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Rudiments

BPS Index
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• We consider N=2 Abelian gauge theories. 

• States have integer charges: 

• Poincare extends to N=2 super-Poincare: 
M gets bounded by |Z|. 

• M=|Z| case: “short” repre,  Sj=[j]   rhh,  
where  rhh=2[0]   [1/2]  is the 4-diml  irrep of the odd alg. 

• M>|Z| case: “long” repre,  Lj=[j]   rhh   rhh

� 2 Z2r ⌘ �

�
�

� �

N=2 Basics
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• For the Hilbert space                                                         , 

define the BPS index as:

• Only genuine short reps contribute to         .

H1
� =

�

�
�

j� 1
2 Z�0

Sj
�nj(�)

�

� �

�

�
�

l� 1
2 Z�0

Ll
�ml(�)

�

�

�(�) :=
�

j� 1
2 Z�0

(�1)2j(2j + 1) nj(�)

= Tr�
H1

�
(�1)2J3

⌦(�)

BPS Index

• The little super-algebra contains su(2)R and hence one can 
define the refined index as:

�(�; y) = Tr�
H1

�
(�1)2J3y2I3+2J3

y=1��� �(�) = Tr�
H1

�
(�1)2J3
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Rudiments

Wall-crossing
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•          is invariant under arbitrary deformations of       , 
but may change under deformations of the theory.

• The index is ill-defined when       mixes with the multi-ptl 
spectrum, i.e., if     can split into      and     s.t.
                   ,                   .

• Thus, in the parameter space, there appears a wall, across 
which the BPS index jumps.

�1 �2
�1 + �2 = � Z1/Z2 � R+

Wall-Crossing

H1
��(�)

H1
�

�
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• Generic BPS one-particle states as loose bound states of 
charge centers, balanced by classical forces.
[Lee, Yi `98;  Bak, Lee, Lee, Yi `99;  Gauntlett, Kim, Park, Yi `99; 
Stern, Yi `00;  Gauntlett, Kim, Lee, Yi `00]

• The equilibrium distances become infinite as one 
approaches the wall [Denef `02] :

R =
��1, �2�

2

|Z1 + Z2|
Im[Z̄1Z2]

Wall-Crossing
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Rudiments

BPS Quivers
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• BPS states ~ D-branes wrapping various cycles.

• Low-energy D-brane dynamics by a D=4, N=1 quiver gauge 
theory reduced to the eff. particle world-line.  

• E.g. IIB on CY3:  one-particle BPS states seen as a D3-brane 
                        wrapping a SLag. 

• Two pictures arise for the same BPS bound state of branes:
(1) Set of particles at equilibrium
(2) Fusion of D-branes

related via quiver quantum mechanics [Denef `02]

BPS Quivers
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• U(1) vectors include xv=(xv1, xv2,xv3) and bi-fund. chirals 
include Zvwk=1,...,avw , where avw =

• Two phases

�1

�2

�3

•                   Z23
k=1,...,a23     Z12

k=1,...,a12   

                 
                            

•                              x2                  

                 

        x3                                      x1

(1) Coulomb:   xv , Zvwk

(2) Higgs:         xv , Zvwk

��v, �w�

BPS Quivers
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• For large xv-xw, chirals are massive and eff. dynamics leads to

                                                  , with     

                           

• By studying the soln space                                          ,  one 
can obtain the Coulomb index 
[de Boer, El-Showk, Messamah, van Den Bleeken `09], [Manschot, Pioline, Sen `11]

• Dialing the coupling to 0,  one can describe the system as QM 
on the variety                                                       . 

• The Higgs index is given as:

Kv �
�

w �=v

��w, �v�
|xw � xv| � �v(u) = 0 for �v �v = 2 Im[e�i�Z�v (u)]

M = {xv | Kv = 0 , �v} \ R3

BPS Index

�Coulomb({�v}; y)

MH = {Zk
vw | Dv = �v , �v}/

�

v

U(1)

�Higgs({�v}; y)=
�

p,q

(�1)p+q�d y2p�d hp,q(MH)
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• It has been shown [Denef `02;  Sen `11]:

• Multi-center picture has a smooth transition into 
the fused D-brane picture at a single point. 

• The two pictures might become very different if the 
quivers have a loop [Denef, Moore `07]:

                                                                                   

Coulomb vs Higgs

�Coulomb = �Higgs

�Coulomb << �Higgs
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Quiver Invariants
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• The Higgs phase might in general have more states than 
the Coulomb phase multi-center states.

• We may call these additional ones “intrinsic” Higgs states. 

• Thus, the Higgs index can be written as:

• The intrinsic Higgs states are expected not to experience 
wall-crossing. 

