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Work with Ufuk Aydemir, Djordje Minic, Tatsu Takeuchi:

Phys. Rev. D 91, 045020 (2015) [arXiv:1409.7574],
Pati-Salam Unification from Non-commutative Geometry and the
TeV-scale WR boson [arXiv:1509.01606],
Review of NCG in preparation.

For background of NCG, c.f. Chamseddine, Connes, et. al.:
Nucl. Phys. Proc. Suppl. 18B, 29 (1991)
Commun. Math. Phys. 182, 155 (1996) [hep-th/9603053],
Adv. Theor. Math. Phys. 11, 991 (2007) [hep-th/0610241],

and for superconnection, c.f. Neeman, Fairlie, et. al.:
Phys. Lett. B 81, 190 (1979),
J. Phys. G 5, L55 (1979),
Phys. Lett. B 82, 97 (1979).
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The quickest review of gauge theory

Given

ψ element in rep’ space H, e.g. Dirac spinors,

Ô operator on H, e.g. /∂,

we say the operator is ‘covariant’ if under the transformation

ψ 7→ uψ,

the operator trasforms as

Ô 7→ uÔu−1,

since that gives us

Ôψ 7→ uÔψ.

At the end, a theory built with

L ∼ 〈ψ|Ôψ〉

is invariant under the transformation.
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The quickest review of gauge theory -Cont’d

When we localize the transformation u, things sometimes change

Ô 7→ uÔu−1 + local terms.

Therefore, we need to come up with another operator that transforms as

Â 7→ uÂu−1 − local terms,

so that the combination of the two gives

Ô + Â 7→ u(Ô + Â)u−1.

Then we have made the combo operator Ô + Â a ‘covariant’ operator, denoted
ÔA.
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Example: U(1) from global to local

We have

L = ψi /∂ψ.

Invariant under global U(1):

ψ 7→ e iθψ,

L 7→ L′ = L.

When we localize the U(1) symmetry, i.e. θ = θ(x),

ψ 7→ e iθ(x)ψ,

L 7→ L′ = L − ∂θψψ.
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Example: U(1) from global to local -Cont’d

Therefore we come up with a U(1) gauge field A, which transforms as

A 7→ uAu−1 + ∂θ.

and modify the Lagrangian as

L = ψ(i /∂ + /A)ψ.

All together, we acquire an invariant theory.
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Description in spectral triple

Suppose we have

A =C∞(M),

H =Γ(M,S),

D =i /∂.

The unitary transformations are

{u ∈ A|u†u = uu† = 1}.

Under transformations u, we have

ψ 7→ uψ,

Dψ 7→ Duψ = uDψ + [D, u]ψ.
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Under transformations u, we have

ψ 7→ uψ,

Dψ 7→ Duψ = uDψ + [D, u]ψ,

ψDψ 7→ ψu†Duψ = ψDψ + ψu†[D, u]ψ.

The theory built with ψDψ is invariant

⇔ [D, u] = 0,

⇔ ∂(u) = 0,

⇔ u is a global symmetry.

What if [D, u] 6= 0?

– Old trick: use a gauge field to absorb the extra term.

– What should the gauge look like?
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[D, u] 6= 0

In this case, D transforms as

D 7→ u(D + u†[D, u])u†.

Apparently it is not covariant. It is ‘perturbed’ during the transformation, with
the extra term is of the form

u†[D, u].

We want to ‘absorb’ the extra term into D, with the hope the overall operator
is recovered covariant. Therefore we define another operator as

A =
∑

ai [D, bi ],

where ai , bi ∈ A. We can immediately tell the extra term is nothing but of the
form of A, thus can be absorbed.
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D 7→ u(D + u†[D, u])u† = u(D + A0)u†.

With transformation u:

D 7→ D + A0.

Need

A 7→ A− A0.
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Using the language we are familiar with, we have (up to order one condition)

ψ 7→ uψ,

D 7→ u(D + u†[D, u])u†,

A 7→ u(A− u†[D, u])u†,

D + A 7→ u(D + A)u†.

