Conifold Transitions and Possible New Dualities in 4D N=1 Theories

Sunit Patil, Virginia Tech
Southeastern Regional Mathematical String Theory Meeting,
Duke U.

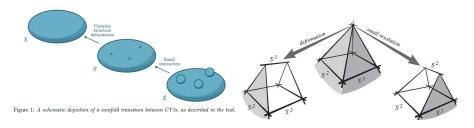
Work with L. Anderson, C. Brodie, J. Gray, C. Scanlon

November 9, 2024

Motivation

- ▶ Geometric transitions in the moduli space of 4D N=2 string vacua have been much studied. [Greene, Morrison, Strominger '95]
- ▶ Transitions like the conifold/flop and dualities such as mirror symmetry in N=2 have both a geometric and a field-theoretic description.
- ▶ What can be said for 4D N = 1 vacua?
- ▶ If different geometries lead to same EFT \rightarrow could be a powerful tool to understand string compactification
- Hence, topic of today's talk: Heterotic conifold transitions
- Some hints of Heterotic conifold transitions related to the (0,2) Target Space Duality?

Conifold Transitions



$$h_1 \equiv X(x)y_1 + U(x)y_2 = 0$$

 $h_2 \equiv V(x)y_1 + Y(x)y_2 = 0$

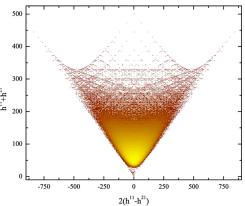
► Nodal limit:

$$h_{nodal} = XY - UV = 0$$

▶ Deformation:

$$XY - UV = \epsilon(x)$$

Geometric Transitions in Moduli Space



- ▶ Topologically different CYs threefolds can be connected by geometric transitions. Are all CY 3-folds connected? [Reid's fantasy]
- \blacktriangleright Understanding conifolds in $N=1\to {\rm Important}$ insight into landscape of vacua

Known Results for Heterotic Conifolds

- ▶ (0,2) Gauged Linear Sigma Models (GLSM) target space duality [Distler, Kachru '95]
- Possibly dual theories with matching massless singlets (e.g. sum of $h^{1,1}, h^{2,1}$ and bundle moduli) [Blumenhagen, Rahn '11]
- ▶ It turns out that the examples above are connected by conifolds. No explanation of the link.
- Geometric procedure of bundles/manifolds connected by conifolds (meeting at the nodal limit). [Anderson, Brodie, Gray '22]

Possible duality and Target Space Duality

It was shown that geometrically distinct configurations (X, V) and (\tilde{X}, \tilde{V}) could share a non-geometric phase in their (0,2) GLSM [Distler, Kachru '95]

$$L_W = \int d^2z d\theta \left[\Gamma^j G_j(X_i) + \langle P_1 \rangle \Lambda^a F_a^1(X_i) + \dots \right]$$

$$\tilde{\Lambda}^a = \frac{\Gamma^j}{p_1}, \quad \tilde{\Gamma}^j = p_1 \Lambda^a$$

- The dual pairs are obtained by exchanging monad maps F_a and CY defining polynomials G_j
- GLSMs not dual, but target space theories have same massless singlet spectrum.
- The relationship of such pairs to conifolds is a mystery.

Conifold in Heterotic theories

dH being an exact four-form in the Bianchi identity

$$dH = -\alpha' F \wedge F + \alpha' R \wedge R$$

implies the anomaly cancellation condition (w/o 5-branes):

$$c_2(T_X) = c_2(V)$$

We see that the bundle (brane) must also change to compensate for the change in the manifold through the conifold transition:

$$c_2(T_{\tilde{X}}) = c_2(T_X) + [\mathbb{P}^1 s] \Rightarrow c_2(V) + [\mathbb{P}^1 s]$$

lacktriangle In the presence of a 5-brane wrapping curve ${\cal C}$

$$c_2(T_X) = c_2(V) + [\mathcal{C}]$$

An Example

Deformation manifold

$$X_D = \begin{bmatrix} y_0 & y_1 & y_2 & y_3 & y_4 & x_0 & x_1 & p_1 & p_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 & 3 & 0 & 3 & 5 \end{bmatrix}$$