Intrinsic Higgs States

�Higgs = �Coulomb + “�Inv”�Inv
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�1

�2

�3

•                       Z23
k=1,...,a23     Z12

k=1,...,a12   
                 

                             Z31
k=1,...,a31            

MH
i

�� A

W({Zk
12}, {Zk

23}, {Zk
31}) =

�
Ck1k2k3 Zk1

12 Zk2
23 Zk3

31

Cyclic Example

• Consider a 3-node quiver with superpotential

• There arise 3 different quiver varieties, in each of which 
one set of chirals vanishes.

• The moduli space is embedded 
by F-terms in D-term variety.
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• Embedding structure                  
    

        Naturally splits the Higgs phase states: 

[S.-J.L., Z.-L.Wang, P.Yi `12]

(cf.) [Bena, Berkooz, de Boer, El-Showk, van Den Bleeken `12]

• Lefschetz Hyperplane Theorem implies that the Hodge 
diamond is of a cross shape. 

!

Characterisation of �Inv

�Higgs �Coulomb �Inv

! !

�Inv

�Inv

MH
i

�� A
=�

H•(MH) = i� (H•(A)) � [H•(MH)/i� (H•(A))]

Monday, April 13, 15



•                   4                  5     

                 
                            6 

= �Coulomb

= �Inv

•                   1
             26    26
                  1

•                     1
                0      0
            0      2      0
        0      0      0      0
    0      0      3      0      0
0      0     26    26      0      0
    0      0      3      0      0 
        0      0      0       0
            0      2      0 
                0      0   
                    1 

•                    1
               0      0
           0      2      0
       0     26    26     0
           0      2      0
               0      0
                   1 

Monday, April 13, 15



Nonabelian Quivers

Abelianisation
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X X̃

Abelianisation
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• [Martin, `00],  [Ciocan-Fontanine, Kim, Sabbah, `06]

• (cf.) [Hori, Vafa, `00]

The Prescription in a Nutshell
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Loopless Quivers

�

X
a =

1

|W |

�

X̃
â � e(�)Bridging : , where . . .

��a = ��â

W = Weyl(G)

� =
�

root �

L�

o

o

o
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Loopless Quivers

Index :

�y(T X) �
�

µ

�
xµ ·

�
ye�xµ � y�1

1 � e�xµ

��

, . . .

where .

�(y) =
1

|W |

�

X̃
�y(T X̃) � e(�)

�y(�)

�y � f�y (x) =
x

(1 � e�x)
· (ye�x � y�1)
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Quivers with a Potential

Index : �(y) =
1

|W |

�

X̃
�y(T X̃) � e(Ñ )

�y(Ñ )
� e(�)

�y(�)
, . . .

where .�y � f�y (x) =
x

(1 � e�x)
· (ye�x � y�1)
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Applications

• Non-Abelian Quiver Invariant 

• Partition-sum Structure of the Index

Monday, April 13, 15



• Non-Abelian Quiver Invariant 

• Partition-sum Structure of the Index

Applications

Monday, April 13, 15



• Non-Abelian Quiver Invariant 

• Partition-sum Structure of the Index

Figure 6: A non-Abelian triangular quiver (left) and an Abelian quiver (right); the
former is obtained by mutating node 3 of the latter.

from mutating node 3 of the latter in the branch where ⌘1 > 0 and ⌘3 < 0 so that
the two arrows from node 1 to node 3 vanish.

One can easily confirm that these are the correct branches by transforming the
FI constants under the mutation,

✓1 = ⌘1 ,
✓2 = ⌘2 + 3⌘3 ,
✓3 = �⌘3 . (3.14)

The Abelian index computations turn out to give exactly the same results as in
Eqs. (3.12) and (3.13); this provides a consistency check for the non-Abelian indices
as the two moduli spaces are mutation equivalent.

3.2.2 Quiver Invariants Revisited

Figure 7: A simplest non-Abelian quiver with intrinsic Higgs states

Let us take the triangular quiver in Fig. 7, which, due to the symmetry, has
essentially two di↵erent branches: (a) ✓1 < 0, ✓3 > 0 where the three arrows from

20

node 3 to node 1 vanish, and (b) ✓1 > 0, ✓2 < 0 where the five arrows from node 1 to
node 2 vanish. The Euler number and the refined Euler character can be evaluated
by applying Eqs. (3.10) and (3.11),

�(M
a

) = 6
�
⇠

(M
a

) = 6 ,
and

�(M
b

) = 9
�
⇠

(M
b

) = 1� 7⇠ + ⇠2 ,
(3.15)

in the branches (a) and (b), respectively. Consequently, we have the following refined
Higgs phase indices

⌦(a)
Higgs(y) = 6 and ⌦(b)

Higgs(y) =
1

y2
+ 7 + y2 . (3.16)

The equivariant Coulomb phase indices, on the other hand, can be separately
computed, along the lines of Ref. [28, 29], as

⌦(a)
Coulomb(y) = 1 + ⌦(a)

Intrinsic and ⌦(b)
Coulomb(y) =

1

y2
+ 2 + y2 + ⌦(b)

