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Plan

1. (15 min) Review of RT formula and applications.

2. (25 min) Conjecture: RT area is the analog of an edge term in the
EE of an emergent gauge theory.

3. (≤ 10 min) “Future directions” – fun facts about the c = 1 matrix
model.
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Entanglement and Spacetime

In recent years, people have suggested that “spacetime emerges from
quantum entanglement.”

All of the mathematically precise work in this direction comes from
AdS/CFT and the Ryu-Takayanagi formula,

SEE (B) = A
4GN

+ SEE ,bulk(Σ) + . . .
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Some nice applications:

1. Linearized Einstein eq’s from EE 1st law around the AdS vacuum
[van Raamsdonk et al.]

δSEE = δ〈− log ρ〉 True ∀ρ; perturb Trρ log ρ.
l l Specialize to ball regions in CFT’s

δSEE =
∫
B
F (〈T00(r)〉) conformal map to Rindler wedge

l RT l GKPW map to the bulk∫
B̃
F0(δgab) =

∫
B
F1(δgab) = linearized EFE’s.
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Can we generalize to getting the linearized Einstein eq.’s around other
asymptotically AdS spacetimes?

“Entanglement shadow” in generic horizonless asymptotically-AdS
geometries.
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A possible resolution: can more general form of entanglement geometrize
in the bulk?

Algebraic EE: For |ψ〉 ∈ H and subalgebra A0 ∈ A, ∃

ρ(=
∑
Oi∈A0

piOi ) ∈ A0

s.t.
TrH(ρO) = 〈ψ|O|ψ〉 ∀ O ∈ A0 .

Then
SEE (A0) = −Trρ log ρ .

Algebraic EE’s can be dual to more general surfaces in the bulk.
[Balasubramanian et al., JL].
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2. Entanglement wedge reconstruction [Dong, Harlow, Wall ...]

In effective field theory on AdS, consider a local bulk operator at a point
in the bulk. How much of the boundary CFT do we need to have access
to to reconstruct it?

Any local bulk operator in the entanglement wedge EA can be
reconstructed as a CFT operator supported on region A!

Moreover, “RT = entanglement wedge reconstruction”.
In fact, Harlow has proved a related theorem for all quantum systems...
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Harlow’s assumptions AdS/CFT interpretation

H = HA ⊗HĀ CFT (UV) Hilbert space
Subspace HIR ⊆ H “code subspace” of EFT on AdS

Subalgebra AIR whose action on HIR keeps us in HIR gauge-inv. bulk operators.

Then, the following were proved to be mathematically equivalent:

1. ∃ subalgebra AIR,A ∈ AIR s.t.
∀ |ψ̃〉 ∈ HIR ,
∀ Õ ∈ AIR,A,
∃ OA ∈ HA s.t. OA|ψ̃〉 = Õ|ψ〉 .

Entanglement wedge reconstruction.
(AIR,A = bulk g-inv. operators
supported on EA.)

2. ∃ an operator LA in AIR,A ∩ AIR,Ā

s.t. ∀ρ ∈ HIR ,
SEE (ρA) =
Tr(ρLA) + Salg (ρ,AIR,A) .

RT formula + 1/N correction.
(LA = RT area.)
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Summary of the introduction

To summarize so far,

I The main argument for “entanglement = spacetime” is the
Ryu-Takayanagi formula in AdS/CFT.

I Nice consequences include:
I Steps towards understanding the CFT origin of Einstein’s equations.
I An understanding of subregion duality for bulk operator

reconstruction.

In this talk, I want to discuss an idea for what the RT area might be
counting from the bulk point of view.
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Idea

The idea is to compare EE in emergent gauge theory to EE in AdS/CFT.

Emergent gauge theory AdS/CFT
UV Factorizable Hilbert space CFT
IR Gauge theory Effective field theory in AdS
EE SUV

EE (A) = Salg.,ginv (A) + boundary term SCFT
EE (A) = A

4GN
+ Salg.ginv (EA)
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Idea

The idea is to compare EE in emergent gauge theory to EE in AdS/CFT.

Emergent gauge theory AdS/CFT
UV Factorizable Hilbert space CFT
IR Gauge theory Effective field theory in AdS
EE SUV

EE (A) = Salg.,ginv (A) + boundary term SCFT
EE (A) = A

4GN
+ Salg.ginv (EA)

I’ll now explain the gauge theory side of the table (before coming back to
AdS/CFT).
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A proposal for EE in gauge theories

I’ll first review a completely formal proposal how to define EE in a gauge theory,
then argue that it gives the UV answer when the gauge theory is emergent.

In a gauge theory, the Hilbert space doesn’t factorize, so we need to get the
reduced density matrix in a different way than the usual partial trace.

