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Motivation

In string theory, scattering amplitudes between various
asymptotic spin states are related. E.g. for bosonic strings

Vclosed = : exp(ik · X + ε · ∂zX + ε̃ · ∂z̄X ) :

∣∣∣∣
multilinear

= Vopen × Vopen

In particular Vgraviton = (Vgauge)2. This leads to relationships
such as

3− point graviton amplitude = (3− point gauge amplitude)2

and KLT (Kawai-Lewellen-Tye) relations, and, more recently
to the double-copy relations between gravity and gauge theory
scattering amplitudes.



We found that similar relationships exist between vertex
operators which create various spin particles when acting on a
given spin worldline

!

spin 0 1 2
0 e ik·x 1

2
εµẋ

µe ik·x 1
2
εµν ẋ

µẋνe ik·x

1 NA 1
2
εµ(ẋµ + ikνS

µν)e ik·x 1
2
εµν ẋ

µ(ẋν + ikρS
νρ)e ik·x

2 NA NA 1
2
εµν(ẋµ + ikρS

µρ)(ẋν + ikσS̃
νσ)

e ik·x

Table: The linearized vertex operators of different interactions

where Sµν = 2ψ̄[µψν] accounts for the spin degrees of freedom
on the worldline.



First-quantized fields: worldlines

Bern and Kosower (1992): infinite tension limit of string
amplitudes
Strassler (1992) recovered their master formula and rules by
rewriting the one-loop amplitudes as a path integral over
point-particle coordinates.

This is the beginning of the ”worldline formalism”.



First-quantized fields: worldlines
Consider a spin 0 (scalar) particle.
The position-space propagator can be cast as a path integral
over a ”worldline”:

G (X ′,X ) = 〈X ′| 1

�−m2 + iε
|X 〉

=

∫ ∞
0

dT 〈X ′| exp(iT (�−m2 + iε))|X 〉

=

∫ ∞
0

dT

∫ ∞
−∞

d4p

(2π)4
e ip·(X

′−X )e−iT (p2+m2−iε)

=

∫ ∞
0

dT

∫
xµ(T )=X ′µ
xµ(0)=Xµ

Dx(τ)

∫
Dp(τ)e−i

∫ T
0 dτ(p2(τ)+m2−p·ẋ−iε)

=

∫ ∞
0

dT

∫
xµ(T )=X ′µ
xµ(0)=Xµ

Dx(τ) exp

(
i

∫ T

0

dτL0[ẋ ]

)
.

Accounting for the interactions with a background field, the
propagator becomes the ”dressed propagator” Γ[X ′,X ].



Worldline Formalism: Path Integral form of the dressed

propagator

Γ[X ′,X ] =

∫ ∞
0

dT

∫
xµ(T )=X ′µ
xµ(0)=Xµ

Dx(τ) exp

[
−
∫ T

0

dτ

(
L0[ẋ ]−V [x , ẋ ]

)]
Perform a plane-wave expansion for the background field

V =
N−1∑
i=2

Vie
iki ·x(τ)

The interaction with N − 2 background particles is given by

ΓN [X ′,X ] =

∫ ∞
0

dT

∫ x(T )=X

x(0)=X ′
Dx(τ) e−

∫ T
0 dτL0

N−1∏
i=2

(∫ T

0

dτi Vi(τi)

)
Then ΓN [p, p′] will be of the form ΓN [p, p′] = 1

p2+m2AN
1

p′2+m2

AN yields the scattering amplitude.



Transition amplitude to dressed propagator

K (X ′,T ;X , 0) = 〈X ′|U(T , 0)|X 〉
= 〈X ′,T ||UI (T ; 0)|X , 0〉

=

∫ x(T )=X ′

x(0)=X

Dx(τ) e−
∫ T

0 dτL0

N−1∏
i=2

(∫ T

0

dτi Vi(τi)

)

Γ[X ,X ′] =
∫∞

0
dT K (X ′,T ;X , 0)



Dressed propagator to scattering amplitudes

Γ(X ,X ′) =

∫ ∞
0

dT 〈X ′,T |UI (T ; 0)|X , 0〉

For an N-point-function, expand the interacting picture Ui in
the background potential keep the multilinear term ΓN .
Example: 3-point function:

Γ3[p, p′] =

∫ ∞
0

dT

∫ T

0

dτ2〈p′,T |e i(k2·x(τ2)|p, 0〉

=

∫ ∞
0

dτ32

∫ ∞
0

dτ21〈p′|e−H0τ32V (k2, τ = 0)e−H0τ21)|p〉

=
1

p2 + m2
A3

1

p′2 + m2

Note that the T integral and one integral over the interaction
potential yielded the free propagators.