Intrinsic , (3.17)

where ⌦Intrinsic encodes the possibility of intrinsically Higgs states that cannot be
directly counted via the Coulomb approach. By comparing Eqs. (3.16) and (3.17),
we see

⌦(a)
Intrinsic = ⌦(b)

Intrinsic = 5 = ⌦Invariant , (3.18)

and find that the notion of the intrinsic Higgs states as chamber-independent invariant
of a quiver, first observed in Abelian quivers [16,17,30], manifests again in this non-
Abelian example.#5

4 Abelianized Higgs Index is a Partition Sum

4.1 Coulomb Index as a Partition Sum

With
P

A

�
A

collection of BPS particles, with the intrinsic degeneracies ⌦(�
A

)’s, the
Coulomb index associated with the multi-particle BPS wavefunction can be computed
as

⌦�
⇣X

�
A

⌘
= ⌦+

⇣X
�
A

⌘

+ (�1)
P

A>B

h�
A

,�

B

i+n�1

Q
A

⌦̄(�
A

)

|�|
Z

M
ch(F) ^A(M)

#5⌦Invariant = ⌦S in the notation of Refs. [28,29], where these were left as an unknown input data.
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• Non-Abelian Quiver Invariant 

• Partition-sum Structure of the Index

corresponding to the empty subset I = /o, and the minimal, or trivial, partition

P�+ = ({r1}, {r2}, · · · , {rN}) . (4.7)

for I = �+. Note that there are in general many di↵erent I’s that map to the same
unordered partition P .

For each (unordered) partition P , we may associate an Abelian quiver QP . The
Abelian quiver Q̃ we encountered many time already is an example of this,

Q̃ = QP
/

o

.

One way to pictureQP for a given P = ({r
v,a

v

}) is to start with Q̃ = QP
/

o

, gather U(1)

nodes of Q̃ according to the numbers {r
v,a

v

}, and fuse each such collection to a single
Abelian node, of which FI constant is given by summing those of the fused nodes. In
terms of the Coulomb side picture, such a node corresponds to a single center of (non-
primitive) charge r

v,a

v

�
v

. Naturally QP has the gauge group
Q

v

Q
a

v

U(1), typically
of smaller rank than r + 1 =

P
v

r
v

=
P

v

P
a

v

r
v,a

v

. We keep the bi-fundamental
chiral field contents intact, which is accomplished as the intersection numbers are
multiplied by a pair of r

v,a

v

’s in an obvious manner:

r
v,a

v

⇥ h�
v

, �
w

i ⇥ r
w,b

w

.

As an illustration of the mapping P 7! QP , let us consider the Grassmannian
quiver in Fig. 8, with gauge group G = U(3) ⇥ U(1), that has the dimension vector
d = (3, 1). The dimension vector admits the following three partitions,

Figure 8: Grassmannian quiver with d = (3, 1) and linking number 

P1 = ({1, 1, 1}; {1}) ,
P2 = ({1, 2}; {1}) , (4.8)

P3 = ({3}; {1}) ,
which, according to the rule explained in the previous paragraph, correspond, respec-
tively, to the three quivers depicted in Fig. 9.

To state the conjecture, we now come back to the contribution from � to the
refined Higgs index. Reorganizing the terms as

e(�)

!
y

(�)
=

Y

↵2�+

(1� �
↵

) =
X

P

X

PI=P, I⇢�+

�(I) , (4.9)

25

Figure 9: The three Abelian quivers arising from the non-Abelian quiver in Fig. 8;
they correspond, respectively(from left to right), to the three partitions P

i

for i =
1, 2, 3 given in Eq. (4.8).

we have a sum over partitions for the refined index as

⌦(y)[Q] =
X

P

0

@ 1

|W |
Z

X̃

2

4!
y

(T X̃) ^ e(Ñ )

!
y

(Ñ )
^

X

PI=P, I⇢�+

�(I)
3

5

1

A . (4.10)

For a general quiver, we claim that each and every term in the sum over P represents
contribution from the Abelian quiver QP defined above.

As we noted earlier, a partition sum of similar kind has been rigorously demon-
strated on the Coulomb side computation, which is reliable for quivers without loops.
As the Higgs index and the Coulomb index equal in these cases, a partition sum
does already exist in the Higgs side as well. What we claim is that, for such general
quivers, our partition sum coincides exactly and term–by-term with this physically
motivated partition sum. Borrowing from these works, then, our conjecture can be
stated as

1

|W |
Z

X̃

2

4!
y

(T X̃) ^ e(Ñ )
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Applications

corresponding to the empty subset I = /o, and the minimal, or trivial, partition

P�+ = ({r1}, {r2}, · · · , {rN}) . (4.7)

for I = �+. Note that there are in general many di↵erent I’s that map to the same
unordered partition P .

For each (unordered) partition P , we may associate an Abelian quiver QP . The
Abelian quiver Q̃ we encountered many time already is an example of this,

Q̃ = QP
/

o

.

