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Introduction

Symmetries are a fundamental concept in Physics. In recent times, it has
become a subject of intense study, due to the extension to generalized
symmetries (Gaiotto et al. ’15).

This talk is concerned with

Finite non-invertible symmetries in 2d QFT’s,

and their different ways of gauging, known as discrete torsion,

controlled by some appropriate cohomology.

Main result

Discrete torsion for non-invertible symmetries admits two
generalizations, one of which is naturally classified by a cohomology
group and acts on gaugeable (sub)symmetries and via non-invertible
B field actions.
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Phases in partition functions

Let T be a 2d QFT with a G -symmetry. If the G -symmetry is
non-anomalous, we can produce a G -gauged theory, denoted T /G .

In particular, its partition function on a torus T 2 is computed as

ZT /G (τ, τ̄) =
1

|G |
∑

g ,h∈G ; [g ,h]=1

Zg ,h(τ, τ̄), (1)

where Zg ,h(τ, τ̄) are (g , h)-twisted sector contributions.

The partition function can be consistently changed by adding U(1)
phases to the twisted sectors (Vafa ’86)

Z
[ω]
T /G (τ, τ̄) =

1

|G |
∑

g ,h∈G ; [g ,h]=1

ω(g ,h)
ω(h,g) Zg ,h(τ, τ̄). (2)

Hence, there are inequivalent ways of gauging a G -symmetry, uniquely
specified by a cohomology class [ω] ∈ H2(G ,U(1)), a choice of discrete
torsion.
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B field actions

Discrete torsion can also be understood as group actions on a B field:

Given a G -action on X the target space of a 2d σ-model

ρ : G → Diff(X ),

and a B field over X , sometimes there exist lifts to an action on the B
field, a G -equivariant structure on B

ρ̂ : G → Aut(X ,B), (3)

where Aut(X ,B) encodes both the diffeomorphisms of X and the gauge
transformations of B.

Any two such lifts are related by discrete torsion (Sharpe ’03).
Schematically,

(ρ̂/ρ̂′) ∈ H2(G ,U(1)). (4)
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Basics of gauging non-invertible symmetries

We now look at the generalization of finite group symmetries. This is
achieved by regarding symmetries as topological line operators.

Indeed, a theory T with a group symmetry G has line operators {Lg}g∈G
implementing the action of the symmetry. These operators can be added
Lg + Lh, and fused according to their group law

Lg ⊗ Lh = Lgh. (5)

Non-invertible symmetries then correspond to topological line operators
{Li}i∈I that can be added and fused according a fusion law

Li ⊗ Lj =
∑

Nk
ij Lk , (6)

for Nk
ij ∈ N some fusion coefficients. This fusion law is not necessarily

group-like (5), and in particular, line operators may not have inverses
under fusion.
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Basics of gauging non-invertible symmetries

For our purposes, the fusion information of a collection of objects (here
topological line operators) may be encoded in a fusion category C. We
have the following correspondence:

Property of C Physics

Direct sum A+ B Defect disjoint union
Product A⊗ B Defect fusion

Duals Ā Orientation-reversal
Complex Hom-vector spaces Hom(A,B) Junction operators

Fusion categories are finitely-generated, meaning every object admits a
decomposition A =

∑
i∈I N

i
ALi into a “basis” of “simples” {Li}i∈I . It is in

this sense that fusion categories are the non-invertible analogue of
finite groups.

Alonso Perez-Lona Discrete torsion in non-invertible symmetries Virginia Tech 10 / 26



Basics of gauging non-invertible symmetries

For our purposes, the fusion information of a collection of objects (here
topological line operators) may be encoded in a fusion category C. We
have the following correspondence:

Property of C Physics

Direct sum A+ B Defect disjoint union
Product A⊗ B Defect fusion
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Fusion category examples

Examples.

Examples of fusion categories include

The ordinary group case is recovered by C = Vec(G ) with

Lg ⊗ Lh = Lgh, (7)

Representation categories Rep(G ), whose simple objects are the
irreps of G ,

Representation categories Rep(H) of particular algebras H.
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Basics of gauging non-invertible symmetries

Given a theory T with symmetries C, the gaugeable subsymmetries are
in one-to-one correspondence* with special symmetric Frobenius (or
gaugeable) algebras (A, µ,∆), for µ : A⊗ A → A, ∆ : A → A⊗ A
(co)multiplication morphisms. This again gives rise to a gauged theory
T /(A, µ,∆).

On T 2, the partition function of T /(A, µ,∆) takes the form1

ZT /(A,µ,∆)(τ, τ̄) =
∑

L1,L2,L3

µL3
L1,L2

∆L2,L1
L3

ZL3
L1,L2

(τ, τ̄), (8)

where µL3
L1,L2

∆L2,L1
L3

expands the morphism ∆ ◦ µ : A⊗ A → A⊗ A in terms
of simples L1, L2, L3.

1 For a fusion category where the hom-spaces of simple objects are at most

one-dimensional. For more general cases see (P-L et al: arxiv:2408.16811).
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Discrete torsion: two generalizations

How to incorporate discrete torsion?

Two options (P-L ’24):

1 Discrete torsion choices: a choice of gaugeable algebra structure
(µ,∆) on a given topological line operator A. In the literature, this is
sometimes called “generalized discrete torsion” (e.g. (Putrov,

Radhakrishnan ’24)).
Drawbacks: collection of choices is only a set, not a group. No
relation between any two choices.

2 Discrete torsion twists: differences of choices (of algebras, of actions
on B fields...), controlled by a (nonabelian) cohomology group,
generalizing H2(G ,U(1)).