Formally, D works similarly to a differential operator as in W = Wµdx
µ, and A

works like the gauge field. In this way, we can define the new differential one
forms as elements in

Ω1 =
{∑

ai [D, bi ]|ai , bi ∈ A
}
.
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µ, and A

works like the gauge field. In this way, we can define the new differential one
forms as elements in

Ω1 =
{∑

ai [D, bi ]|ai , bi ∈ A
}
.

Define the ‘perturbed’ DA to be the combination of the two

DA = D + A.
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Generalization

As it is shown above, (A,H,D) = (C∞(M), Γ(M,S), i /∂) gives us a U(1) gauge
theory.

But, what for?

With a few modifications, we can build a generalized gauge theory.
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A = C⊕ C
According to Gelfand-Naimark, if we study all the algebra in C∞(M), we can
get all the information of the geometry M.

f : M → C,
p 7→ f (p),

where f ∈ C∞(M).

By analogy:
Consider changing A = C∞(M) to A = C⊕ C, ∀a ∈ A, we denote a = (λ, λ′).
This is the map,

a : {p1, p2} → C,
p1 7→ a(p1) = λ,

p2 7→ a(p2) = λ′.

Similar to C∞(M)↔ M, roughly, we have C⊕ C↔ {p1, p2}, a two point
space.
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A = C⊕ C

At this point, there is no relation for the two points space.
In A = C∞(M), the distance is

d(x , y) = inf

∫
γ

ds,

d2s = gµνdx
µdxν .

How to extract this information from the algebra, if Gelfand-Naimark is
correct?

d(x , y) = sup{|f (x)− f (y)| : f ∈ C∞(M), |∂f (x)| ≤ 1}.
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Distance formula:

d(x , y) = sup{|f (x)− f (y)| : f ∈ C∞(M), |∂f (x)| ≤ 1}.
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Distance formula:

d(x , y) = sup{|f (x)− f (y)| : f ∈ C∞(M), |∂f (x)| ≤ 1}.

Translate:

x1 x2

x

fHxL
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A = C⊕ C

By analogy, can calculate the ‘distance’ between the two points in
A = C⊕ C.
Introduce the third element, the generalization of Dirac operator,

D =

[
0 m
m 0

]
.

The distance formula is

d(x , y) = sup{|a(x)− a(y)| : a ∈ A, ‖[D, a]‖ ≤ 1}.

Distance between the two points

d(p1, p2) = sup
a∈A,‖[D,a]‖≤1

{|a(p1)− a(p2)|}

= sup
(λ,λ′)∈A,‖[D,a]‖≤1

|λ− λ′|

=
1

|m|
.

The generalized Dirac operator encodes the distance information!
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A = C⊕ C

A = C⊕ C,
H = CN ⊕ CN ,

D =

[
0 M†

M 0

]
.

For a ∈ A = (λ, λ′), the ‘differential’ is ∼ (λ− λ′):

[D, a] = (λ− λ′)
[

0 −M†
M 0

]
,

By analogy with

df = ∂µf dxµ = lim
ε→0

(f (x + ε)− f (x))
dxµ

ε
.
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[

0 −M†
M 0

]
,

By analogy with

df = ∂µf dxµ = lim
ε→0

(f (x + ε)− f (x))
dxµ

ε
.

The ‘integral’ is ∼ (λ+ λ′):

Tr(a) = λ+ λ′.

By analogy with ∫
f (x)dx .
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Grading

Physically, we are specifically interested in the type of algebra
A = A1 ⊕A2. e.g. the model with U(1)Y × SU(2)L, or
SU(2)R × SU(2)L, etc.

They correspond to a representation space ∼ HL ⊕HR , or Hf ⊕Hf .
It is natural to equip the spectral triple (A,H,D) with another object, γ,
the grading operator.

For example,
In the case of (A,H,D) = (C∞(M), Γ(M,S), i /∂), γ = γ5.

