt

Show that the solution is

ϕ(x) =
1√
π

∞
∑

n=0

f (n)(0)

2nn!
Hn(x)

in which Hn(x) is an nth order Hermite polynomial. This is problem 21.2.8 in the text.

6. The Kronig-Penney model

In this problem we shall study a simple model of electrons in a one-dimensional crystal,
interacting only weakly with the ion cores. Begin with Schrödinger’s equation for a
particle of mass m in one-dimension:

− h̄2

2m

d2ψ

dx2
+ U(x)ψ(x) = Eψ

where E is the energy of the particle, a constant.

(a) First, show that

− h̄2

2m
(−iω)2ψ̃(ω) +

1√
2π

∫

∞

−∞

dω′Ũ(ω − ω′)ψ̃(ω′) = Eψ̃(ω)

where Ũ and ψ̃ are the Fourier transforms of U and ψ, respectively.

(b) What kind of integral equation is this?

(c) Assume that the potential is periodic with period a, described by delta functions:

U(x) = A
∞
∑

n=−∞

δ(x+ na)

Show that the integral equation above reduces to
(

h̄2

2m
ω2 − E

)

ψ̃(ω) +
A

a

∞
∑

n=−∞

ψ̃(ω + 2πn/a) = 0

(d) Define

f(ω) =
∞
∑

n=−∞

ψ̃(ω + 2πn/a)

Show that

ψ̃(ω + 2πn/a) = −
(

2mA
h̄2a

)

f(ω)

(ω + 2πn/a)2 − 2mE/h̄2
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(e) Sum over all n to derive the constraint

h̄2a

2mA
= −

∞
∑

n=−∞

[

(ω + 2πn/a)2 − 2mE/h̄2
]

−1

(f) Use the identity

cot x =
∞
∑

n=−∞

1

x + nπ

and trig identities (differences of cotangents, products of pairs of sines and cosines)
to show that the constraint above can be rewritten as

cos aω = cos aK +
mA

h̄2K
sin aK

where

K =

√

2mE

h̄2

The left-hand side of the equation above can only take values between −1 and +1,
whereas the right-hand side can take values outside that range. That means there
are some values of K, and hence E, for which Schrödinger’s equation does not have
a solution. In fact, the allowed solutions break up into bands – stretches of allowed
energies (known as bands) separated by gaps (the band gaps).

Attached are a pair of figures showing these gaps. The top figure is a plot of the right-
hand side of the equation above, as a function of K. In the second figure the relation
above has been inverted to compute the energy E as a function of ω. The band gaps
are clearly visible in the second plot, as places where the energy periodically jumps at
certain ω.

Although this model is very simple (one-dimensional crystal, potential described by
delta functions), it has correctly captured a typical qualitative characteristic of metals,
the bands and band gaps. Whether a given metal is an insulator or a conductor depends
upon the occupancy of the bands: if all bands are either full or empty, the metal is an
insulator, whereas if some bands are only partially full, the metal is a conductor.
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