4-point scattering amplitudes

Consider a 4-point amplitude, with p and p′ on-shell

A4 =

∫ +∞

0

dτ32〈p|V3 e−H0τ32 V2|p′〉+ (2↔ 3)

= 〈p|e−H0τ43 V3(

∫ +∞

0

dτ32 e−H0τ32) V2 e−H0τ21|p′〉+ (2↔ 3)

=

∫ +∞

−∞
dτ32〈T {V4(τ4)V3(τ3)V2(τ2)V1(τ1)}〉

where τ1 < τ2,3 < τ4 and where V4 and V1 are two vertex
operators that create |p〉 and |p′〉 when acting on the vacuum.
We can also set τ2 = 0.



Scattering amplitudes in worldline formalism
In general, the scattering amplitudes are of the form

AN = lim
τN→+∞
τ1→−∞

(
N−1∏
i=3

∫ ∞
−∞

dτi)〈T {VN(τN)VN−1(τN−1)...V2(0)V1(τ1)}〉

Similar to Feynman diagrams in QFT, we can represent the
expression with a specific ordering of {τi} diagrammatically as

Figure: A part of AN , with ordering τN−1 > τN−2... > τ3 > 0

AN has legs 3, 4...(N − 1) freely sliding on the worldline.



This expression is similar to how scattering amplitudes are
computed in string theory. To evaluate it we only need the
2-point-function of the bosonic coordinates (on the infinite
line) is

〈xµ(τ)xν(τ ′)〉 = −1

2
ηµν |τ − τ ′| .

For particles with spins, we will add fermions to the worldline
action.
N = 2S where N=supersymmetry in the w.l. and S=spin.
The fermion correlation functions (on the infinite line) are

〈ψ̄a(τ)ψb(τ ′)〉 = ηabΘ(τ − τ ′) .



Figure: Worldlines of particles with different spins

Figure: Linear vertex operators of particles with different spins



Scalar QED
Start with the worldline action for a scalar interacting with a
background photon field,

S =

∫
dτ

(
1

2
ẋ2(τ)− i

2
ẋµ(τ)Aµ(x(τ))

)
This gives the photon vertex operator

Vj(τ) = − i

2
(εj · ẋ(τ))e ikj ·x(τ), j = 2, 3...(N − 1) .

Using 〈eAeB〉 = e〈AB〉 the 3-point function is

A3 = 〈V3(+∞)V2(0)V1(−∞)〉

= 〈e ik3·x(+∞) (− i

2
)ε2 · ẋ(0)e ik2·x(0) e ik1·x(−∞)〉

= −1

2
ε2 · (−

1

2
k3 +

1

2
k1)e

∑
i>j

1
2
ki ·kj (τi−τj )

= −1

4
ε2 · (k1 − k3) ,



Figure: 3-point amplitude of scalar QED



A4 =

∫ ∞
−∞

dτ〈T {V4(+∞)V3(τ)V2(0)V1(−∞)}〉

=−1
4

∫ ∞
−∞
dτ〈T {e ik4·x(+∞)ε3 · ẋ(τ)e ik3·x(τ)ε2 · ẋ(0)e ik2·x(0) e ik1·x(−∞)}〉

=
1

4
(ε3 · k4)(ε2 · k1)

∫ +∞

0

dτ〈e ik4·x(+∞) e ik3·x(τ) e ik2·x(0) e ik1·x(−∞)〉

+
1

4
(ε2 · k4)(ε3 · k1)

∫ 0

−∞
dτ〈e ik4·x(+∞) e ik2·x(0) e ik3·x(τ) e ik1·x(−∞)〉

−1

4
(ε3 · ε2)

∫ +∞

−∞
dτ δ(τ)〈T {e ik4·x(+∞) e ik3·x(τ) e ik2·x(0) e ik1·x(−∞)}〉

= − 1

2s
(ε3 · k4)(ε2 · k1)− 1

2u
(ε2 · k4)(ε3 · k1)− 1

4
(ε3 · ε2) ,

where s = −(k1 + k2)2, u = −(k1 + k3)2 and t = −(k1 + k4)2

are Mandelstam variables, and we used the on-shell conditions
for all four particles.