In the case of (A,H,D) = (C⊕ C,CN ⊕ CN ,

[
0 M†

M 0

]
), we can choose

the grading operator to be γ = diag(1, ..., 1︸ ︷︷ ︸
N copies

,−1, ...,−1︸ ︷︷ ︸
N copies

)

A device that helps us distinguish one part from the other.
D, A = A1 ⊕A2 ∼ two sheets structure.
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A = C⊕H – A toy model

A = C⊕H,
H = C2 ⊕ C2,

D =

[
0 M†

M 0

]
.

How do we fit this with our particle spectrum? ‘Flavor’ space:

νR =

1
0
0
0

 , eR =

0
1
0
0

 , νL =

0
0
1
0

 , eL =

0
0
0
1

 .

For any a ∈ A, a =


λ

λ
α β
−β α

 .
To give mass terms out of ψ†Dψ, let M =

[
mν 0
0 me

]
.
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The unitary transformations are

{u ∈ A|u†u = uu† = 1}.

This implies

u =


eiθ

e−iθ

α β
−β α

 , s.t. |α|2 + |β|2 = 1.

which automatically fulfills det u = 1. This is the symmetry U(1)R × SU(2)L.
The U(1)R charge is

|↑〉 |↓〉

2R 1 −1

2L 0 0
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When we make the U(1)R × SU(2)L transformation,

L =Ψ†DΨ

7→Ψ†u†DuΨ = Ψ†DΨ + Ψ†u†[D, u]Ψ︸ ︷︷ ︸
the ‘local’ twist

.

In general [D, u] 6= 0, therefore, this demands for a ‘gauge’ field to absorb the
local twist, in the discrete direction.

According to our recipe, we do have a gauge field between the two sheets,

A =
∑
i

ai [D, bi ].

L =Ψ†(D + A)Ψ

7→Ψ†DΨ + Ψ†u†[D, u]Ψ + Ψ†AΨ−Ψ†u†[D, u]Ψ

=Ψ†(D + A)Ψ
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Demanded to be Hermitian, this gauge field is

A =

[
M†Φ†

ΦM

]
,

Φ = [φ1 φ2] =

[
φ1 φ2
−φ2 φ1

]

The perturbation of ‘D2’ derived from the (spectral) action:

Tr
(
(D + A)2 − D2

)
Tr
(
(D + A)2 − D2

)
∼ Tr

(
(MM†)2

)
(|Φ + 1|2 − 1)2.

This gives us a Mexican-hat-shaped potential.
A field expanded at the minimum 6= 0.
By counting d.o.f, we have 4 + 4− 4 = 4 real degrees, i.e. Φ is a pair of
complex numbers.

SSB now has a reason:

D + A gives a VEV shift.
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)
Tr
(
(D + A)2 − D2

)
∼ Tr

(
(MM†)2

)
(|Φ + 1|2 − 1)2.

This gives us a Mexican-hat-shaped potential.
A field expanded at the minimum 6= 0.
By counting d.o.f, we have 4 + 4− 4 = 4 real degrees, i.e. Φ is a pair of
complex numbers.

SSB now has a reason:

D + A gives a VEV shift.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 22 / 44



Demanded to be Hermitian, this gauge field is

A =

[
M†Φ†

ΦM

]
,

D + A =

[
M†(Φ† + 1)

(Φ + 1)M

]
.

The perturbation of ‘D2’ derived from the (spectral) action:

Tr
(
(D + A)2 − D2

)
Tr
(
(D + A)2 − D2

)
∼ Tr

(
(MM†)2

)
(|Φ + 1|2 − 1)2.

This gives us a Mexican-hat-shaped potential.
A field expanded at the minimum 6= 0.
By counting d.o.f, we have 4 + 4− 4 = 4 real degrees, i.e. Φ is a pair of
complex numbers.

SSB now has a reason:

D + A gives a VEV shift.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 22 / 44



By analogy,

local ‘twist’ e−iθ∂µe
iθ = ∂µθ u†[D, u]

ω Aµd
µx

∑
ai [D, bi ] =

 M†Φ†

ΦM


basis dµx

 M†

M


comp’ Aµ Φ

θ (d + A) ∧ (d + A) Tr
(
(D + A)2 − D2

)
∼ Fµν ∼ ∂µAν + [Aµ,Aν ] ∼ DA + A2

S
∫
FµνFµνd

4x (Tr
(
(D + A)2 − D2

)
)2
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Product geometry

Consider the algebra:

A =C∞(M)⊕ C∞(M)

∼C∞(M)⊗ (C⊕ C).