“Extended Hilbert space” definition: [Buividovich-Polikarpov; Donnelly]

H ∈ Hext. = HA ⊗HĀ

ρA = TrAρ ∈ Hext

SEE = −TrρA log ρA .
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This definition introduces some boundary terms as advertised. Let me show
this through examples.
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Ex. 1: EE in abelian gauge theory on S1

Consider U(1) gauge theory on a spatial S1.

I Operator algebra:
∮
A, E(x)

(constant by Gauss law)

I Hilbert space basis: electric field
eigenstates {|n〉}, n ∈ Z

I Hext. = {|n1〉 ⊗ |n2〉} , n1,2 ∈ Z

For |ψ〉 =
∑

n ψn|n〉 ∈ H ,

ρA ∈ Hext. =
∑
n

pn|n〉〈n|, pn = |ψn|2

SEE = −
∑
n

pn log pn “Shannon edge mode”.
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Ex. 2: EE in nonabelian gauge theory on S1

Now consider Yang-Mills with gauge group G on the S1.

I Operator algebra: Wilson loops
TrR exp(i

∮
A), Casimirs E aE a, . . .

I Hilbert space basis labeled by reps
of G : {|R〉}.

I Hext. = ⊕{|R, i , j〉 ⊗ |R, j , i〉},
i , j ∈ 1, . . . , dimR .

For |ψ〉 =
∑

R ψR |R〉 ∈ H ,

ρA ∈ Hext. =
∑
R

pR(dimR)−2
∑
i,j

|R, i , j〉〈R, j , i | , pR = |ψR |2

SEE = −
∑
R

pR log pR + 2
∑
R

pR log dimR “log dim R edge mode”.
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Comments

I In d > 2, if we apply this definition across every boundary link of a lattice,

SEE = Shannon edge term + log dim R edge term + interior EE. (∗)

I Earlier, we saw an algebraic definition of EE: it’s the von Neumann entropy
of the unique element of the subalgebra that reproduces the expectation
values of all the operators in the subalgebra (up to normalization).
One can show that

SHext.
EE (ρA) = Salg,ginv (A) + log dim R edge.
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I If we replace Hext. → HUV in an emergent gauge theory,

SEE = Shannon edge term + log dim R edge term + interior EE. (∗)

holds (up to a state-independent constant).

An example where this is obvious is if we take the UV Hilbert space to be
that of lattice gauge theory without imposing the Gauss law at the
vertices, but have a Hamiltonian term ∆H = U

∑
i Gi that imposes the

Gauss law dynamically.

More generally, Wilson loops factorize by definition...

This explains the formula for EE in an emergent gauge theory, that I showed
you at the beginning of the talk...
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Interpretation

I From a “totally IR” point of view, ∃ a center operator LA s.t.

〈R|LA|R〉 = log dimR .

But LA is a complicated, group-dependent function of the Casimirs (e.g.
log
√

4E aE a + 1 for G = SU(2)). The completely obscures the canonical
counting interpretation!

To summarize:

In a UV-finite theory with emergent extended objects (Wilson loops),
the UV-exact EE of a region can be written in a “more IR” way, as an
EE assigned to the extended objects contained within each region, plus
a boundary term counting UV DOF’s made visible when the extended
objects are cut by the entangling surface.
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Analogy to AdS/CFT

If one thinks of AdS/CFT as an emergent gauge theory, with the bulk emerging
from the CFT, the area term looks a lot like the “ log dimR” boundary term in
the more IR way of writing the EE.

Ent. wedge reconstruction ↔ RT + FLM

Region A in CFT ∼
EA in bulk EFT

SCFT
EE (A) = Salg,ginv (EA)

+ 〈center operator〉 ∼ A
4GN

⇓

SCFT
EE (A) = Salg,ginv (EA) + log dimR

Assuming that the gauge theory formula can be used on the LHS, “A/4GN” is
a log dimR term.
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It’s interesting to combine this with the interpretation of the log dimR
term as canonically counting UV DOF’s correlated by an emergent gauge
constraint, at the entangling surface.
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A string cartoon

In particular, let’s compare a Wilson loop in an emergent gauge theory to a
closed string in the bulk.

A

4GN
= log(boundary states)

= # ways to “glue” two open strings

1

4GN
∼ O(N2) = (#CP factors)2?

I Evidence [Lewkowycz, Maldacena]: Add a single string to the bulk by
putting a qq̄ pair in the CFT. SEE (q, q̄) ∼ logN + . . .
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Summary so far

To summarize, there were two separate conjectures in this part of the talk.

1. Conjecture 1: In AdS/CFT, the RT area term “A/4GN” is the analog of
the log dimR edge term in the EE of an emergent gauge theory.