We will discuss the twists next, and discuss how they relate to the choices.
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Discrete torsion twists

Mathematically, discrete torsion twists are based on the concept of
2-cocycles ω ∈ Z 2(C) of monoidal categories. These are natural
isomorphisms

ωA,B : A⊗ B
∼=−→ A⊗ B, (9)

satisfying the (normalized) 2-cocycle conditions

ωA,1 = ω1,A = idA, (10)

(ωA,B⊗C ) ◦ (idA ⊗ ωB,C ) = ωA⊗B,C ◦ (ωA,B ⊗ idC ). (11)

By quotienting out the 2-coboundaries B2(C), δA : A
∼=−→ A

ωA,B = δA⊗B ◦ (δ−1
A ⊗ δ−1

B ), (12)

one gets the lazy cohomology group of C (Panaite et al. ’10):

H2
ℓ (C) := Z 2(C)/B2(C).
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Discrete torsion twists

Lazy cohomology group examples

Some examples include (Guillot et al. ’10):

H2
ℓ (Vec(G )) = H2(G ,U(1)),

H2
ℓ (Rep(D4)) = 1,

H2
ℓ (Rep(A4)) = Z2,

H2
ℓ (Rep(H)) = H2

ℓ (H∗), the lazy cohomology group of the dual Hopf
algebra H∗.
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Twisting actions

We now describe discrete torsion twists from a Physics perspective. We
will derive well-defined actions on

pure non-invertible gauge actions on B fields,

any gaugeable algebra (A, µ,∆) in C,
that is independent of the used cocycle representative.
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Non-invertible B field actions

We arrive at the definition of discrete torsion twists by looking at pure
gauge actions on B fields.

For a G -group action, the B field changes as

B 7→ B + dAg , (13)

for Ag the connection of a line bundle Lg labeled by g ∈ G .
In (Waldorf ’07) these actions were extended to non-invertible actions. For
an object y ∈ ob(C) with dimension dim(y) = n ∈ N in a fusion category
C, its action on a B field is

B 7→ B + 1
n tr(F

y
A), (14)

for F y
A the curvature of a connection Ay of a rank n-vector bundle E y

labeled by y .
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Discrete torsion twists and B field actions

Just as G -actions are described by group homomorphisms
ρ : G → Aut(B), non-invertible actions are tensor functors

(F , J) : C → End(B) ∼= HVbdl∇(M), (15)

for JX ,Y : F (X )⊗ F (Y )
∼=−→ F (X ⊗ Y ) some natural isomorphisms and

HVbdl∇(M) are hermitian vector bundles with connection.

Different non-invertible actions that fix the bundles can be obtained by
precomposing by a tensor automorphism (IdC , ω) : C → C. These
automorphisms are precisely the lazy 2-cocycles ω ∈ Z 2(C).

We thus identify discrete torsion twists with the nonabelian lazy
cohomology group

H2
ℓ (C) := Z 2(C)/B2(C).
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Twisting B field actions

Proposition 1. Twists on B field actions

Let (F , J) : C → HVBdl∇(X ) be a pure gauge action on a B field over a
space X . Then given any cocycle ω ∈ Z 2(C), the tuple

(F , Jω) : C → HVBdl∇(X ), (16)

for Jω = J ◦ F (ω) is again a tensor functor.

Moreover, if [ω] = 1 ∈ H2
ℓ (C), then

(F , J) ∼mon. eq. (F , Jω). (17)

In this sense, only cohomology classes are physically relevant.
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Twists of algebras

We now observe an analogous result for gaugeable algebras.

Proposition 2. Twists of gaugeable algebras

Let (A, µ,∆) be a gaugeable algebra in C, for C a symmetry of a theory T .
Given a cocycle ω ∈ Z 2(C), the tuple

(A, µω,∆ω), (18)

for µω := µ ◦ ωA,A and ∆ω := ω−1
A,A ◦∆ is again a gaugeable algebra in C.

Moreover, if [ω] = 1 ∈ H2
ℓ (C), then

(A, µ,∆) ∼Morita (A, µω,∆ω). (19)

In particular, the partition function becomes

Z
[ω]
T /(A,µ,∆)(τ, τ̄) =

∑
L1,L2,L3

(µ ◦ ωA,A)
L3
L1,L2

(ω−1
A,A ◦∆)L2,L1L3

ZL3
L1,L2

(τ, τ̄). (20)
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Discrete torsion choices + twists

This shows that gaugeable algebra structures on an object A ∈ ob(C),
namely discrete torsion choices, are not just a set but carry a natural
group action by discrete torsion twists.

In other words, for each A
we have a groupoid of discrete torsion choices related by discrete
torsion twists:

d.t.(A) =
(

[(µ,∆)] [(µ′,∆′)]
)

[ω2]

[ω1]
[ω3]

[ω4]

(21)
Note in particular that nontrivial cohomology classes can fix Morita
classes.

All the consistency conditions (modular invariance, multiloop
factorization) demanded in (Vafa ’86) are automatically satisfied.
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Rep(A4)

Application. Rep(A4) discrete torsion.

A nontrivial example is the case C = Rep(A4). For the regular object

R =
∑

ρ∈Irrep(A4)

dim(ρ)ρ, (22)

there are two Morita classes of algebra structures.

One can show these are
related by the unique nontrivial twist [ω] ∈ H2(Rep(A4)) = Z2:

d.t.(R) =
(

[(µ,∆)] [(µ′,∆′)]
)[ω][1]

[ω] [1]

.

(23)
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Conclusions

We have described that discrete torsion admits not one but two
different generalizations, choices and twists, to the non-invertible
setting.

These are complementary, together forming a discrete torsion
groupoid.

Discrete torsion twists retain a cohomology group classification.

Twists also have well-defined actions on gaugeable algebras, and
actions on B fields.

Further directions:

More general non-invertible B field actions.
Connection to anomalies.

Questions are welcome!
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