This corresponds to a geometry

F =M ⊕M,

∼M × {p1, p2}.

Combining continuous part with C⊕H,

A = C∞(M)⊗ (C⊕H).

∼ a double-layer structure.
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The Dirac operator of the product geometry:

Dx = i /∂ + γ5 ⊗ D.

The gauge field:
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The Dirac operator of the product geometry:

Dx = i /∂ + γ5 ⊗ D.

The gauge field:

Ax ∼
∑

fi [/∂, gi ]︸ ︷︷ ︸
A[1,0]

+
∑

ai [D, bi ]︸ ︷︷ ︸
A[0,1]
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The Dirac operator of the product geometry:

Dx = i /∂ + γ5 ⊗ D.

The gauge field:

Ax ∼
∑

fi [/∂, gi ]︸ ︷︷ ︸
A[1,0]

+
∑

ai [D, bi ]︸ ︷︷ ︸
A[0,1]

∼
[
B Φ∗

Φ W

]
.
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Highlights:
A two sheet structure.
A gauge field in between.
SSB feature out of box.

∼ Implies a Higgs as the discrete gauge, generated similarly as the continous
gauge fields.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 26 / 44



Highlights:
A two sheet structure.
A gauge field in between.
SSB feature out of box.

∼ Implies a Higgs as the discrete gauge, generated similarly as the continous
gauge fields.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 26 / 44



Color sector

In order to reproduce SM, color sector must be involved.
Introduce the ‘color’ space. H = C⊕ C3, with basis

` =

1
0
0
0

 , r =

0
1
0
0

 , g =

0
0
1
0

 , b =

0
0
0
1

 .
A = C⊕M3(C), with ∀a ∈ A,

a =

λ m11 m12 m13

m21 m22 m23

m31 m32 m33

 .
Symmetry group is

{u ∈ A|u†u = uu† = 1},
together with the ‘unimodularity’ condition, det u = 1.

a =

e
−iθ

e iθ/3m′

 , m′ ∈ SU(3).
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a =

e
−iθ

e iθ/3m′

 , m′ ∈ SU(3).

This gives the U(1) charge

` r g b

−1 1
3

1
3

1
3

We recognize them as B − L charge, and this gives us the symmetry
U(1)B−L × SU(3)C .
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A = C∞(M)⊗ (C⊕H⊕M3(C))

To combine the flavor sector with the color sector,
let A = C∞(M)⊗ (C⊕H⊕M3(C)).

Introduce the bimodule representation:|↑〉R|↓〉R|↑〉L
|↓〉L

⊗
`rg
b

 .
Denote the space as

(2R ⊕ 2L)⊗ (1` ⊕ 3C ).

Can identify the basis with SM particle spectrum, for example
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To combine the flavor sector with the color sector,
let A = C∞(M)⊗ (C⊕H⊕M3(C)).
Introduce the bimodule representation:|↑〉R|↓〉R|↑〉L

|↓〉L

⊗
`rg
b

 .
Denote the space as

(2R ⊕ 2L)⊗ (1` ⊕ 3C ).

Can identify the basis with SM particle spectrum, for example

dR = |↓〉R ⊗

[
r
g
b

]
∈ 2R ⊗ 3C ,
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Introduce J, charge conjugate,

J

|↑〉R|↓〉R|↑〉L
|↓〉L

⊗
`rg
b

 ∼
`rg
b

⊗
|↑〉R|↓〉R|↑〉L
|↓〉L

 ,
∀a ∈ A with left action on flavor space as before, JaJ−1 is the right action
on color space.
Ready to combine the previous result on flavor space and color space.