Nodal limit

$$h_{nodal} = XY - UV = 0$$

Resolution

$$X_R = \begin{bmatrix} y_0 & y_1 & y_2 & y_3 & y_4 & x_0 & x_1 & p_1 & p_2 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 3 & 0 & 4 & 4 \end{bmatrix}$$

The deformation side bundle is given by:

$$0 \longrightarrow \mathcal{O}(-5) \xrightarrow{F_a} \mathcal{O}(-1)^{\oplus 5} \longrightarrow V_D \longrightarrow 0$$

Resolution side bundle:

$$0 \longrightarrow \mathcal{O}(-1, -5) \xrightarrow{F_a} \mathcal{O}(0, -1)^{\oplus 3} \oplus \mathcal{O}(0, -2) \oplus \mathcal{O}(-1, 0) \longrightarrow V_R \longrightarrow 0$$
8/28

Moduli counting with hodge numbers

- ▶ 4D gauge singlets arise from Kahler $(h^{(1,1)}(X))$, complex structure $(h^{(2,1)}(X))$, and bundle moduli $(h^1(End(V)))$.
- ▶ The total moduli on both sides turns out to be the same.

$$D(X,V) = h^{1,1} + h^{2,1} + h^1(End(V))$$

[Blumenhagen, Rahn '11]

Here counting done in supergravity limit, to leading order in superpotential

Moduli counting on deformation and resolution sides

- ► Total moduli = 426
- ► Deformation side:

```
Kahler moduli: h^{1,1} = 1
```

Complex structure moduli:
$$h^{2,1} = 101$$

Bundle moduli:
$$h^1(End(V)) = 324$$

► Resolution side:

Kahler moduli:
$$h^{1,1} = 2$$

Complex structure moduli: $h^{2,1} = 86$

Bundle moduli: $h^1(End(\tilde{V})) = 338$

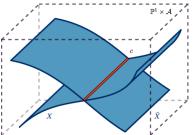
From bundles to NS5-branes

 Observation: The bundle transition is driven by crucial 5-brane transition (via heterotic small instanton transition). [Anderson, Brodie, Gray '22]

$$V \to V_S \oplus \mathcal{I}_{\mathcal{C}}$$

where \mathcal{I}_C is the ideal sheaf of curve/5-brane

Simplifies essential structure, as the rest of the bundle spectates.



We match $h^{1,1}(X) + h^{2,1}(X) + h^0(\mathcal{N}_{\mathcal{C}})$ on both sides of the transition

Moduli Matching beyond counting dimensions

 $h^{1,1} + h^{2,1} + h^0(\mathcal{N}_{C_R}) = 2 + 86 + 52 = 140$

Consider a NS5 brane wrapped on the following curves on the deformation and resolution side respectively:

$$X_{D} = \begin{bmatrix} \frac{y_{0} \quad y_{1} \quad y_{2} \quad y_{3} \quad y_{4} \quad x_{0} \quad x_{1} \mid p_{1} \quad p_{2}}{0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0} \\ 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 3 \quad 0 \quad 3 \quad 5 \end{bmatrix}$$

$$\mathcal{N}_{C_{D}} = \mathcal{O}_{X_{D}}(1,4)^{\oplus 2}$$

$$h^{1,1} + h^{2,1} + h^{0}(\mathcal{N}_{C_{D}}) = 1 + 101 + 38 = 140$$

$$X_{R} = \begin{bmatrix} \frac{y_{0} \quad y_{1} \quad y_{2} \quad y_{3} \quad y_{4} \quad x_{0} \quad x_{1} \mid p_{1} \quad p_{2}}{0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 1} \\ 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 3 \quad 0 \quad 4 \quad 4 \end{bmatrix}$$

$$\mathcal{N}_{C_{R}} = \mathcal{O}_{X_{R}}(1,3) \oplus \mathcal{O}_{X_{R}}(0,5)$$

Observation: Systems of defining equations look the same, but play different roles (brane/manifold)

	Deformation	Resolution
Manifold	$P_{1,3}^{(D)}, P_{0,5}^{(D)}$	$P_{1,4}^{lpha}{}^{(R)}$
Brane	$P_{1,4}^{\alpha(D)}$	$P_{1,3}^{(R)}, P_{0,5}^{(R)}$

Outline of a field mapping?