One way to pictureQP for a given P = ({r
v,a

v

}) is to start with Q̃ = QP
/

o

, gather U(1)

nodes of Q̃ according to the numbers {r
v,a

v

}, and fuse each such collection to a single
Abelian node, of which FI constant is given by summing those of the fused nodes. In
terms of the Coulomb side picture, such a node corresponds to a single center of (non-
primitive) charge r
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v
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v

. Naturally QP has the gauge group
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v

U(1), typically
of smaller rank than r + 1 =

P
v

r
v

=
P

v

P
a

v

r
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. We keep the bi-fundamental
chiral field contents intact, which is accomplished as the intersection numbers are
multiplied by a pair of r

v,a

v

’s in an obvious manner:

r
v,a

v

⇥ h�
v

, �
w

i ⇥ r
w,b

w

.

As an illustration of the mapping P 7! QP , let us consider the Grassmannian
quiver in Fig. 8, with gauge group G = U(3) ⇥ U(1), that has the dimension vector
d = (3, 1). The dimension vector admits the following three partitions,

Figure 8: Grassmannian quiver with d = (3, 1) and linking number 

P1 = ({1, 1, 1}; {1}) ,
P2 = ({1, 2}; {1}) , (4.8)

P3 = ({3}; {1}) ,
which, according to the rule explained in the previous paragraph, correspond, respec-
tively, to the three quivers depicted in Fig. 9.

To state the conjecture, we now come back to the contribution from � to the
refined Higgs index. Reorganizing the terms as

e(�)

!
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(�)
=

Y
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(1� �
↵

) =
X

P

X

PI=P, I⇢�+

�(I) , (4.9)
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⌦(y)[Q] =
X

P

0

@ 1

|W |
Z

X̃

2

4!
y

(T X̃) ^ e(Ñ )
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For a general quiver, we claim that each and every term in the sum over P represents
contribution from the Abelian quiver QP defined above.

As we noted earlier, a partition sum of similar kind has been rigorously demon-
strated on the Coulomb side computation, which is reliable for quivers without loops.
As the Higgs index and the Coulomb index equal in these cases, a partition sum
does already exist in the Higgs side as well. What we claim is that, for such general
quivers, our partition sum coincides exactly and term–by-term with this physically
motivated partition sum. Borrowing from these works, then, our conjecture can be
stated as
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is a well-established universal factor that appears in the Coulomb phase wall-crossing
formula. For the nonequivariant limit, terms in the product here reduce to ±1/r2

v,a

v

we already encountered at the top of this section. Although c(P ; y) was found in the
study of quivers without loops, its origin lies entirely in the quantum statistics or
equivalently the Weyl groups and the same formula should be applicable to general
quivers.
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• Non-Abelian Quiver Invariant 

• Partition-sum Structure of the Index

Applications

• Asymptotic behavior?    cf. [Cordova, Shao `15], [Kim `15]

• Another path towards Non-Abelian Quivers?

 · · · Works in principle for any quivers but practically hard · · ·
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Nonabelian Quivers

Mutation

Monday, April 13, 15



Q = ({Ni} ; [bij ])�i �� �Q = ({ �Ni} ; [ ])��i
�bij

µ

µL
k µR

k

��
is

• Relate the index of a complicated quiver to that of a 
simpler one via mutation: 

• With respect to a node k, either Left or Right:        or 

• The action on charges        characterises the mutation:

• Thus, in the parameter space, there appears a wall, across 
which the BPS index jumps.

Left and Right Mutations
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Triangle Quiver with �N = (1, 1, N)
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Triangle Quiver with 

µL
3 µR

3

Figure 1: The left and the right mutations µL,R
3

on node 3 for (1, 1, N) quivers. The
integers inside circles are ranks, while the FI constants are displayed next to them.

When we try to apply the above mutation rule to quivers with loops, it is impor-
tant to restrict to the set of quivers without 1-cycles nor 2-cycles, where the 1-cycles
refer to arrows start and end at the same node, and the 2-cycles refer to two non-
canceling arrows with opposite direction between two nodes. Also, the superpotential
is assumed to be generic but consistent with the gauge symmetry and R-symmetry.
The latter implies that W is of charge 2 with respect to the U(1)R in the convention
where R-charges of supercharges are ±1. One underlying assumption in the above is
that we pair-annihilated chirals of mutual charge conjugate by assigning appropriate
R-charges to them to allow for a bilinear term in W , which lifts them pairwise from
the low energy dynamics.

Finally, the mutated quiver needs the rank data b
Ni = µk(Ni). One natural pre-

scription is to keep � ⌘
P

i Ni�i invariant under the mutation, for which we have

µ

L
k (Ni) =

0

@
�Nk +

P
j[bkj]+Nj i = k

Ni otherwise
(2.6)

and

µ

R
k (Ni) =

0

@
�Nk +

P
j[bjk]+Nj i = k

Ni otherwise
(2.7)

Note that these two result is the same rule if
P

j[bjk]+Nj =
P

j[bkj]+Nj. For example,
anomaly cancelation condition of 4d N = 1 theories of quiver type demands precisely
this identity for each and every node, and the familiar Seiberg duality map on Ni

coincides with either of µL,R
k .#3

#3 A variation of this has been seen in 2d, 3d quiver GLSM context in Refs. [42, 43, 45] where the
authors chose to take either µL

k or µR
k , for each mutation step k, depending on which of the two

sums is larger.
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�N = (1, 1, N)

• Trade off between vectors and chirals could be made.