2. Conjecture 2: In string theory, closed strings can “factorize” into open
ones in a UV part of the Hilbert space corresponding to BH microstates,
and the BH entropy counts the Chan-Paton factors. (see
Susskind-Uglum).
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How can we study this?

We need an example of nonperturbative string theory (so i.e.
holography), where

1. There are black holes and “RT-like” entanglement.

2. We have a notion of bulk locality.

3. We understand the “boundary to bulk algorithm”.

(The rest of this talk will be expository, ending on a computation in progress.)
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c=1 matrix model

Consider the QM of a matrix with a U(N)-invariant Hamiltonian

H = Tr

{
1

2
m2Ṁ2 +

1

2
ω2M2 +

1

3!
λM3

}
.

Because the Hamiltonian is U(N) invariant, the Hilbert space splits into
sectors labeled by the reps of U(N). This is exactly analogous to what
happens in ordinary QM in a spherically symmetric potential.

Just like there, we can write a separate time-independent Schrödinger
equation in each sector, and in the singlet sector we get the Schrödinger
equation of N free fermions in the potential V (M).
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To go from the matrix model to string theory,

1. Observe that large N (double-line) diagrams of matrix QM are in 1:1
correspondence with discretized smooth surfaces.

2. To make the matrix/string diagrams quantitatively agree, we identify
vertices/propagators. This relates the matrix QM action to the
worldsheet CFT action (Liouville + c = 1 matter).

3. Finally, we have to take a continuum limit for the discretized string
diagrams. In this limit, the non-singlet sectors of the matrix QM are
actually gapped to infinity. So it’s commonly stated that gauged
matrix QM is dual to the perturbative string theory.
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The bulk low energy effective field theory picture is a single massless
scalar field in a 1+1d spacetime with a linear dilaton (gs small at one end
of space) and an exponentially growing scalar condensate.
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Black holes?

The singlet sector of the matrix QM has no black holes
[Karczmarek-Maldacena-Strominger].

However, a natural conjecture is that the strict double-scaling limit is the
analog of N =∞ in AdS/CFT, and the non-singlet states that we
gapped out are BH microstates...
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Argument [Kazakov-Kostov-Kutasov]:

I Put the matrix model on periodic Euclidean time, so

Z =

∫
M(0)=M(2πR)

D(M) exp

(
−
∫ 2πR

0

dτ

[
1

2
Ṁ2 + V (M)

])
= Tre−βH .

The non-singlets in rep R schematically contribute as

dRe
βER .

Both ER and dR diverge in the double-scaling limit s.t. the
non-singlet contribution is negligible below a critical βc , but actually
becomes dominant above it.

I In the Feynman diagram (' string worldsheet) expansion, the
propagator includes windings around the S1 (' worldsheet vortices).
Hence it’s natural to guess that this phase transition at βc is a
“worldsheet vortex condensation.”
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I What does this mean for the bulk spacetime? Suppose that we
deform the continuum worldsheet CFT by adding vortex operators to
the action. Above βc , the deformation is relevant and triggers a flow
to a new fixed point. In fact, the flow is

c = 1 Liouville + matter → Sine-Liouville CFT

which is the worldsheet CFT for strings in a 2d asymptotically linear
dilaton Euclidean black hole.

This logic is like a worldsheet version of the Hawking-Page transition in
AdS/CFT. Hence one conjectures that the non-singlet sector of the
c = 1 matrix model contains black holes.
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Bulk locality

Hartnoll and Mazenc recently studied bulk locality in the (singlet sector
of the) c = 1 matrix model, which is isomorphic to the QM of N free
fermions. They found which fermion degrees of freedom reproduce the
EE across a spatial interval in the bulk.

Summary of their result:

1. EE of a singlet matrix QM subalgebra
isomorphism−−−−−−−→

2. EE of N free fermions across a range of values A = [λ1, λ2]
definition−−−−−→

3. −Tr(MlogM + (1−M)log(1−M) for Mij = 〈PAψi ,PAψj〉, the

n × N matrix of wavefunction overlaps in A
calculation−−−−−−→

4. EE of a scalar field across a bulk interval in 1 + 1d (with the UV
cutoff provided by the QM dual of the bulk gs).
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Future directions

I What happens if instead of the EE for the singlet matrix subalgebra
corresponding to free fermions in an interval, we compute the von
Neumann entropy of the reduced density matrix in the much larger
Hilbert space of matrix QM incl. the non-singlet sectors? Do we
find “RT-like” O(N2) entanglement? (In progress...)

I Can we say anything at the worldsheet level?

I Besides c = 1 matrix model, is there any other system that we can
use to better understand the edge modes of string theory?
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Thank you!
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