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Introduction

Symmetries are a fundamental concept in Physics. In recent times, it has

become a subject of intense study, due to the extension to generalized
symmetries (Gaiotto et al. '15).

This talk is concerned with

o Finite non-invertible symmetries in 2d QFT's,
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Introduction

Symmetries are a fundamental concept in Physics. In recent times, it has
become a subject of intense study, due to the extension to generalized
symmetries (Gaiotto et al. '15).

This talk is concerned with
o Finite non-invertible symmetries in 2d QFT's,
@ and their different ways of gauging, known as discrete torsion,

@ controlled by some appropriate cohomology.

Discrete torsion for non-invertible symmetries admits two
generalizations, one of which is naturally classified by a cohomology

group and acts on gaugeable (sub)symmetries and via non-invertible
B field actions.
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@ Partition function phases
@ Differences of B field actions
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Phases in partition functions

Let 7 be a 2d QFT with a G-symmetry. If the G-symmetry is
non-anomalous, we can produce a G-gauged theory, denoted 7/G.
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Phases in partition functions

Let 7 be a 2d QFT with a G-symmetry. If the G-symmetry is

non-anomalous, we can produce a G-gauged theory, denoted 7/G.
In particular, its partition function on a torus T2 is computed as

Z’T/G(Ta 7_') - |1| Z Zg,h(7-77_—)7 (1)

g,heG; [g,h]=1

where Z, 4(7,7) are (g, h)-twisted sector contributions.
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Phases in partition functions

Let 7 be a 2d QFT with a G-symmetry. If the G-symmetry is
non-anomalous, we can produce a G-gauged theory, denoted 7/G.
In particular, its partition function on a torus T2 is computed as

Z’T/G(Ta 7_') - ’1| Z Zg,h(Tﬂ_—)? (1)

g,heG; [g,h]=1

where Z, 4(7,7) are (g, h)-twisted sector contributions.

The partition function can be consistently changed by adding U(1)
phases to the twisted sectors (Vafa '86)

w - 1 w _
Z¥le(r7) = i DO o FANCE] (2)
g,heG; [g,h]=1

Hence, there are inequivalent ways of gauging a G-symmetry, uniquely

specified by a cohomology class [w] € H2(G, U(1)), a choice of discrete
torsion.
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B field actions

Discrete torsion can also be understood as group actions on a B field:
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B field actions

Discrete torsion can also be understood as group actions on a B field:

Given a G-action on X the target space of a 2d o-model
p: G — Diff(X),

and a B field over X, sometimes there exist lifts to an action on the B
field, a G-equivariant structure on B

p: G — Aut(X, B), (3)

where Aut(X, B) encodes both the diffeomorphisms of X and the gauge
transformations of B.
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B field actions

Discrete torsion can also be understood as group actions on a B field:

Given a G-action on X the target space of a 2d o-model
p: G — Diff(X),

and a B field over X, sometimes there exist lifts to an action on the B
field, a G-equivariant structure on B

p: G — Aut(X, B), (3)
where Aut(X, B) encodes both the diffeomorphisms of X and the gauge

transformations of B.

Any two such lifts are related by discrete torsion (Sharpe '03).
Schematically,

(p/p') € H*(G, U(1)). (4)
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Basics of gauging non-invertible symmetries

We now look at the generalization of finite group symmetries. This is
achieved by regarding symmetries as topological line operators.
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We now look at the generalization of finite group symmetries. This is
achieved by regarding symmetries as topological line operators.

Indeed, a theory 7 with a group symmetry G has line operators {L;}zcc
implementing the action of the symmetry. These operators can be added
Lg + Ly, and fused according to their group law

Lg (29 Lh = Lgh- (5)
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Basics of gauging non-invertible symmetries

We now look at the generalization of finite group symmetries. This is
achieved by regarding symmetries as topological line operators.

Indeed, a theory 7 with a group symmetry G has line operators {L;}zcc
implementing the action of the symmetry. These operators can be added
Lg + Ly, and fused according to their group law

Lg (29 Lh = Lgh- (5)

Non-invertible symmetries then correspond to topological line operators
{L;}iez that can be added and fused according a fusion law

Li®Lj=> NfL, (6)

for N,-j‘- € N some fusion coefficients. This fusion law is not necessarily

group-like (5), and in particular, line operators may not have inverses
under fusion.
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Basics of gauging non-invertible symmetries

For our purposes, the fusion information of a collection of objects (here

topological line operators) may be encoded in a fusion category C. We
have the following correspondence:
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Basics of gauging non-invertible symmetries

For our purposes, the fusion information of a collection of objects (here

topological line operators) may be encoded in a fusion category C. We
have the following correspondence:

Property of C ‘
Direct sum A+ B
Product AR B
Duals A
Complex Hom-vector spaces Hom(A, B)

Physics
Defect disjoint union
Defect fusion
Orientation-reversal
Junction operators
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Basics of gauging non-invertible symmetries

For our purposes, the fusion information of a collection of objects (here
topological line operators) may be encoded in a fusion category C. We

have the following correspondence:

Property of C Physics
Direct sum A+ B Defect disjoint union
Product AR B Defect fusion
Duals A Orientation-reversal

Complex Hom-vector spaces Hom(A, B) | Junction operators

Fusion categories are finitely-generated, meaning every object admits a
decomposition A =} ". .7 NjL; into a “basis” of “simples” {L;}icz. Itisin
this sense that fusion categories are the non-invertible analogue of

finite groups.

Virginia Tech
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Fusion category examples

Examples.

Examples of fusion categories include

@ The ordinary group case is recovered by C = Vec(G) with
Lg ® I—h = Lgh7 (7)

@ Representation categories Rep(G), whose simple objects are the
irreps of G,

@ Representation categories Rep(#) of particular algebras H.
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Basics of gauging non-invertible symmetries

Given a theory T with symmetries C, the gaugeable subsymmetries are
in one-to-one correspondence* with special symmetric Frobenius (or
gaugeable) algebras (A, u, A), for p :ARA—- A A:A—-ARA
(co)multiplication morphisms. This again gives rise to a gauged theory

T/(A, u,A).
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Basics of gauging non-invertible symmetries

Given a theory T with symmetries C, the gaugeable subsymmetries are
in one-to-one correspondence* with special symmetric Frobenius (or
gaugeable) algebras (A, u, A), for p :ARA—- A A:A—-ARA
(co)multiplication morphisms. This again gives rise to a gauged theory
T/(A, p, D).

On T2, the partition function of 7 /(A, i1, A) takes the form?

- L Lo,y L -
ZT/(A,,U,,A) (7-’ T) = Z ML?,L2AL§ 1ZL13,L2 (7-’ T)’ (8)
Li,Lo,L3

where ,uﬁ LzAﬁ’Ll expands the morphism Aopu: A®A— A® A in terms
of simples Ly, Ly, L3.

! For a fusion category where the hom-spaces of simple objects are at most
one-dimensional. For more general cases see (P-L et al: arxiv:2408.16811).
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Discrete torsion: two generalizations

How to incorporate discrete torsion?

Two options (P-L '24):
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Discrete torsion: two generalizations

How to incorporate discrete torsion?

Two options (P-L '24):

@ Discrete torsion choices: a choice of gaugeable algebra structure
(1, A) on a given topological line operator A. In the literature, this is
sometimes called “generalized discrete torsion” (e.g. (Putrov,
Radhakrishnan '24)).
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Two options (P-L '24):

@ Discrete torsion choices: a choice of gaugeable algebra structure
(1, A) on a given topological line operator A. In the literature, this is
sometimes called “generalized discrete torsion” (e.g. (Putrov,
Radhakrishnan '24)).

Drawbacks: collection of choices is only a set, not a group. No
relation between any two choices.
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Discrete torsion: two generalizations

How to incorporate discrete torsion?

Two options (P-L '24):

@ Discrete torsion choices: a choice of gaugeable algebra structure
(1, A) on a given topological line operator A. In the literature, this is
sometimes called “generalized discrete torsion” (e.g. (Putrov,
Radhakrishnan '24)).

Drawbacks: collection of choices is only a set, not a group. No
relation between any two choices.

@ Discrete torsion twists: differences of choices (of algebras, of actions
on B fields...), controlled by a (nonabelian) cohomology group,
generalizing H?(G, U(1)).

We will discuss the twists next, and discuss how they relate to the choices.
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Discrete torsion twists

Mathematically, discrete torsion twists are based on the concept of

2-cocycles w € Z%(C) of monoidal categories. These are natural
isomorphisms

wap A®B = A® B, (9)

satisfying the (normalized) 2-cocycle conditions

wa1 = w1 A = ida, (10)
(wa,Bec) o (ida ®wp,c) = wags,c © (wag ®idc). (11)
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Discrete torsion twists

Mathematically, discrete torsion twists are based on the concept of
2-cocycles w € Z%(C) of monoidal categories. These are natural
isomorphisms

wap A®B = A® B, (9)

satisfying the (normalized) 2-cocycle conditions

wa1 = w1 A = ida, (10)
(wa,Bec) o (ida ®wp,c) = wags,c © (wag ®idc). (11)