As a general feature of the worldline formalism, the two factors∫ +∞
0

dτ〈e ik4·x(+∞)e ik3·x(τ)e ik2·x(0)e ik1·x(−∞)〉
and∫ 0

−∞ dτ〈e ik4·x(+∞)e ik2·x(0)e ik3·x(τ)e ik1·x(−∞)〉
yield the poles −2/s and −2/u respectively.

Figure: 4-point amplitude of scalar QED



Coupling to gravity

The Euclidean classical action of the O(N) spinning particle in
a curved background is given by (Howe et al 1988, Bastianelli
et al 2011)∫

dτ

[
1

2
gµν(ẋµẋν+bµcν+aµaν)+

1

2
ψiaDτψ

a
i +αRabcdψ

a
i ψ

b
i ψ

c
j ψ

d
j

]
where i = 1 . . .N , Dτψ

a
i = ∂τψ

a
i + ẋµωab

µ ψib and where the
Grassmann-even aµ and the Grassmann-odd bµ, cµ are ghosts
introduced to make up for the

√
−g factor in the

general-covariant path integral measure
∫
Dxµ

√
g(x) (van

Nieuwenhuizen, Bastianelli).



Regularization and renormalization needed
In computing in the worldline formalism one encounters
products of distributions δ(τ − τ ′)Θ(τ − τ ′) which result from
contractions of the type 〈Ẋ Ẋ 〉〈XẊ 〉 etc. These expressions
are defined through a regularization scheme. Then one needs
to add counterterms(scheme dependent) to the action in order
to get matching results with the quantum field theory
corresponding to the first-quantized worldline action.
The counterterms depend on the regularization scheme. If we
use dimensional regularization, the counterterms will be in a
general-covariant form VDR = βR . Then, the worldline action
in dimensional regularization is:

SDR =

∫
dτ

[
1

2
gµν(ẋµẋν + bµcν + aµaν) +

1

2
ψiaDτψ

a
i

+αRabcdψ
a
i ψ

b
i ψ

c
j ψ

d
j + βR

]



Renormalization and fixing of the counterm coeff.

Previous results in the literature have been derived starting
from the O(N) supersymmetric spinning particle action. These
concern the so-called transition amplitude, which is the
probability amplitude for the particle in some initial state,
specified by xµ(τ=0) = X µ, ψi(τ=0) = Ψi , to evolve at some
later time τ = T into a final state specified by
xµ(τ=T ) = X ′µ, ψ̄′i(τ=T ) = Ψ̄′i :

K (X ′, Ψ̄′;X ,Ψ) = 〈X ′, Ψ̄′ |e iT Ĥ |X ,Ψ〉 ,

The counterterm β was previously determined by Bastianelli et
al. (2011) by computing the small-T expansions of the matrix
element of exp(−TH) acting coherent fermionic states as in
the transition amplitude and matching with the path integral
computation, using dim reg.



Our approach

We fix the coupling with background gravity and the
counterterms by computing the 3-point vertex with the
background graviton off-shell. Later we verify these
coefficients by computing 4-point scattering amplitudes. By
matching with the corresponding field theory tree diagrams
(e.g. minimally coupled scalar or Yang-Mills theory in a curved
background) we obtained the following results:

N α β
0 NA −1

8

2 −1
8
−1

8

Previous results have β = 0 for N = 2.



Scalar coupled to gravity
Vertex operators creating the asymptotic states:

V1(τ1) = e ik1·x(τ1)

V3(τ3) = e ik3·x(τ3)

Vertex operator for the emission of an off-shell graviton:

V µν
2 (τ2) = −1

2
ẋµ(τ2)ẋν(τ2)e ik2·x(τ2) − β(R (1))µν ,

(R (1))µν is defined by the linearized expansion of the
background Ricci scalar: R[ηµν + hµν ] = hµν(R (1))µν +O[h2].
⇒ (R (1))µν = ηµνk

2 − kµkν

Figure: 3-point vertex for the scalar-graviton interaction



When β = −1
8
,

A3(k1, k3; k2) = 〈V3(τ3)V µν(τ2)V1(τ1)〉

= −1

2
(−1)

1

4
(k3 − k1)µ(k3 − k1)ν

+
1

8
(−1)[kµ2 k

ν
2 − ηµνk2

2 ]

= −1

8
[(k3 + k1)µ(k3 + k1)ν

−ηµν(k1 + k3)2 − (k3 − k1)µ(k3 − k1)ν ]

= −1

4
(kµ1 k

ν
3 + kµ3 k

ν
1 − ηµνk1 · k3)

This matches the QFT vertex hµνT
µν for a minimally coupled

scalar. (This was noted in Mogull, Plefka and Steinhoff 2010.)
4-point functions are reproduced as well.



