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Motivation

▶ Geometric transitions in the moduli space of 4D N = 2 string
vacua have been much studied. [Greene, Morrison, Strominger
’95]

▶ Transitions like the conifold/flop and dualities such as mirror
symmetry in N = 2 have both a geometric and a
field-theoretic description.

▶ What can be said for 4D N = 1 vacua?
▶ If different geometries lead to same EFT → could be a

powerful tool to understand string compactification
▶ Hence, topic of today’s talk: Heterotic conifold transitions
▶ Some hints of Heterotic conifold transitions related to the

(0,2) Target Space Duality?
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Conifold Transitions

h1 ≡ X(x)y1 + U(x)y2 = 0

h2 ≡ V (x)y1 + Y (x)y2 = 0

▶ Nodal limit:
hnodal = XY − UV = 0

▶ Deformation:
XY − UV = ϵ(x)
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Geometric Transitions in Moduli Space

▶ Topologically different CYs threefolds can be connected by
geometric transitions. Are all CY 3-folds connected? [Reid’s
fantasy]

▶ Understanding conifolds in N = 1 → Important insight into
landscape of vacua
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Known Results for Heterotic Conifolds

▶ (0, 2) Gauged Linear Sigma Models (GLSM) target space
duality [Distler, Kachru ’95]

▶ Possibly dual theories with matching massless singlets (e.g.
sum of h1,1, h2,1 and bundle moduli) [Blumenhagen, Rahn ’11]

▶ It turns out that the examples above are connected by
conifolds. No explanation of the link.

▶ Geometric procedure of bundles/manifolds connected by
conifolds (meeting at the nodal limit). [Anderson, Brodie,
Gray ’22]

5/28



Possible duality and Target Space Duality
▶ It was shown that geometrically distinct configurations (X,

V ) and (X̃, Ṽ ) could share a non-geometric phase in their
(0, 2) GLSM [Distler, Kachru ’95]

LW =

∫
d2zdθ [ΓjGj(Xi) + ⟨P1⟩ΛaF 1

a (Xi) + ...]

Λ̃a =
Γj

p1
, Γ̃j = p1Λ

a

▶ The dual pairs are obtained by exchanging monad maps Fa

and CY defining polynomials Gj

▶ GLSMs not dual, but target space theories have same
massless singlet spectrum.

▶ The relationship of such pairs to conifolds is a mystery.
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Conifold in Heterotic theories
▶ dH being an exact four-form in the Bianchi identity

dH = −α′F ∧ F + α′R ∧R

implies the anomaly cancellation condition (w/o 5-branes):

c2(TX) = c2(V )

▶ We see that the bundle (brane) must also change to
compensate for the change in the manifold through the
conifold transition:

c2(TX̃) = c2(TX) + [P1s] ⇒ c2(V ) + [P1s]

▶ In the presence of a 5-brane wrapping curve C

c2(TX) = c2(V ) + [C]
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An Example
Deformation manifold

XD =

 y0 y1 y2 y3 y4 x0 x1 p1 p2
0 0 0 0 0 1 1 1 0
1 1 1 1 1 3 0 3 5


Nodal limit

hnodal = XY − UV = 0

Resolution

XR =

 y0 y1 y2 y3 y4 x0 x1 p1 p2
0 0 0 0 0 1 1 1 1
1 1 1 1 1 3 0 4 4


The deformation side bundle is given by:

0 −→ O(−5)
Fa−→ O(−1)⊕5 −→ VD −→ 0

Resolution side bundle:

0 −→ O(−1,−5)
F̃a−→ O(0,−1)⊕3⊕O(0,−2)⊕O(−1, 0) −→ VR −→ 0
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Moduli counting with hodge numbers

▶ 4D gauge singlets arise from Kahler (h(1,1)(X)), complex
structure (h(2,1)(X)), and bundle moduli (h1(End(V )).

▶ The total moduli on both sides turns out to be the same.

D(X,V ) = h1,1 + h2,1 + h1(End(V ))

[Blumenhagen, Rahn ’11]
▶ Here counting done in supergravity limit, to leading order in

superpotential
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Moduli counting on deformation and resolution sides
▶ Total moduli = 426

▶ Deformation side:

Kahler moduli: h1,1 = 1

Complex structure moduli: h2,1 = 101

Bundle moduli: h1(End(V )) = 324

▶ Resolution side:

Kahler moduli: h1,1 = 2

Complex structure moduli: h2,1 = 86

Bundle moduli: h1(End(Ṽ )) = 338
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From bundles to NS5-branes
▶ Observation: The bundle transition is driven by crucial

5-brane transition (via heterotic small instanton transition).
[Anderson, Brodie, Gray ’22]

V → VS ⊕ IC
where IC is the ideal sheaf of curve/5-brane

▶ Simplifies essential structure, as the rest of the bundle
spectates.