|↑〉 |↓〉

2R 1 −1

2L 0 0

` r g b

−1 1
3

1
3

1
3
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U(1)R :

|↑〉 ⊗ 10 |↓〉 ⊗ 10 |↑〉 ⊗ 30 |↓〉 ⊗ 30

2L 0 0 0 0

2R 1 −1 1 −1

U(1)B−L:

|↑〉 ⊗ 10 |↓〉 ⊗ 10 |↑〉 ⊗ 30 |↓〉 ⊗ 30

2L −1 −1
1

3

1

3

2R −1 −1
1

3

1

3
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|↑〉 ⊗ 10 |↓〉 ⊗ 10 |↑〉 ⊗ 30 |↓〉 ⊗ 30

2L −1 −1
1

3

1

3

2R 0 −2
4

3
−2

3
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Spectral Action

According to Chamseddine et. al. (hep-th/9606001), one builds the action
based on spectral action principle:

The physical (bosonic) action only depends upon the spectrum of D.

Sspec = Tr(f (DA/Λ)).

We can expand it as

Tr(f (DA/Λ)) ∼
∫
M

L(gµν ,A)
√
g d4x .
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The bosonic action,

SBosonic =SHiggs + SYM + SCosmology + SRiemann,

SHiggs =
f0a

2π2

∫
|Dµφ|2

√
g d4x +

−2af2Λ2 + ef0
π2

∫
|φ|2√g d4x

+
f0b

2π2

∫
|φ|4√g d4x ,

SYM =
f0

16π2
Tr(FµνF

µν
)

=
f0

2π2

∫
(g2

3G
i
µνG

µν i
+ g2

2W
i
µνW

µν i
+

5

3
g2
1BµνB

µν
)
√
g d4x

where the parameters are

a =Tr(M∗νMν + M∗eMe + 3(M∗uMu + M∗dMd))

b =Tr((M∗νMν)2 + (M∗eMe)2 + 3(M∗uMu)2 + 3(M∗dMd)2)

c =Tr(M∗RMR)

d =Tr((M∗RMR)2)

e =Tr(M∗RMRM
∗
νMν),

fn is the (n − 1)th momentum of f .
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Output:

g2
3 = g2

2 =
5

3
g2
1 ,

〈φ〉 6= 0,

M2
W =

1

8

∑
i (m

i
ν
2

+ mi
e
2

+ 3mi
u
2

+ 3mi
d
2
),

mH ≈ 170 GeV,

problematic, which is naturally saved by the
left-right completion we propose.
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8

∑
i (m

i
ν
2
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u
2

+ 3mi
d
2
),

Can be calculated from spectral action. Intuitively,

Cont’ Disc’

Fermion ψ/∂ψ Ψ†DΨ

Boson ∂µW ∂µW D2W 2

mH ≈ 170 GeV,

problematic, which is naturally saved by the
left-right completion we propose.
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Other Fun Facts – ‘local twist’

[D, u] is insensitive to local/global transformation w.r.t. M.
φ 7→ φ+ δφ, with δφ = εiσiφ = εiΦi ,

∂µj
µ = 0 a symmetry.

∂µ(ε jµ) = 0 a global symmetry.
∂µ(ε jµ) 6= 0, a local symmetry with a gauge.

Ψ†DΨ 7→ Ψ†DΨ + Ψ†[D, εiσi ]Ψ.

Ψ†[D, εiσi ]Ψ by analogy with ∂µ(εjµ).

[D, εiσi ] = 0 a ‘global’ symmetry in the discrete direction.
[D, εiσi ] 6= 0 a ‘local’ symmetry in the discrete direction, with a gauge.
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δS =

∫
δL
δφ
δφ+

δL
δ∂φ

δ∂φ

=

∫
δL
δφ
δφ+ ∂

(
δL
δ∂φ

δφ

)
− ∂

(
δL
δ∂φ

)
δφ

EOM
=

∫
∂

(
δL
δ∂φ

δφ

)
=

∫
∂

(
ε
δL
δ∂φ

Φ

)
=
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∂(εj)
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ε∂µj

µ.

∂µj
µ = 0 a symmetry.

∂µ(ε jµ) = 0 a global symmetry.
∂µ(ε jµ) 6= 0, a local symmetry with a gauge.

Ψ†DΨ 7→ Ψ†DΨ + Ψ†[D, εiσi ]Ψ.