Photon coupled to gravity

The following vertex operators are needed

V1(τ1) = ε1µψ̄
µ(τ1)e ik1·x(τ1)

V3(τ3) = ε3µψ
µ(τ3)e ik3·x(τ3)

V µν
2 (τ2) = −1

2
ẋµ(τ2)(ẋν(τ2) + ik2σS

νσ(τ2))e ik2·x(τ2)

−α[R
(1)
abcdS

abScd ]µν − β(R (1))µν (1)

= −1

2
ẋµ(τ2)(ẋν(τ2) + ik2σS

νσ(τ2))

+4α[R
(1)
ad Ψ̄aΨd ]µν − β(R (1))µν , (2)

[R
(1)
ad Ψ̄aΨd ]µν is the coefficient of hµν of the linearized

Rad [ηµν + hµν ]Ψ̄aΨd . In going from (1) to (2) we
normal-ordered the spin.



When α = −1
8
, β = −1

8
, the vertex operator becomes

A3 =
1

4
(k3 − k1)µ

(
1

2
(k3 − k1)ν(ε3 · ε1)− εν3ε1 · k3 + εν1ε3 · k1

)
+

1

4

(
ε3 · k1ε

µ
1 (k1 + k3)ν + ε1 · k3ε

µ
3 (k1 + k3)ν

−ε3 · k1ε1 · k3η
µν − (k1 + k3)2εµ3ε

ν
1

)
−1

8

(
(k3 + k1)µ(k3 + k1)ν − ηµν(k3 + k1)2

)
(ε1 · ε3) ,

which matches the field theory. The 4-point amplitude is also
reproduced.



Worldline action for gravitons
I A free, massless spin 2 particle is described by an N = 4

supersymmetric worldline action which is also O(4) symmetric
(Howe 1988).

I Spin S free particles are described through N = 2S supersymmetric
worldline actions exhibiting O(N) symmetry (Bastianelli et al.2011)

I Coupling with background gravity imposes restrictions for the
background geometry if worldline supersymmetry is to be preserved:

- Howe, Penati, Pernici and Townsend (1988) concluded that N = 4
supersymmetry constrains the background curvature to vanish;

-Kuzenko and Yarevskaya (1995) showed that N ≥ 4
supersymmetry could be preserved in an anti de-Sitter background;

-Bastianelli et al( 2008) : N-supersymmetric particle can be
consistently coupled with a conformally flat background).

I Recently, Bonezzi et al (2018) used BRST to construct the on-shell
background graviton emission vertex from a graviton worldline.
Nonetheless, an action describing the coupling of higher spin
(S ≥ 2) particles with generic background gravity is unknown.



Our approach : constrain the worldline action by requiring that
the term linear in the off-shell background field yields a
3-point vertex that matches the 3-point QFT vertex. In
particular, we found that to reproduce general relativity’s cubic
graviton vertex, interpreted as the emission of an off-shell
graviton from the worldline, the coupling to background
gravity must break the O(4) symmetry to O(2)× O(2).

∫
dτ

[
1

2
gµν(ẋµẋν + bµcν + aµaν)

+
1

2
Ψ̄a∂τΨa +

1

2
Ψa∂τ Ψ̄a +

1

2
¯̃Ψa∂τ Ψ̃a +

1

2
Ψ̃a∂τ

¯̃Ψa

+
1

2
ẋµωµab(Sab + S̃ab) + 2α1RabcdS

abS̃cd

+α2Rabcd(SabScd + S̃abS̃cd) + βR

]
,

α1 = −α2 = −1/8 β = 3
8



Graviton worldline and emitted off-shell graviton

Here we have (since the ghosts don’t contribute to the 3-point
vertex, we simply ignore them):

V1(τ1) = ε1µνΨ̄µ(τ1) ˜̄Ψν(τ1)e ik1·x(τ1)

V3(τ3) = ε3µνΨµ(τ3)Ψ̃ν(τ3)e ik3·x(τ3)

V µν
2 (τ2)=−1

2
(ẋµ(τ2) + ik2ρS

µρ(τ2))(ẋν(τ2) + ik2σS̃
νσ(τ2))e ik2·x(τ2)

+
1

2
[R

(1)
ad (Ψ̄aΨd + ¯̃ΨaΨ̃d)]µν

−3

8
(R (1))µν .