• Would all mutations preserve the Witten index?
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Mutation as a viewpoint change in how BPS particles 
are distinguished from anti-BPS particles

        [Alim, Cecotti, Cordova, Espahdodi, Rastogi, Vafa `11]

q

-q

-p

p

Figure 10: Here we illustrate a choice of half-plane that forces q,�p to be nodes of the
quiver, for any arbitrary adjacent hypermultiplet BPS states p, q. The grey region indicates
the choice of particle half-plane, H, while red vectors are BPS charges of particles, and blue
vectors are BPS charges of anti-particles

the half-plane. This situation is illustrated in Figure 10. The quiver must contain both q

and �p as nodes since they form the boundary of the cone of positive states. Since we are

studying a complete theory, we must have |p � q|  2. The hypermultiplet wall-crossing is

completely straightforward and explicit for any of the three possibilities.

• |p � q| = 0: there is no change in the spectrum across the wall,

• |p � q| = 1: pentagon identity, which gives two states p, q on one side of the wall and

three states p, p+ q, q on the other side of the wall,

• |p� q| = 2: SU(2) identity, which gives two states p, q on one side of the wall, and the

vector p+ q with infinite tower of dyons (n+1)p+ nq, np+ (n+1)q for n � 0 on the

other.

While the hypermultiplet wall-crossings are highly simplified, we should point out that it

is still possible to have wall crossing of vector multiplets in a complete theory. This may

produce some wild behavior involving infinitely many vectors, which is not so explicitly

understood.

Of course, for complete theories the central charges for a basis of states can all be varied

independently by tuning parameters; thus in principle, all chambers found via the wall-

crossings described above should be physically realized in parameter space. Combining the

mutation method and the wall crossing formulae above, explicit computation of BPS spectra

for any complete theory with a finite chamber is now reduced to a completely algorithmic

procedure for a large region of parameter space.
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Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”
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Figure 3: Mutating on node 3 of (1, 1, N) quiver brings us back to another (1, 1, bN) quiver.
Because the mutation flips arrow orientations, the roles of ⇣̂

1

and ⇣̂
2

are exchanged relative
to those of ⇣

1,2. The left mutation, allowed in three sub-chambers of figure 2 with most

negative ⇣
3

, maps indices of chambers II and III, respectively, to those of chambers cIV
and bI. Similarly, the right mutation, allowed in three sub-chambers of figure 2 with most
positive ⇣

3

, maps indices of chambers I and IV, respectively, to those of chambers cIII and
bII.

chambers. Indices of the original quiver were computed in Ref. [30],

⌦(I) = 50 ,

⌦(II) = 1/y4 + 2/y2 + 87 + 2y2 + y4

,

⌦(III) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6

,

⌦(IV) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6

. (5.2)

Figure 4: An explicit example of mutation. Witten indices are computed for all four
chambers for each of the three quivers, showing that mutation selection rule is necessary.
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Figure 1: The left and the right mutations µL,R
3

on node 3 for (1, 1, N) quivers. The
integers inside circles are ranks, while the FI constants are displayed next to them.

When we try to apply the above mutation rule to quivers with loops, it is impor-
tant to restrict to the set of quivers without 1-cycles nor 2-cycles, where the 1-cycles
refer to arrows start and end at the same node, and the 2-cycles refer to two non-
canceling arrows with opposite direction between two nodes. Also, the superpotential
is assumed to be generic but consistent with the gauge symmetry and R-symmetry.
The latter implies that W is of charge 2 with respect to the U(1)R in the convention
where R-charges of supercharges are ±1. One underlying assumption in the above is
that we pair-annihilated chirals of mutual charge conjugate by assigning appropriate
R-charges to them to allow for a bilinear term in W , which lifts them pairwise from
the low energy dynamics.