▶ We match h1,1(X) + h2,1(X) + h0(NC) on both sides of the
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Moduli Matching beyond counting dimensions
Consider a NS5 brane wrapped on the following curves on the
deformation and resolution side respectively:

XD =

 y0 y1 y2 y3 y4 x0 x1 p1 p2
0 0 0 0 0 1 1 1 0
1 1 1 1 1 3 0 3 5


NCD = OXD

(1, 4)⊕2

h1,1 + h2,1 + h0(NCD
) = 1 + 101 + 38 = 140

XR =

 y0 y1 y2 y3 y4 x0 x1 p1 p2
0 0 0 0 0 1 1 1 1
1 1 1 1 1 3 0 4 4


NCR = OXR

(1, 3)⊕OXR
(0, 5)

h1,1 + h2,1 + h0(NCR
) = 2 + 86 + 52 = 140
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Observation: Systems of defining equations look the same, but
play different roles (brane/manifold)

Deformation Resolution

Manifold P
(D)
1,3 , P

(D)
0,5 Pα

1,4
(R)

Brane Pα
1,4

(D) P
(R)
1,3 , P

(R)
0,5
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Outline of a field mapping?
▶ We want to understand field mapping of a possible duality
▶ Problem: Many aspects of the 4d EFT are unknown
▶ Rough idea:

h1,1 + h2,1 + h0(NC)

must mix
▶ E.g. 86 out of 101 C.S. moduli → C.S. in resolution, 14 C.S.

→ brane, 1 C.S.→ extra Kahler modulus, etc.
▶ Idea: Exchange role of polynomials
▶ Problem: Swapping defining equations of brane ↔ manifold is

not quite the right map
▶ Geometric tools to determine/constrain the field map:

▶ These geometries (X,V ) and (X̃, Ṽ ) can become the same in
the nodal/singular limit

▶ Geometric moduli are defined by intricate equivalence classes.
Must map physical ↔ physical degrees of freedom
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The problem with exchanging polynomials
Deformation Resolution

Manifold P
(D)
1,3 , P

(D)
0,5 Pα

1,4
(R)

Brane Pα
1,4

(D) P
(R)
1,3 , P

(R)
0,5

▶ What goes wrong with obvious interchange of polynomials?
▶ Deformation:

Brane equation: P1,4 → P1,4 + L0,1P1,3

does not change the brane equation (unphysical fluctuation)
▶ Resolution:

Manifold equation: P1,4 → P1,4 + L0,1P1,3

is a physical change of the defining manifold.
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Tracking the Physical Degrees of Freedom

▶ Above we showed just one mismatch of physical/unphysical
fluctuations.

▶ Full analysis: Parameterize infinitesimal moduli spaces by
equivalence classes, formulate map which takes physical ↔
physical
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Deformation moduli: Manifold
Defining polynomials of the deformation manifold:

P
(D)
1,3 = x0

P
(D)
0,5 = αϵαβl

αqβ + P ′
0,5

H1(TXD) :


δP0,5 ∼ δP0,5 + hP

(D)
0,5 + li0,1∂yiP

(D)
0,5

δP1,3 ∼ δP1,3 +mP
(D)
1,3 + li0,1∂yiP

(D)
1,3

+l1,3∂x0P
(D)
1,3 + l1,0∂x1P

(D)
1,3

H1(TX∨
D) : C

(∼ denotes equivalence class).
We obtain the above equivalence classes from the standard
adjunction and Euler sequences. Unphysical changes are scaling
and coordinate transformations.
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Deformation moduli: Brane
Brane defining polynomials:

P
α(D)
1,4 = lαx0 + qαx1

From the Koszul sequence, we get :

δPα
1,4 ∼ δPα

1,4 +Aα
βP

(D)β
1,4 + Lα

0,1P
(D)
1,3

Allowing fluctuations in the curve wrapped by the 5-brane we have

H0(NCD |CD) : δP
α
1,4 ∼ δPα

1,4 +Aα
βP

(D)β
1,4 + Lα

0,1P
(D)
1,3

+li0,1∂yiP
(D)α
1,4 + l1,3∂x0P

(D)α
1,4 + l1,0∂x1P

(D)α
1,4

Highlighted terms don’t appear in the equivalence class of Pα
1,4 on

the resolution side if we exchange brane and manifold equations.
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Resolution moduli: Manifold
Resolution manifold defining polynomials:

P
α(R)
1,4 = lαx0 + qαx1

Manifold moduli:

H1(TXR) : δPα
1,4 ∼ δPα

1,4 +Aα
βP

(R)β
1,4 (1)

+li0,1∂yiP
(R)α
1,4 + l1,3∂x0P

(R)α
1,4 + l1,0∂x1P

(R)α
1,4

H1(TX∨
R) : C2

Lα
0,1P

(D)
1,3 missing. So a change ∝ it is physical on this side.
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Resolution moduli: Brane
Resolution brane defining polynomials :

P
(R)
1,3 = x0

P
(R)
0,5 = αϵαβl

αqβ + P ′
0,5

Brane moduli:

H0(NCR |CR) :


δP0,5 ∼ δP0,5 + hP

(R)
0,5 +BP

(R)
nodal

+ Lα
0,1

(
q(R)α

)
+ li0,1∂yiP

(R)
0,5

δP1,3 ∼ δP1,3 +mP
(R)
1,3 + li0,1∂yiP

(R)
1,3 +

l1,3∂x0P
(R)
1,3 + l1,0∂x1P

(R)
1,3

Highlighted terms don’t appear in equivalent P0,5 polynomial on
the deformation side → a physical change on def. side
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Mapping depends on Nodal limit and an ambiguity
We let the defining equations on both sides of the transition to be
the same:

P
(R)α
1,4 = P

(D)α
1,4 = Pα

1,4 = lαx0 + qαx1

P
(R)
1,3 = P

(D)
1,3 = P1,3 = x0

P
(R)
0,5 = P

(D)
0,5 = αϵαβl

αqβ + P ′
0,5

▶ Since we split P0,5 as a nodal part (∝ qβ) and a remainder,
any changes in Pα

1,4 and P0,5 are correlated. It can be seen by

correlated changes: δP
(D)
0,5 ∝ L0,1q

α
0,4 and

δPα
1,4

(R) ∝ L0,1x0 being physical degrees of freedom on both
sides.

▶ However, note that there is no unique way to split P0,5 into
(linear quotient)×qβ and remainder P ′

0,5
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Degrees of Freedom Physical Unphysical

Def. Manifold δP0,5 ∝ Lα
0,1q

α scaling and
coord. redefinition

Def. Brane δPα
1,4 ∝ Pα

1,4
′ δPα

1,4 ∝ Lα
0,1x0

scaling and coord. redef

Res. Manifold δPα
1,4 ∝ Lα

0,1x0 scaling
coord. redefinition

Res. Brane δP0,5 ∝ P ′
0,5 δP0,5 ∝ Lα

0,1q
α

scaling and coord. redef
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What about the extra Kähler modulus on the Resolution
side?

Change the background nodal quintic polynomial as:

δPnodal
0,5 = αϵαβl

αqβ

▶ We see that Pα
1,4 defining equations on resolution remain

unchanged as we have just rescaled the constituent
polynomials. On the deformation side it changes the relative
scale between Pnodal

0,5 and P ′
0,5

▶ This extra degree of freedom maps on the resolution side to
the extra Kähler modulus.

▶ Something peculiar about the scaling α is that when it
becomes large (α → ∞) we approach the nodal limit, and this
implies that the Kähler modulus T → 0. We however don’t
know the functional form of the relation.
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Matching Yukawa couplings in perturbative superpotential

▶ The couplings in our E6 example above is of the form 273 and
273. These are complicated functions of complex structure
and bundle moduli. If a map between the complex structure
and bundle moduli is known we can match the couplings.

▶ They can provide consistency check that moduli map is
correct (i.e. duality holds).

▶ Yukawa coupling is obtained by finding H3(∧3V ). There is a
map: H1(V )×H1(V )×H1(V ) → H3(∧3V ) = H3(O) = C.
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In a modification of the above example, we find
H3(∧3VD) :

P15 ∼ P15 +Ap(5) +

3∑
a=1

Bam
a
(4) +Dm(3).

H3(∧3VR):

x31P0,15 ∼ x31P0,15 + x31Ãm(0,5) + x31

2∑
a=1

B̃ap
a
(0,4) + x31B̃3m(0,4)

+x31D̃2m
2
(0,3).

The resolution side Yukawa coupling is the same as the
deformation side, but multiplied by x31
Note that, since terms proportional to qα are quotiented out from
the above equivalence classes the ambiguity of the non-unique
splitting of P0,5 does not affect the Yukawa matching.
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Conclusion

What did we show?
▶ Proposed a way to go beyond just massless spectrum

matching, by tracking degrees of freedoms of functions in the
superpotentials of the two possibly dual theories.

▶ In this example we matched 147,440 Yukawa couplings on
both sides utilizing the moduli map found. This gives a
nontrivial check that our proposed moduli map works.

▶ In our canonical example Yukawa coupling match bypassed
the ambiguity introduced in the moduli map by the
non-unique way of splitting P0,5 = αϵαβl

αqβ + P ′
0,5.
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Future directions

▶ We would like to understand the N=1 4D supersymmetric
gauge theory mechanism of a conifold transition. (like Greene,
Morrison, Strominger ’95).

▶ We will demonstrate a complete general moduli map between
manifold, bundle, and Kähler degrees of freedom in upcoming
work.

▶ We would also like to show how the mapping works when the
non-perturbative terms (WC=

(∑nC
i PfaffCi

)
e−

∫
C J+iB) in

the superpotential are non-zero.
▶ Can we propose a rule or criteria for all transitions in the

moduli space that have the same EFT?
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Thank You
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