We can now compute the 3-point function

A3 =
1

2

(
1

2
(k3 − k1)µ(ε3 · ε1)− εµ3ε1 · k3 + εµ1ε3 · k1

)
×
(

1

2
(k3 − k1)ν(ε3 · ε1)− εν3ε1 · k3 + εν1ε3 · k1

)
−1

2
(ε3 · ε1)

(
ε3 · k1ε

µ
1 (k1 + k3)ν + ε1 · k3ε

µ
3 (k1 + k3)ν

−ε3 · k1ε1 · k3η
µν − (k1 + k3)2εµ3ε

ν
1

)
+

3

8
(ε3 · ε1)2

(
(k3 + k1)µ(k3 + k1)ν − ηµν(k3 + k1)2

)
,



Glimpse of double copy

For the emission of an on-shell graviton we have:

V µν
2 (τ2) = −1

2
(ẋµ(τ2) + ik2ρS

µρ(τ2))(ẋν(τ2) + ik2σS̃
νσ(τ2)) ,

(the linearized Ricci tensor vanishes and the linearized term
RabcdS

abS̃cd leads to the squaring we see above if α1 = −1
8
.)

V µν
2 (τ2) = −2V̄ µ(τ2)V̄ ν(τ2)

where V̄ µ(τ) = −1
2
(ẋµ(τ) + ik2ρS

µρ(τ)) is the vertex operator
for gauge boson self-interaction.
This leads directly to the double copy relation between the
3-point amplitudes:

〈V3(τ3)V2(τ2)V(τ1)〉gravity = −2〈V̄3(τ3)V̄2(τ2)V̄(τ1)〉2gauge boson .



Higher N-point
New features:

I The emission vertices may become non-linear ”pinch
operators”

I The a.b.c ghosts will play a role

I We need to use dim-reg to get well-defined expressions∫
dDτ

1

2
gµν∂Ix

µ∂Ix
ν + . . .

〈xµ(τ)xν(τ ′)〉 = ηµν∆(τ, τ ′), �D∆(τ, τ ′) = −δD(τ−τ ′), ∂IJ∆ 6= ∂I∂I∆∫
dτ32∆̈(τ32)∆̇(τ32)eΣ −→

∫
dDτ∂I∂J∆∂I∆eΣ = −1

2

∫
dDτ(∂Je

Σ)(∂I∆)2

I If we place the emitted gravitons on-shell, we need to add
diagrams called ”lower-trees” which essentially ensure
that the gravitons are solving their equations of motion.



Example: 4-point scattering amplitude from a scalar worldine
and two on-shell gravitons

V23(τ)

∣∣∣∣
pinch

=
1

8
R (2)

=
1

8

[
3

4
(∂µhαβ)2 − 1

2
(∂αhβµ)(∂βhµα)

]
=

[
3t

32
(ε2 · ε3)2 +

1

8
(ε2 · k3)(ε3 · k2)(ε2 · ε3)

]
e i(k2+k3)·x(τ) .



A4,sg = lim
τ4→+∞
τ1→−∞

∫ +∞

−∞
dτ3〈T {V4(τ4)V3(τ3)V2(0)V (τ1)}〉

+ lim
τ4→+∞
τ1→−∞

〈V4(τ4)V23(τ)V1(τ1)〉

=

∫ +∞

−∞
dτ〈V4(+∞)T {V3(τ)V2(0)}V1(−∞)〉

+〈V4(+∞)V32(0)V1(−∞)〉

= −1

2

[
1

s

(
(ε2 · k1)(ε3 · k4)− s

2
(ε2 · ε3)

)2

+
1

u

(
(ε3 · k1)(ε2 · k4)− u

2
(ε2 · ε3)

)2]
.