- We want to understand field mapping of a possible duality
- Problem: Many aspects of the 4d EFT are unknown
- Rough idea:

$$h^{1,1} + h^{2,1} + h^0(\mathcal{N}_C)$$

must mix

- ▶ E.g. 86 out of 101 C.S. moduli \rightarrow C.S. in resolution, 14 C.S. \rightarrow brane, 1 C.S. \rightarrow extra Kahler modulus, etc.
- ▶ Idea: Exchange role of polynomials
- ▶ Problem: Swapping defining equations of brane ↔ manifold is not quite the right map
- Geometric tools to determine/constrain the field map:
 - ▶ These geometries (X, V) and (\tilde{X}, \tilde{V}) can become the same in the nodal/singular limit
 - ▶ Geometric moduli are defined by intricate equivalence classes. Must map physical ↔ physical degrees of freedom

The problem with exchanging polynomials

	Deformation	Resolution
Manifold	$P_{1,3}^{(D)}, P_{0,5}^{(D)}$	$P_{1,4}^{lpha(R)}$
Brane	$P_{1,4}^{\alpha(D)}$	$P_{1,3}^{(R)}, P_{0,5}^{(R)}$

- What goes wrong with obvious interchange of polynomials?
- Deformation:

Brane equation: $P_{1,4} \rightarrow P_{1,4} + L_{0,1}P_{1,3}$ does not change the brane equation (unphysical fluctuation)

► Resolution:

Manifold equation: $P_{1,4} \rightarrow P_{1,4} + L_{0,1}P_{1,3}$ is a physical change of the defining manifold.

Tracking the Physical Degrees of Freedom

- ► Above we showed just one mismatch of physical/unphysical fluctuations.
- ► Full analysis: Parameterize infinitesimal moduli spaces by equivalence classes, formulate map which takes physical ↔ physical

Deformation moduli: Manifold

Defining polynomials of the deformation manifold:

$$P_{1,3}^{(D)} = x_0$$

 $P_{0,5}^{(D)} = \alpha \epsilon_{\alpha\beta} l^{\alpha} q^{\beta} + P'_{0,5}$

$$H^{1}(TX_{D}) : \begin{cases} \delta P_{0,5} \sim \delta P_{0,5} + h P_{0,5}^{(D)} + l_{0,1}^{i} \partial_{y^{i}} P_{0,5}^{(D)} \\ \delta P_{1,3} \sim \delta P_{1,3} + m P_{1,3}^{(D)} + l_{0,1}^{i} \partial_{y^{i}} P_{1,3}^{(D)} \\ + l_{1,3} \partial_{x^{0}} P_{1,3}^{(D)} + l_{1,0} \partial_{x^{1}} P_{1,3}^{(D)} \end{cases}$$

$$H^{1}(TX_{D}^{\vee}) : \mathbb{C}$$

 $(\sim$ denotes equivalence class).

We obtain the above equivalence classes from the standard adjunction and Euler sequences. Unphysical changes are scaling and coordinate transformations.

Deformation moduli: Brane

Brane defining polynomials:

$$P_{1,4}^{\alpha(D)} = l^{\alpha} x_0 + q^{\alpha} x_1$$

From the Koszul sequence, we get :

$$\delta P_{1,4}^{\alpha} \sim \delta P_{1,4}^{\alpha} + A_{\beta}^{\alpha} P_{1,4}^{(D)\beta} + L_{0,1}^{\alpha} P_{1,3}^{(D)}$$

Allowing fluctuations in the curve wrapped by the 5-brane we have

$$H^{0}(\mathcal{N}_{\mathcal{C}_{D}}|_{\mathcal{C}_{D}}): \delta P_{1,4}^{\alpha} \sim \delta P_{1,4}^{\alpha} + A_{\beta}^{\alpha} P_{1,4}^{(D)\beta} + L_{0,1}^{\alpha} P_{1,3}^{(D)} + l_{0,1}^{i} \partial_{y^{i}} P_{1,4}^{(D)\alpha} + l_{1,3} \partial_{x^{0}} P_{1,4}^{(D)\alpha} + l_{1,0} \partial_{x^{1}} P_{1,4}^{(D)\alpha}$$

Highlighted terms don't appear in the equivalence class of $P_{1,4}^{\alpha}$ on the resolution side if we exchange brane and manifold equations.

