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Review: Field Theory Objects

History

Partition function Z[φ]

Effective Action − logZ or Seff
One-loop determinant

1

det∇2
= Z[φ]

Effective potential (Legendre transform)

We will mainly focus on Effective Actions although what we really
calculate is the one-loop determinant.



A Use of the Effective Action

Quantum Entropy Function

Classical black hole entropy:

A

4GN
= SBH = Smicro = log dmicro

Higher curvature gravity: Wald entropy
Quantum fluctuations of fields in the black hole background
extremal black holes: near horizon AdS2 with cutoff scale r0

ZAdS2 = ZCFT1 = Tr
[
exp

(
−2πr0H +O(r−0 2)

)]
ZAdS2 ≈ d0 exp (−2πE0r0)

where d0 is the degeneracy of the ground state.

The effective action of quantum fields in an AdS2 background tells
us the quantum contribution to the entropy of extremal black holes.



Finding the Effective Action
Possible Calculation Methods

1 Curvature Heat Kernel Expansion
2 Eigenfunction Heat Kernel method
3 Group Theory
4 Quasinormal Mode method

log det(D +m2) = Tr log(D +m2) = −
∫ ∞
ε

dt

t
Tr e−t(D +m2)

= −(4π)−n/2
n∑
k=0

ak(D)

∫ ∞
ε

dt

t
t(k−n)/2e−m

2t +O(m−1)

Here n is the number of dimensions, and the a0 are known in terms
of curvature invariants, e.g. Ricci curvature R. But this only gives
the determinant up to O(m−1). If we care about massless behavior
it doesn’t help!



Finding the Effective Action

Possible Calculation Methods

1 Curvature Heat Kernel Expansion
2 Eigenfunction Heat Kernel method
3 Group Theory
4 Quasinormal Mode method

log det(D) = −
∫ ∞
ε

dt

t

∑
n

e−κnt = −
∫ ∞
ε

dt

t

∫
d4x
√
gKs(x, x; t)

Ks(x, x′; t) =
∑
n

e−κntfn(x)f∗n(x′)

where κn are the eigenvalues of a complete set of states with
eigenfunctions fn. (Sen, Mandal, Banerjee, Gupta, . . . 2010)
Ok for scalar, but hard for general graviton, gravitino, or even vector
coupled to flux background.



Finding the Effective Action

Possible Calculation Methods

1 Curvature Heat Kernel Expansion
2 Eigenfunction Heat Kernel method
3 Group Theory
4 Quasinormal Mode method

Can we count the effect of all of these fields in another way? Yes, for
sufficient supersymmetry, e.g. N = 2! (CK, Larsen, Lisbão 2014)
What about cases with lower Susy, e.g. De Sitter with a scalar?
Also Gopakumar et. al.



Finding the Effective Action

Possible Calculation Methods

1 Curvature Heat Kernel Expansion
2 Eigenfunction Heat Kernel method
3 Group Theory
4 Quasinormal Mode method

Finding Z(m2)

Consider Z as a meromorphic function of m2

let m2 wander the complex plane
find poles + zeros + “behavior at infinity”

This is sufficient to know the function Z (at one loop).
(Denef, Hartnoll, Sachdev, 0908.2657; see also Coleman)



Weierstrass factorization theorem

Theorem
Any meromorphic function can be written as as a product over its
poles and zeros, multiplied by an entire function:

f(z) = expPoly(z)
∏
zeros

(z − z0)d0
∏
poles

1

(z − zp)dp

Examples

sinπz = πz
∞∏
n=1

(
1− z2

n2

)

cosπz =

∞∏
n=0

(
1− 4z2

(2n+ 1)2

)



De Sitter
Two-dimensional de Sitter space Wick-rotates to the sphere. We set
the scale to a. Poles are at masses where we can solve the
equations of motion, as well as periodicity.

Equations of motion and Periodicity

[
∇2 +m2

]
φ = 0

φ is just our usual spherical harmonic Ylm, so when −m2 = l∗(l∗+1)
a2

and l∗ is an integer.
So poles are when

l∗ =
1

2
± i
√
m2a2 − 1

4

is an integer, and the degeneracy of each pole is 2l∗ + 1.



De Sitter
Using these poles and degeneracies we have

logZdS2 = log det∇2
dS2

= Poly +
∑
±,n≥0

(2n+ 1) log(n+ l∗±).

where we have

l∗ =
1

2
± i
√
m2a2 − 1

4
≡ 1

2
± iν.