By quotienting out the 2-coboundaries B2(C), 64 : A =N
waB = 6azB 0 (6,1 ®dg50), (12)
one gets the lazy cohomology group of C (Panaite et al. '10):

HZ (C) = Z2(C)/B(C).
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Discrete torsion twists

Lazy cohomology group examples

Some examples include (Guillot et al. '10):
o HZ(Vec(G)) = H?(G, U(1)),
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Discrete torsion twists

Lazy cohomology group examples

Some examples include (Guillot et al. '10):
o HZ(Vec(G)) = H?(G, U(1)),
o HZ(Rep(Ds)) =1,
o Hi(Rep(As)) = Za,
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Discrete torsion twists

Lazy cohomology group examples
Some examples include (Guillot et al. '10):
o HZ(Vec(G)) = H?(G, U(1)),
o HZ(Rep(Ds)) =1,
o Hi(Rep(As)) = Za,

o HZ(Rep(H)) = HZ(H*), the lazy cohomology group of the dual Hopf
algebra H*.
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Twisting actions

We now describe discrete torsion twists from a Physics perspective. We
will derive well-defined actions on
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We now describe discrete torsion twists from a Physics perspective. We
will derive well-defined actions on

@ pure non-invertible gauge actions on B fields,

@ any gaugeable algebra (A, u, A) in C,
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Twisting actions

We now describe discrete torsion twists from a Physics perspective. We
will derive well-defined actions on

@ pure non-invertible gauge actions on B fields,
@ any gaugeable algebra (A, u, A) in C,

@ that is independent of the used cocycle representative.
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Non-invertible B field actions

We arrive at the definition of discrete torsion twists by looking at pure
gauge actions on B fields.
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Non-invertible B field actions

We arrive at the definition of discrete torsion twists by looking at pure
gauge actions on B fields.
For a G-group action, the B field changes as

B B+ dAS, (13)

for A& the connection of a line bundle L& labeled by g € G.
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Non-invertible B field actions

We arrive at the definition of discrete torsion twists by looking at pure
gauge actions on B fields.
For a G-group action, the B field changes as

B B+ dAS, (13)

for A& the connection of a line bundle L& labeled by g € G.

In (Waldorf '07) these actions were extended to non-invertible actions. For
an object y € ob(C) with dimension dim(y) = n € N in a fusion category
C, its action on a B field is

B~ B+ Ltr(FY), (14)

for Fj\’ the curvature of a connection AY of a rank n-vector bundle EY
labeled by y.
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Discrete torsion twists and B field actions

Just as G-actions are described by group homomorphisms
p: G — Aut(B), non-invertible actions are tensor functors

(F,J): C — End(B) = HVbdlg(M), (15)

for Jx,y : F(X) ® F(Y) =N F(X ® Y) some natural isomorphisms and
HVbdly (M) are hermitian vector bundles with connection.
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Discrete torsion twists and B field actions

Just as G-actions are described by group homomorphisms
p: G — Aut(B), non-invertible actions are tensor functors

(F,J): C — End(B) = HVbdlg(M), (15)

for Jx,y : F(X) ® F(Y) =N F(X ® Y) some natural isomorphisms and
HVbdly (M) are hermitian vector bundles with connection.

Different non-invertible actions that fix the bundles can be obtained by
precomposing by a tensor automorphism (ld¢,w) : C — C. These
automorphisms are precisely the lazy 2-cocycles w € Z2(C).

We thus identify discrete torsion twists with the nonabelian lazy
cohomology group

H2(C) := Z3(C)/B?(C).
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Twisting B field actions

Proposition 1. Twists on B field actions

Let (F,J) : C — HVBdIy(X) be a pure gauge action on a B field over a
space X. Then given any cocycle w € Z2(C), the tuple

(F,J) : C = HVBdly(X), (16)

for J, = J o F(w) is again a tensor functor.
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Twisting B field actions

Proposition 1. Twists on B field actions

Let (F,J) : C — HVBdIy(X) be a pure gauge action on a B field over a
space X. Then given any cocycle w € Z2(C), the tuple

(F,Jy) : C — HVBdIy(X), (16)
for J, = J o F(w) is again a tensor functor.
Moreover, if [w] = 1 € H2(C), then

(F,J) ~mon. eq. (F, o). (17)

In this sense, only cohomology classes are physically relevant.
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Twists of algebras

We now observe an analogous result for gaugeable algebras.
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Twists of algebras

We now observe an analogous result for gaugeable algebras.