Finally, the mutated quiver needs the rank data b
Ni = µk(Ni). One natural pre-

scription is to keep � ⌘
P

i Ni�i invariant under the mutation, for which we have

µ

L
k (Ni) =

0

@
�Nk +

P
j[bkj]+Nj i = k

Ni otherwise
(2.6)

and

µ

R
k (Ni) =

0

@
�Nk +

P
j[bjk]+Nj i = k

Ni otherwise
(2.7)

Note that these two result is the same rule if
P

j[bjk]+Nj =
P

j[bkj]+Nj. For example,
anomaly cancelation condition of 4d N = 1 theories of quiver type demands precisely
this identity for each and every node, and the familiar Seiberg duality map on Ni

coincides with either of µL,R
k .#3

#3 A variation of this has been seen in 2d, 3d quiver GLSM context in Refs. [42, 43, 45] where the
authors chose to take either µL

k or µR
k , for each mutation step k, depending on which of the two

sums is larger.
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Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”

17

IV

III

I

II

Monday, April 13, 15



�

�

�

�

�
�

FKDPEHUV

Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”

17

I

II

IV

III

Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”

17

Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”

17

Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”

17

Monday, April 13, 15



Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”

17

Monday, April 13, 15



Figure 2: Four physical chambers of (1, 1, N) triangle quivers, divided by solid lines. These
are further divided into ten sub-chambers by relative ordering of the three FI constants;
for example, (2�, 3�, 1+) means ⇣

2

< ⇣
3

< 0 < ⇣
1

. The arrows in the lower-left corner are
normal to the respective constant ⇣ lines.

mutation results in a negative rank of the mutated node, the original quiver must
have been in a physically empty chamber with a vanishing Witten index. In this
sense, it su�ces to consider the original quivers and the chambers thereof such that
allowed mutation results in µk(Nk) � 0, to which cases we will restrict ourselves.

With the index counting enabled by HKY’s general formula, we wish to test
this mutation idea explicitly by applying to a simplest class of triangle quivers. We
will perform numerical test as well as illustrate how HKY formula itself exhibits
invariance under such mutations. The latter may be generalized to a larger class of
quivers, establishing the mutation invariance rigorously at the level of index theorem.

5.2 A Numerical Check and A Subtlety

Before we plunge into more analytical demonstration in next subsection, let us briefly
check the validity of the mutation invariance with a particular example of triangle
quivers with ranks (1, 1, 2) and the intersection numbers (4, 5, 7) of figure 4. This
will serve to check the aforementioned assertion, regarding invariance of Witten in-
dices of particular chambers as well as non-preservation of Witten indices of “wrong”

17

Can we mutate with respect to node 3?

    

    

    

    

    

    

µL
3

µR
3

Thus,            (           ) must reproduce            and            (          and            ).(Q)µL
3 �Q(II) �Q(III) �Q(I) �Q(IV)µR

3 (Q)

Monday, April 13, 15



Figure 1: The left and the right mutations µL,R
3

on node 3 for (1, 1, N) quivers. The
integers inside circles are ranks, while the FI constants are displayed next to them.

When we try to apply the above mutation rule to quivers with loops, it is impor-
tant to restrict to the set of quivers without 1-cycles nor 2-cycles, where the 1-cycles
refer to arrows start and end at the same node, and the 2-cycles refer to two non-
canceling arrows with opposite direction between two nodes. Also, the superpotential
is assumed to be generic but consistent with the gauge symmetry and R-symmetry.
The latter implies that W is of charge 2 with respect to the U(1)R in the convention
where R-charges of supercharges are ±1. One underlying assumption in the above is
that we pair-annihilated chirals of mutual charge conjugate by assigning appropriate
R-charges to them to allow for a bilinear term in W , which lifts them pairwise from
the low energy dynamics.

Finally, the mutated quiver needs the rank data b
Ni = µk(Ni). One natural pre-

scription is to keep � ⌘
P

i Ni�i invariant under the mutation, for which we have

µ

L
k (Ni) =
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@
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j[bkj]+Nj i = k

Ni otherwise
(2.6)

and
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R
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j[bjk]+Nj i = k

Ni otherwise
(2.7)

Note that these two result is the same rule if
P

j[bjk]+Nj =
P

j[bkj]+Nj. For example,
anomaly cancelation condition of 4d N = 1 theories of quiver type demands precisely
this identity for each and every node, and the familiar Seiberg duality map on Ni

coincides with either of µL,R
k .#3

#3 A variation of this has been seen in 2d, 3d quiver GLSM context in Refs. [42, 43, 45] where the
authors chose to take either µL

k or µR
k , for each mutation step k, depending on which of the two

sums is larger.
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Figure 3: Mutating on node 3 of (1, 1, N) quiver brings us back to another (1, 1, bN) quiver.
Because the mutation flips arrow orientations, the roles of ⇣̂

1

and ⇣̂
2

are exchanged relative
to those of ⇣

1,2. The left mutation, allowed in three sub-chambers of figure 2 with most

negative ⇣
3

, maps indices of chambers II and III, respectively, to those of chambers cIV
and bI. Similarly, the right mutation, allowed in three sub-chambers of figure 2 with most
positive ⇣

3

, maps indices of chambers I and IV, respectively, to those of chambers cIII and
bII.

chambers. Indices of the original quiver were computed in Ref. [30],

⌦(I) = 50 ,

⌦(II) = 1/y4 + 2/y2 + 87 + 2y2 + y4

,

⌦(III) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6

,

⌦(IV) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6

. (5.2)