Glimpse of double copy
Let’s make use of the spinor helicity formalism get rid of the
terms containing (ε2 · ε3) by appropriately choosing the
reference twistors |±〉 and |±].
E.g. if particles 2 and 3 have the same helicity
(ε

(+)
2,3 ∝ |−〉[k2,3|, ε(−)

2,3 ∝ |k2,3〉[+|) then ε2 · ε3 = 0. And if the
helicities are opposite we can still arrange for ε2 · ε3 = 0 by
choosing e.g. |−〉 ∝ |k2〉 if 3 has negative helicity.
Now, compare A4,sg that with the corresponding scalar QED
case,

A4,sb =−1
4

[ ∫ +∞

0

dτ〈e ik4·x(+∞)ε3µẋ
µ(τ)e ik3·x(τ)ε2µ̄ẋ

µ̄(0)e ik2·x(0)e ik1·x(−∞)〉

+

∫ 0

−∞
dτ〈e ik4·x(+∞)ε2µ̄ẋ

µ̄(0)e ik2·x(0)ε3µẋ
µ(τ)e ik3·x(τ)e ik1·x(−∞)〉

]
= −1

2

[
1

s
(ε2 · k1)(ε3 · k4) +

1

u
(ε3 · k1)(ε2 · k4)

] .



Here is the double copy structure again:

A4,sg = −ns,sg
2s
− nu,sg

2u

A4,sb = −ns,sb
2s
− nu,sb

2u
ns,sg = n2

s,sb

nu,sg = n2
u,sb .



4-point photon w.l. and 2 on-shell gravitons

Vbg ,i(τi) = −1

2
εµν,i(τi)ẋ

µ(τi)[ẋν(τi) + ikiσS
νσ(τ)]e iki ·x(τi )

Vsb,i(τi) = −1

2
εµ,i ẋ

µe iki ·x
(τi )

Vbb,i(τi) = −1

2
εν,i [ẋ

ν(τi) + ikiσS
νσ(τ)]e iki ·x

(τi ) ,



Glimpse of double copy

Ignoring the e iki ·x
(τi ) factor, we have the following relation

Vbg ,i(τi) = Vsb,i(τi)Vbb,i(τi) .

The final amplitudes have the structure

A4,bg =
ns,bg
2s

+
nu,bg
2u

A4,sb =
ns,sb
2s

+
nu,sb
2u

A4,bb(1243) =
ns,bb
2s

+
nu,bb
2u

ns,bg = ns,sb ns,bb

nu,bg = nu,sb nu,bb ,

where A4,bb(1243) is the color-ordered 4-point amplitude of
gauge bosons.



Graviton 4-point
For the graviton worldline, we need the following vertex
operators to create the asymptotic states (Bonezzi 2018)

V1(τ1) = ε1µνΨ̄µ(τ1) ¯̃Ψν(τ1)e ik1·x(τ1)

V4(τ4) = ε4µνΨ̃µ(τ4)Ψν(τ4)e ik4·x(τ4) .

The linear vertex operator and the pinch operator are
extracted from the O(2)× O(2) action.
Since now the background field is dynamical, similar to how the 4-point
scattering of non-abelian gauge bosons is computed from the worldline,
we also have to add a lower-order tree (the t-channel) to the worldline to
get the correct four graviton scattering amplitude.

Figure: graviton 4-point amplitude



Double copy for MHV
The reason worldline formalism yields the double-copy dirrectly
for MHV amplitudes is the helicity structure: In the amplitude
there will be εI · kJ and εI · εJ terms.
With the same choices for the reference twistors as before
there can be only one εI · εJ .
This eliminates the 4-point diagrams, such as the 〈ẋ ẋ〉
contractions, ghost, and the pinch operator contributions.
At this point only the squaring of the lienar vertex operators
matters and the double copy is immediate.

!

spin 0 1 2
0 e ik·x 1

2
εµẋ

µe ik·x 1
2
εµν ẋ

µẋνe ik·x

1 NA 1
2
εµ(ẋµ + ikνS

µν)e ik·x 1
2
εµν ẋ

µ(ẋν + ikρS
νρ)e ik·x

2 NA NA 1
2
εµν(ẋµ + ikρS

µρ)(ẋν + ikσS̃
νσ)

e ik·x



Conclusions
I We extended the worldline formalism for graviton worldlines and

multioule graviton emissions.
I We found that the O(4) symmetry of the free N = 4 worldline

action is broken when accounting for graviton self-interactions, and
we found different counterterms than in the previous literature, A
different renormalization condition may be the reason. Our
renormalization condition was matching with the QFT 3-point
vertex.

I We identified the squaring of the linearized vertex operators as the
reason for the double-copy relations among MHV amplitudes.

I Future directions:
I Worldgraph?
I A rennaisance of the WF with applications to the

classical limit of the scattering amplitudes and effective
potentials: think two worldlines interacting by
exchanging massless mediators.

I Are counterterms relevant?
I Higher-spin worldlines interacting by exchanging

gravitons