Resolution moduli: Manifold

Resolution manifold defining polynomials:

$$P_{1,4}^{\alpha(R)} = l^{\alpha}x_0 + q^{\alpha}x_1$$

Manifold moduli:

$$H^{1}(TX_{R}) : \delta P_{1,4}^{\alpha} \sim \delta P_{1,4}^{\alpha} + A_{\beta}^{\alpha} P_{1,4}^{(R)\beta}$$

$$+ l_{0,1}^{i} \partial_{y^{i}} P_{1,4}^{(R)\alpha} + l_{1,3} \partial_{x^{0}} P_{1,4}^{(R)\alpha} + l_{1,0} \partial_{x^{1}} P_{1,4}^{(R)\alpha}$$

$$H^{1}(TX_{R}^{\vee}) : \mathbb{C}^{2}$$

$$(1)$$

 $L_{0,1}^{\alpha}P_{1,3}^{(D)}$ missing. So a change \propto it is physical on this side.

Resolution moduli: Brane

Resolution brane defining polynomials :

$$P_{1,3}^{(R)} = x_0$$

 $P_{0,5}^{(R)} = \alpha \epsilon_{\alpha\beta} l^{\alpha} q^{\beta} + P'_{0,5}$

Brane moduli:

$$H^{0}(\mathcal{N}_{\mathcal{C}_{R}}|_{\mathcal{C}_{R}}): \left\{ \begin{array}{l} \delta P_{0,5} \sim \delta P_{0,5} + h P_{0,5}^{(R)} + B P_{\mathsf{nodal}}^{(R)} \\ + \frac{L_{0,1}^{\alpha} \left(q^{(R)\alpha}\right)}{l_{0,1}^{\alpha}} + l_{0,1}^{i} \partial_{y^{i}} P_{0,5}^{(R)} \\ \delta P_{1,3} \sim \delta P_{1,3} + m P_{1,3}^{(R)} + l_{0,1}^{i} \partial_{y^{i}} P_{1,3}^{(R)} + \\ l_{1,3} \partial_{x^{0}} P_{1,3}^{(R)} + l_{1,0} \partial_{x^{1}} P_{1,3}^{(R)} \end{array} \right.$$

Highlighted terms don't appear in equivalent $P_{0,5}$ polynomial on the deformation side \to a physical change on def. side

Mapping depends on Nodal limit and an ambiguity

We let the defining equations on both sides of the transition to be the same:

$$P_{1,4}^{(R)\alpha} = P_{1,4}^{(D)\alpha} = P_{1,4}^{\alpha} = l^{\alpha}x_0 + q^{\alpha}x_1$$

$$P_{1,3}^{(R)} = P_{1,3}^{(D)} = P_{1,3} = x_0$$

$$P_{0,5}^{(R)} = P_{0,5}^{(D)} = \alpha\epsilon_{\alpha\beta}l^{\alpha}q^{\beta} + P_{0,5}'$$

Since we split $P_{0,5}$ as a nodal part $(\propto q^{\beta})$ and a remainder, any changes in $P_{1,4}^{\alpha}$ and $P_{0,5}$ are correlated. It can be seen by correlated changes: $\delta P_{0,5}^{(D)} \propto L_{0,1} q_{0,4}^{\alpha}$ and

 $\delta P_{1,4}^{lpha}{}^{(R)} \propto L_{0,1} x_0$ being physical degrees of freedom on both sides.