Figure 4: An explicit example of mutation. Witten indices are computed for all four
chambers for each of the three quivers, showing that mutation selection rule is necessary.
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Under the left mutation, we find a quiver with ranks (1, 1, 3) and intersection
numbers (�4,�5,�13) with indices,

⌦(bI) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6

,

⌦(bII) = 35 ,

⌦(cIII) = 1/y4 + 2/y2 + 37 + 2y2 + y4

,

⌦(cIV) = 1/y4 + 2/y2 + 87 + 2y2 + y4

. (5.3)

Note that ⌦(II) = ⌦(cIV) and ⌦(III) = ⌦(bI), as anticipated. Under the right mutation,
we find a quiver with ranks (1, 1, 2) and intersection numbers (�4,�5,�13) with
indices,

⌦(bI) = 1/y10 + 2/y8 + 4/y6 + 6/y4 + 8/y2

+ 58 + 8y2 + 6y4 + 4y6 + 2y8 + y10

,

⌦(bII) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6

,

⌦(cIII) = 50 ,

⌦(cIV) = 50 . (5.4)

We find that ⌦(I) = ⌦(cIII) and ⌦(IV) = ⌦(bII), again as anticipated.

Perhaps equally noteworthy is the fact that if one starts in disallowed sub-chambers,
where mutation on this node is not justified, Witten indices before and after the mu-
tation do not match. In fact, even the dimension of the classical moduli spaces can
di↵er before and after mutation. This example thus demonstrates that the selection
rules for the mutable node and choice of the mutation orientation are very much
necessary.

Apart from checking the mutation invariance numerically, this exercise gives a
valuable hint on how to demonstrate mutation invariance between a pair of (1, 1, N)
type quivers. For general quivers, classifying poles according to JK positivity test
poses a big combinatorial challenge. This is further aggravated by the presence of
degenerate poles where more than r singular hyperplanes collide. When such a degen-
erate pole passes JK positivity test, the iterated residue becomes order-dependent and
further combinatorial task emerges. Such technical issues, however, are much amelio-
rated when one can exclude hyperplanes associated with vector multiplets from the
analysis. This not only reduces poles passing JK test drastically but also tends to
remove a lot of degenerate singularities.

For simple quivers, such as primitive tree-like quivers, there is a reasonable argu-
ment why JK-acceptable singularities involving the vector multiplet poles must have
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When we try to apply the above mutation rule to quivers with loops, it is impor-
tant to restrict to the set of quivers without 1-cycles nor 2-cycles, where the 1-cycles
refer to arrows start and end at the same node, and the 2-cycles refer to two non-
canceling arrows with opposite direction between two nodes. Also, the superpotential
is assumed to be generic but consistent with the gauge symmetry and R-symmetry.
The latter implies that W is of charge 2 with respect to the U(1)R in the convention
where R-charges of supercharges are ±1. One underlying assumption in the above is
that we pair-annihilated chirals of mutual charge conjugate by assigning appropriate
R-charges to them to allow for a bilinear term in W , which lifts them pairwise from
the low energy dynamics.
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anomaly cancelation condition of 4d N = 1 theories of quiver type demands precisely
this identity for each and every node, and the familiar Seiberg duality map on Ni
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#3 A variation of this has been seen in 2d, 3d quiver GLSM context in Refs. [42, 43, 45] where the
authors chose to take either µL
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• Compact expression has been obtained: 
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Figure 3: Mutating on node 3 of (1, 1, N) quiver brings us back to another (1, 1, bN) quiver.
Because the mutation flips arrow orientations, the roles of ⇣̂

1

and ⇣̂
2

are exchanged relative
to those of ⇣

1,2. The left mutation, allowed in three sub-chambers of figure 2 with most

negative ⇣
3

, maps indices of chambers II and III, respectively, to those of chambers cIV
and bI. Similarly, the right mutation, allowed in three sub-chambers of figure 2 with most
positive ⇣

3

, maps indices of chambers I and IV, respectively, to those of chambers cIII and
bII.
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⌦(II) = 1/y4 + 2/y2 + 87 + 2y2 + y4

,

⌦(III) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6

,

⌦(IV) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6

. (5.2)

Figure 4: An explicit example of mutation. Witten indices are computed for all four
chambers for each of the three quivers, showing that mutation selection rule is necessary.
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Under the left mutation, we find a quiver with ranks (1, 1, 3) and intersection
numbers (�4,�5,�13) with indices,

⌦(bI) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6

,

⌦(bII) = 35 ,

⌦(cIII) = 1/y4 + 2/y2 + 37 + 2y2 + y4

,

⌦(cIV) = 1/y4 + 2/y2 + 87 + 2y2 + y4

. (5.3)

Note that ⌦(II) = ⌦(cIV) and ⌦(III) = ⌦(bI), as anticipated. Under the right mutation,
we find a quiver with ranks (1, 1, 2) and intersection numbers (�4,�5,�13) with
indices,

⌦(bI) = 1/y10 + 2/y8 + 4/y6 + 6/y4 + 8/y2

+ 58 + 8y2 + 6y4 + 4y6 + 2y8 + y10

,

⌦(bII) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6

,

⌦(cIII) = 50 ,

⌦(cIV) = 50 . (5.4)

We find that ⌦(I) = ⌦(cIII) and ⌦(IV) = ⌦(bII), again as anticipated.