We can regularize using (Hurwitz) zeta functions:

logZcomplexscalar
dS2 − Poly =

∑
±

[
2ζ ′
(
−1, l∗±

)
−
(
2l∗± − 1

)
ζ ′
(
0, l∗±

)]
≈
(
log ν2 − 3

)
ν2 − 1

12
log ν2 +O(ν−1)

where

ζ(s, x) =
∞∑
n=0

(n+ x)−s, ζ ′ = ∂sζ.



De Sitter
Now expand using curvature heat kernel (it can get up to m−1):

O(
1

ν
) + logZcomplexscalar

dS2 − Poly ≈
(
log ν2 − 3

)
ν2 − 1

12
log ν2(

ν2 − 1

12

)
log

ν2

a2Λ2
− ν2 +O(

1

ν
)− Poly =

(
log ν2 − 3

)
ν2 − 1

12
log ν2

−Poly = −2ν2 +

(
ν2 − 1

12

)
log a2Λ2.

Note Poly really is polynomial in ν!

Result: One-loop Partition Function for Complex Scalar on de
Sitter in Two Dimensions

logZdS2 = 2ν2 +
∑
±

[
2ζ ′
(
−1, l∗±

)
−
(
2l∗± − 1

)
ζ ′
(
0, l∗±

)]
+ Λ terms

Note the cutoff regulation terms of the form log Λ here; they arose from the heat kernel curvature expansion.



Quasinormal Mode Method

Ingredients we need

direction w/ periodicity or a quantization constraint
analyticity (meromorphicity) of Z
locations/multiplicities of zeros/poles in complex mass plane
extra info to find Poly (behavior at large mass)



Why Quasinormal modes?
In a general (thermal) spacetime, ‘good’ φ are regular and smooth
everywhere in Euclidean space, where τE ∼ τE + 1/T .

Euclidean ‘good’ φ

normalizable at boundary of spacetime
regular at origin: Pick coordinates u = ρeiθ.

for n ≥ 0, φ ∼ un = ρne−inθ = ρωn/2πT e−iωnτ

for n ≤ 0, φ ∼ ūn = ρ−ne−inθ = ρ−ωn/2πT eiωnτ

Wick rotate φ for n ≥ 0, and we obtain quasinormal mode with
frequency ωn:

φ ∼
(
ρ1/2πT

)−i(iωn)
e−i(iωn)t ∼ e−i(iωn)(x+t).

Ingoing mode, using x = log ρ/2πT .



Why Quasinormal modes?

Quasinormal modes

normalizable at boundary, ingoing at horizon.
physical modes at real mass values, but imaginary frequencies
e.g. for de Sitter,

−i
2k + l + 1

2 ± ν
a

= 2πinT

useful for black hole evolution, so known for many black holes
and other spacetimes



Method review

Applying the Quasinormal Mode Method

1 assume partition function is meromorphic function of mass
parameter Z(m̃)

2 continue mass parameter m̃ to complex plane
3 find poles: mass parameter values where there is a φ that

solves both EOMs and periodicity+boundary conditions
4 zeta function regularize sum over poles
5 use curvature heat kernel to get large mass behavior
6 compare to zeta sum large mass behavior to find Poly

If Poly is actually a polynomial, then that is a nontrivial check that all
poles have been included (and the function is actually
meromorphic).



Anti De Sitter

Scalars in even-dimensional AdS

In AdS, we must set boundary conditions to be r−∆ rather than
“normalizeable”.
The special φ we are interested in occur at negative integer
values of ∆, so they blow up at the boundary as some integer
power of r. They are not normalizable in our usual sense, but
still produce the correct poles in the complex-mass partition
function.

These special φ can also be interpreted as finite representations of
SL(2, R).



Anti De Sitter via representations

SL(2, R) scalar representations

SL(2, R) is isometry group of AdS2, with generators L0, L±
Label states by their eigenvalues under the Casimir (∆) and L0

L± act as raising/lowering operators for L0 eigenvalue

Representations have fixed ∆; we want only finite length reps
(multiplicity of pole should be finite). Thus they should have both a
highest and lowest weight state, so the highest weight state |h〉 has:

1 L+|h〉 = 0

2 Lk−|h〉 = 0, implies k = 2h+ 1

3 L0|h〉 = h|h〉, casimir eigenvalue ∆ = h

For scalars specifically we find h ∈ Z≤0.
These states are linear combinations of the special φ earlier!