▶ However, note that there is no unique way to split $P_{0,5}$ into (linear quotient)× q^{β} and remainder $P'_{0,5}$

Degrees of Freedom	Physical	Unphysical
Def. Manifold	$\delta P_{0,5} \propto L_{0,1}^{\alpha} q^{\alpha}$	scaling and
		coord. redefinition
Def. Brane	$\delta P_{1,4}^{\alpha} \propto P_{1,4}^{\alpha}$	$\delta P_{1,4}^{\alpha} \propto L_{0,1}^{\alpha} x_0$
		scaling and coord. redef
Res. Manifold	$\delta P_{1,4}^{\alpha} \propto L_{0,1}^{\alpha} x_0$	scaling
		coord. redefinition
Res. Brane	$\delta P_{0,5} \propto P'_{0,5}$	$\delta P_{0,5} \propto L_{0,1}^{lpha} q^{lpha}$
		scaling and coord. redef

What about the extra Kähler modulus on the Resolution side?

Change the background nodal quintic polynomial as:

$$\delta P_{0.5}^{nodal} = \alpha \epsilon_{\alpha\beta} l^{\alpha} q^{\beta}$$

- We see that $P_{1,4}^{\alpha}$ defining equations on resolution remain unchanged as we have just rescaled the constituent polynomials. On the deformation side it changes the relative scale between $P_{0,5}^{nodal}$ and $P_{0,5}'$
- ► This extra degree of freedom maps on the resolution side to the extra Kähler modulus.
- Something peculiar about the scaling α is that when it becomes large $(\alpha \to \infty)$ we approach the nodal limit, and this implies that the Kähler modulus $T \to 0$. We however don't know the functional form of the relation.

Matching Yukawa couplings in perturbative superpotential

- The couplings in our E_6 example above is of the form ${\bf 27}^3$ and ${\bf \overline{27}}^3$. These are complicated functions of complex structure and bundle moduli. If a map between the complex structure and bundle moduli is known we can match the couplings.
- They can provide consistency check that moduli map is correct (i.e. duality holds).
- Yukawa coupling is obtained by finding $H^3(\wedge^3 V)$. There is a map: $H^1(V) \times H^1(V) \times H^1(V) \to H^3(\wedge^3 V) = H^3(\mathcal{O}) = \mathbb{C}$.

In a modification of the above example, we find $H^3(\wedge^3 V_D)$:

$$P_{15} \sim P_{15} + Ap_{(5)} + \sum_{a=1}^{3} B_a m_{(4)}^a + Dm_{(3)}.$$

 $H^3(\wedge^3V_R)$:

$$x_1^3 P_{0,15} \sim x_1^3 P_{0,15} + x_1^3 \tilde{A} m_{(0,5)} + x_1^3 \sum_{a=1}^2 \tilde{B}_a p_{(0,4)}^a + x_1^3 \tilde{B}_3 m_{(0,4)} + x_1^3 \tilde{D}_2 m_{(0,3)}^2.$$

The resolution side Yukawa coupling is the same as the deformation side, but multiplied by x_1^3

Note that, since terms proportional to q^{α} are quotiented out from the above equivalence classes the ambiguity of the non-unique splitting of $P_{0,5}$ does not affect the Yukawa matching.

Conclusion

What did we show?

- Proposed a way to go beyond just massless spectrum matching, by tracking degrees of freedoms of functions in the superpotentials of the two possibly dual theories.
- In this example we matched 147,440 Yukawa couplings on both sides utilizing the moduli map found. This gives a nontrivial check that our proposed moduli map works.
- In our canonical example Yukawa coupling match bypassed the ambiguity introduced in the moduli map by the non-unique way of splitting $P_{0,5}=\alpha\epsilon_{\alpha\beta}l^{\alpha}q^{\beta}+P_{0,5}'$.

Future directions

- ▶ We would like to understand the N=1 4D supersymmetric gauge theory mechanism of a conifold transition. (like Greene, Morrison, Strominger '95).
- We will demonstrate a complete general moduli map between manifold, bundle, and Kähler degrees of freedom in upcoming work.
- We would also like to show how the mapping works when the non-perturbative terms $(W_{\mathcal{C}} = \left(\sum_{i}^{n_{\mathcal{C}}} \operatorname{Pfaff}_{C_i}\right) e^{-\int_{\mathcal{C}} J + iB})$ in the superpotential are non-zero.
- ► Can we propose a rule or criteria for all transitions in the moduli space that have the same EFT?

Thank You