Proposition 2. Twists of gaugeable algebras

Let (A, 1, A) be a gaugeable algebra in C, for C a symmetry of a theory 7.
Given a cocycle w € Z2(C), the tuple

(A, preo; Do), (18)

for p, == powaa and A, := w;i\ o A is again a gaugeable algebra in C.
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Twists of algebras

We now observe an analogous result for gaugeable algebras.

Proposition 2. Twists of gaugeable algebras

Let (A, 1, A) be a gaugeable algebra in C, for C a symmetry of a theory 7.
Given a cocycle w € Z2(C), the tuple

(A7MW7AUJ)7 (18)
for p, == powaa and A, := w;i\ o A is again a gaugeable algebra in C.
Moreover, if [w] =1 € HZ(C), then

(Aa M, A) ~Morita (A7 M Aw)- (19)

v,
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Twists of algebras

We now observe an analogous result for gaugeable algebras.

Proposition 2. Twists of gaugeable algebras

Let (A, 1, A) be a gaugeable algebra in C, for C a symmetry of a theory 7.
Given a cocycle w € Z2(C), the tuple

(A, preo; Do), (18)

for p, == powaa and A, := w;i\ o A is again a gaugeable algebra in C.

Moreover, if [w] =1 € HZ(C), then

(Aa M, A) ~Morita (A7 M Aw)- (19)

v,

In particular, the partition function becomes

_ L _ oLy L -
27[?/](A,u,A)(T’ )= Z (Lowaa)s L, (“’A,IA oA) 210, (7). (20)
Ly,Lp,L3
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Discrete torsion choices + twists

@ This shows that gaugeable algebra structures on an object A € ob(C),
namely discrete torsion choices, are not just a set but carry a natural
group action by discrete torsion twists.
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Discrete torsion choices + twists

@ This shows that gaugeable algebra structures on an object A € ob(C),
namely discrete torsion choices, are not just a set but carry a natural
group action by discrete torsion twists. In other words, for each A
we have a groupoid of discrete torsion choices related by discrete
torsion twists:

[ws] [w1]
) —
d.t.(A) = ( [(u, A)]\_/[(/uu’ A )
[we] %f

(21)
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Discrete torsion choices + twists

@ This shows that gaugeable algebra structures on an object A € ob(C),
namely discrete torsion choices, are not just a set but carry a natural
group action by discrete torsion twists. In other words, for each A
we have a groupoid of discrete torsion choices related by discrete
torsion twists:

/\
dt(A) = ([ (.o )
\_/{ U
fez] o]
(21)
Note in particular that nontrivial cohomology classes can fix Morita

classes.

@ All the consistency conditions (modular invariance, multiloop
factorization) demanded in (Vafa '86) are automatically satisfied.
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Rep(A4)

Application. Rep(A4) discrete torsion.

A nontrivial example is the case C = Rep(A4). For the regular object

R= > dim(p)p, (22)

pElrrep(As)

there are two Morita classes of algebra structures.
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Rep(A4)

Application. Rep(A4) discrete torsion.

A nontrivial example is the case C = Rep(A4). For the regular object

R= > dim(p)p, (22)

pElrrep(As)

there are two Morita classes of algebra structures. One can show these are
related by the unique nontrivial twist [w] € H?(Rep(As)) = Zy:

1] [w]
)
dt(R = (o) \/[(M':A/)] ) -
[«] L[i]j
(23)
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Conclusions

@ We have described that discrete torsion admits not one but two
different generalizations, choices and twists, to the non-invertible
setting.
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Conclusions

@ We have described that discrete torsion admits not one but two
different generalizations, choices and twists, to the non-invertible
setting.

@ These are complementary, together forming a discrete torsion
groupoid.
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different generalizations, choices and twists, to the non-invertible
setting.

@ These are complementary, together forming a discrete torsion
groupoid.

@ Discrete torsion twists retain a cohomology group classification.
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@ Twists also have well-defined actions on gaugeable algebras, and
actions on B fields.
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Conclusions

@ We have described that discrete torsion admits not one but two
different generalizations, choices and twists, to the non-invertible
setting.

@ These are complementary, together forming a discrete torsion
groupoid.

@ Discrete torsion twists retain a cohomology group classification.

@ Twists also have well-defined actions on gaugeable algebras, and
actions on B fields.

@ Further directions:

e More general non-invertible B field actions.
e Connection to anomalies.
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Conclusions

@ We have described that discrete torsion admits not one but two
different generalizations, choices and twists, to the non-invertible
setting.

@ These are complementary, together forming a discrete torsion
groupoid.

@ Discrete torsion twists retain a cohomology group classification.

@ Twists also have well-defined actions on gaugeable algebras, and
actions on B fields.

@ Further directions:

e More general non-invertible B field actions.
e Connection to anomalies.

Questions are welcome!
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