This method is easier to extend to spinors, vectors, and (massive)
spin 2 d.o.f’s.



Applications: QNM argument for spin
In a general (thermal) spacetime, ‘good’ φµ are regular and smooth
everywhere in Euclidean space, where τE ∼ τE + 1/T .

Euclidean ‘good’ φµ

normalizable at boundary of spacetime
regular at origin: Correct condition is now square integrable:∫

√
ggµνφ∗µφν <∞

Wick rotate φµ for for n ≥ s, and we obtain QNM with frequency
ωn:

for n ≥ s, φi ∼ un = ρne−inθ = ρωn/2πT e−iωnτ

Here i only runs over non-radial indices. For transverse tensors,
φρ components have extra powers of 1/ρ.

For n < s, some QNMs may not rotate to good Euclidean modes.
Only good Euclidean modes should get counted.



Warped CFTs 1707.06245 w/ A. Castro, P. Szepietowski

In AdS3 gravities, there are multiple choices of boundary conditions.
Dirichlet→ Neumann for some components of graviton
is dual to
CFT→ warped CFT (Compere, Song, Strominger)

BTZ black holes with alternate boundary conditions

Euclidean ‘good’ φ for WCFTs are normalizable satisfy
parity-violating boundary conditions
Find agreement in pole structure between spacetime and dual
warped CFT
Find novel ghost behavior
Understand ‘shifts’ in mode numbers for rotating BTZ (S. Datta and

J. David 1112.4619) via QNM method for stationary spacetimes



Large D Black Holes 181x.xxxxx w/ A. Priya

In the large dimension limit, Schwarzschild spacetime simplifies! (R.

Emparan et. al. 1406.1258; S. Bhattacharyya et. al. 1504.06613)

BTZ black holes with alternate boundary conditions

For any r > rh held fixed as D →∞ metric becomes flat
Physics is in near horizon region of thickness rh/D
QNMs can be found analytically
Convenient to define µ2 = m2/D2 + 1/4

Poles in graviton mass plane occur only in vector modes, at
µ∗ = 1/2 + (1− n)/D +O(1/D2) for integer n
Computed one-loop determinant for near horizon region in
terms of Hurwitz zetas



Relationship to Heat Kernels 181x.xxxxx w/ V. Martin and A. Svesko

Let’s compare QNM method to heat kernel method of images:

From QNMs to Method of Images: Rotating BTZ

Method of Images: for AdS3/Γ, logZ is sum over images at γk

(Giombi, Maloney, Yin 0804.1773)

QNM method: let q = exp(2πiτ). Then:

logZ − Pol(∆) = −
∞∑

`,`′=0

log(1− q`+∆/2q̄`
′+∆/2)

Expand log(1− x) = −
∑

k x
k/k

k becomes thermal image number
Sum over mode numbers `, `′ in QNM↔ measure of space in
image method
Scattering matrix from Selberg trace formula has poles at
QNMs (Static case in Perry, Williams 2003)



Product Spaces upcoming w/ D. McGady

For S1, poles are at m = n ∈ Z, with degeneracy 1.

logZ = Poly+
∑
n∈Z

log(n−m) from Hurwitz ζ(s, x) =
∑
n

1

(n+ x)s
.

For S1 × S1, poles are at −m2 = n2
1 + n2

2, (n1, n2) ∈ Z, again
with degeneracy 1. Now we need Epstein-Hurwitz:

ζEH(s, x) =
∑
n1,n2

1

(n2
1 + n2

2 + x)s
.

For Sp × Sq poles are at −m2 = n1(n1 + p− 1) + n2(n2 + q − 1),
(n1, n2) ∈ Z≥0 with spherical harmonic degeneracies. Now we
need generalized Epstein-Hurwitz and derivatives thereof:∑

n1≥0,n2≥0

1

(α1(n1 + β1)2 + (α2(n2 + β2))2 + x)s
.



Future Possibilities

The Future:

Simplicity of heat kernels in product space (K1×2 = K1K2) vs.
QNM method
product spaces with AdS factors
numerical QNMs: see esp. Arnold, Szepietowski, Vaman
(1603.08994)
actions beyond just kinetic term?
meromorphicity of Z?
physical interpretation of zero modes for even AdS