Ψ†[D, εiσi ]Ψ by analogy with ∂µ(εjµ).
[D, εiσi ] = 0 a ‘global’ symmetry in the discrete direction.
[D, εiσi ] 6= 0 a ‘local’ symmetry in the discrete direction, with a gauge.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 36 / 44



Other Fun Facts – ‘local twist’

[D, u] is insensitive to local/global transformation w.r.t. M.
φ 7→ φ+ δφ, with δφ = εiσiφ = εiΦi ,

δS =

∫
∂(εj) =

∫
∂µ(ε)jµ +

∫
ε∂µj

µ.

∂µj
µ = 0 a symmetry.

∂µ(ε jµ) = 0 a global symmetry.
∂µ(ε jµ) 6= 0, a local symmetry with a gauge.

Ψ†DΨ 7→ Ψ†DΨ + Ψ†[D, εiσi ]Ψ.

Ψ†[D, εiσi ]Ψ by analogy with ∂µ(εjµ).
[D, εiσi ] = 0 a ‘global’ symmetry in the discrete direction.
[D, εiσi ] 6= 0 a ‘local’ symmetry in the discrete direction, with a gauge.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 36 / 44



Other Fun Facts – ‘local twist’

[D, u] is insensitive to local/global transformation w.r.t. M.
φ 7→ φ+ δφ, with δφ = εiσiφ = εiΦi ,

δS =

∫
∂(εj) =

∫
∂µ(ε)jµ +

∫
ε∂µj

µ.

∂µj
µ = 0 a symmetry.

∂µ(ε jµ) = 0 a global symmetry.
∂µ(ε jµ) 6= 0, a local symmetry with a gauge.

Ψ†DΨ 7→ Ψ†DΨ + Ψ†[D, εiσi ]Ψ.

Ψ†[D, εiσi ]Ψ by analogy with ∂µ(εjµ).
[D, εiσi ] = 0 a ‘global’ symmetry in the discrete direction.
[D, εiσi ] 6= 0 a ‘local’ symmetry in the discrete direction, with a gauge.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 36 / 44



Other Fun Facts – ‘local twist’

[D, u] is insensitive to local/global transformation w.r.t. M.
φ 7→ φ+ δφ, with δφ = εiσiφ = εiΦi ,

δS =

∫
∂(εj) =

∫
∂µ(ε)jµ +

∫
ε∂µj

µ.

∂µj
µ = 0 a symmetry.

∂µ(ε jµ) = 0 a global symmetry.
∂µ(ε jµ) 6= 0, a local symmetry with a gauge.

Ψ†DΨ 7→ Ψ†DΨ + Ψ†[D, εiσi ]Ψ.

Ψ†[D, εiσi ]Ψ by analogy with ∂µ(εjµ).

[D, εiσi ] = 0 a ‘global’ symmetry in the discrete direction.
[D, εiσi ] 6= 0 a ‘local’ symmetry in the discrete direction, with a gauge.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 36 / 44



Other Fun Facts – ‘local twist’

[D, u] is insensitive to local/global transformation w.r.t. M.
φ 7→ φ+ δφ, with δφ = εiσiφ = εiΦi ,

δS =

∫
∂(εj) =

∫
∂µ(ε)jµ +

∫
ε∂µj

µ.

∂µj
µ = 0 a symmetry.

∂µ(ε jµ) = 0 a global symmetry.
∂µ(ε jµ) 6= 0, a local symmetry with a gauge.

Ψ†DΨ 7→ Ψ†DΨ + Ψ†[D, εiσi ]Ψ.

Ψ†[D, εiσi ]Ψ by analogy with ∂µ(εjµ).
[D, εiσi ] = 0 a ‘global’ symmetry in the discrete direction.

[D, εiσi ] 6= 0 a ‘local’ symmetry in the discrete direction, with a gauge.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 36 / 44



Other Fun Facts – ‘local twist’

[D, u] is insensitive to local/global transformation w.r.t. M.
φ 7→ φ+ δφ, with δφ = εiσiφ = εiΦi ,

δS =

∫
∂(εj) =

∫
∂µ(ε)jµ +

∫
ε∂µj

µ.

∂µj
µ = 0 a symmetry.

∂µ(ε jµ) = 0 a global symmetry.
∂µ(ε jµ) 6= 0, a local symmetry with a gauge.

Ψ†DΨ 7→ Ψ†DΨ + Ψ†[D, εiσi ]Ψ.

Ψ†[D, εiσi ]Ψ by analogy with ∂µ(εjµ).
[D, εiσi ] = 0 a ‘global’ symmetry in the discrete direction.
[D, εiσi ] 6= 0 a ‘local’ symmetry in the discrete direction, with a gauge.

Chen Sun @ Duke Gauge Theory through NCG October 24, 2015 36 / 44



Other Fun Facts – ‘local twist’

[D, u] = 0 refers to

Du = uD,

⇔ D = uDu†.

In SM, this refers to the VEV shift is invariant under the transformation u.

This describes the transformation of VEV shift, or the symmetry under which
vacuum is invariant.

∼ Remaining symmetry,

∼ Breaking chain.
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Other Fun Facts – ‘local twist’

In the simplest case, A = H⊕H, D =

[
0 M†

M 0

]
and M =

[
0 mu

md 0

]
.

Pictorially, the twist between ‘left sheet’ and ‘right sheet’.

But even we make same twists for left and right, we still have a local
‘twist term’, unless mu = md , isospin-like.
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Other Fun Facts – The seperation

Totally independent of the base manifold M.

Extra dimension but discrete.
The separation introduces a second scale ∼ EW, from ai [D, bi ], different
from the GUT scale which is led by the fluctuation in the continuous
direction fi [/∂, gi ].
When the separation goes to ∞, mf → 0. This corresponds to the
decouple of Higgs sector: left and right stop talking to each other,
physically and geometrically.
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Back to the Left-Right Completion

Different realizations.
For example. NCG/ spectral triple is built using lattice, supersymmetric
quantum mechanics operators, Moyal deformed space, etc.
We have tried a specific realization using superconnection, su(2|1), and
the left-right completion of su(2|2).
Low energy emergent left-right completion, ∼ 4 TeV .
(Ufuk Aydemir, Djordje Minic, C.S., Tatsu Takeuchi: Phys. Rev. D 91, 045020 (2015) [arXiv:1409.7574])
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More About the Left-Right Completion

Hints for left-right symmetry behind the scene. (Pati-Salam Unification from NCG and

the TeV-scale WR boson, [arXiv:1509.01606], Ufuk Aydemir, Djordje Minic, C.S., Tatsu Takeuchi )
Changing the algebra to (HR ⊕HL)⊗ (C⊕M3(C)) does not change the
scale.

2

3
g2
BL = g2

2L = g2
2R = g2

3 .

Through the mixing of SU(2)R × U(1)B−L into U(1)Y , we get

1

g ′2
=

1

g2
+

1

g2
BL

=
5

3

1

g2
.

∼ LR symmetry breaking at GUT.
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Myths and Outlooks

So far it is a classical theory – only classical L is given. But it has a GUT
feature! Without adding new d.o.f.
If it just happens at one scale, how to accommodate Wilson picture.
Quantization of the theory? Loops?
Relation to the D-brane structure?
Measure of the Dirac operator?
...
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Summary (of Fun Facts)

Recipe to cook up a (generalized) gauge theory:
(A,H,D), the spectral triple.
Take mass matrix as a derivative, trace as the integral.
Generate the gauge field A =

∑
a[D, b].

Spectral action, Tr(f (D/Λ)) ∼ DA + A2, as the gauge strength
Generalized free fermion action, Ψ†DAΨ, for the fermionic part.
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The dish:

Two sheets structure.
An extra discrete direction.
Separation of the sheets (mf → 0, second scale, etc.)
Higgs is a gauge in that direction.
SSB has a reason.
Fit in all SM fermions and bosons.
GUT without new degrees of freedom.
Mass relation.
Predicts Higgs mass.
Local twist with different setting of D.
Minimally coupled gravity sector.
...
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