Perhaps equally noteworthy is the fact that if one starts in disallowed sub-chambers,
where mutation on this node is not justified, Witten indices before and after the mu-
tation do not match. In fact, even the dimension of the classical moduli spaces can
di↵er before and after mutation. This example thus demonstrates that the selection
rules for the mutable node and choice of the mutation orientation are very much
necessary.

Apart from checking the mutation invariance numerically, this exercise gives a
valuable hint on how to demonstrate mutation invariance between a pair of (1, 1, N)
type quivers. For general quivers, classifying poles according to JK positivity test
poses a big combinatorial challenge. This is further aggravated by the presence of
degenerate poles where more than r singular hyperplanes collide. When such a degen-
erate pole passes JK positivity test, the iterated residue becomes order-dependent and
further combinatorial task emerges. Such technical issues, however, are much amelio-
rated when one can exclude hyperplanes associated with vector multiplets from the
analysis. This not only reduces poles passing JK test drastically but also tends to
remove a lot of degenerate singularities.

For simple quivers, such as primitive tree-like quivers, there is a reasonable argu-
ment why JK-acceptable singularities involving the vector multiplet poles must have
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When we try to apply the above mutation rule to quivers with loops, it is impor-
tant to restrict to the set of quivers without 1-cycles nor 2-cycles, where the 1-cycles
refer to arrows start and end at the same node, and the 2-cycles refer to two non-
canceling arrows with opposite direction between two nodes. Also, the superpotential
is assumed to be generic but consistent with the gauge symmetry and R-symmetry.
The latter implies that W is of charge 2 with respect to the U(1)R in the convention
where R-charges of supercharges are ±1. One underlying assumption in the above is
that we pair-annihilated chirals of mutual charge conjugate by assigning appropriate
R-charges to them to allow for a bilinear term in W , which lifts them pairwise from
the low energy dynamics.
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canceling arrows with opposite direction between two nodes. Also, the superpotential
is assumed to be generic but consistent with the gauge symmetry and R-symmetry.
The latter implies that W is of charge 2 with respect to the U(1)R in the convention
where R-charges of supercharges are ±1. One underlying assumption in the above is
that we pair-annihilated chirals of mutual charge conjugate by assigning appropriate
R-charges to them to allow for a bilinear term in W , which lifts them pairwise from
the low energy dynamics.

Finally, the mutated quiver needs the rank data b
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#3 A variation of this has been seen in 2d, 3d quiver GLSM context in Refs. [42, 43, 45] where the
authors chose to take either µL
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The JK-Res approach leads to the desired links even analytically. 

FKDPEHUV

Figure 3: Mutating on node 3 of (1, 1, N) quiver brings us back to another (1, 1, bN) quiver.
Because the mutation flips arrow orientations, the roles of ⇣̂

1

and ⇣̂
2

are exchanged relative
to those of ⇣

1,2. The left mutation, allowed in three sub-chambers of figure 2 with most

negative ⇣
3

, maps indices of chambers II and III, respectively, to those of chambers cIV
and bI. Similarly, the right mutation, allowed in three sub-chambers of figure 2 with most
positive ⇣

3

, maps indices of chambers I and IV, respectively, to those of chambers cIII and
bII.

chambers. Indices of the original quiver were computed in Ref. [30],

⌦(I) = 50 ,

⌦(II) = 1/y4 + 2/y2 + 87 + 2y2 + y4

,

⌦(III) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6

,

⌦(IV) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6

. (5.2)

Figure 4: An explicit example of mutation. Witten indices are computed for all four
chambers for each of the three quivers, showing that mutation selection rule is necessary.
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Under the left mutation, we find a quiver with ranks (1, 1, 3) and intersection
numbers (�4,�5,�13) with indices,

⌦(bI) = 1/y6 + 2/y4 + 4/y2 + 89 + 4y2 + 2y4 + y6

,

⌦(bII) = 35 ,

⌦(cIII) = 1/y4 + 2/y2 + 37 + 2y2 + y4

,

⌦(cIV) = 1/y4 + 2/y2 + 87 + 2y2 + y4

. (5.3)

Note that ⌦(II) = ⌦(cIV) and ⌦(III) = ⌦(bI), as anticipated. Under the right mutation,
we find a quiver with ranks (1, 1, 2) and intersection numbers (�4,�5,�13) with
indices,

⌦(bI) = 1/y10 + 2/y8 + 4/y6 + 6/y4 + 8/y2

+ 58 + 8y2 + 6y4 + 4y6 + 2y8 + y10

,

⌦(bII) = 1/y6 + 2/y4 + 4/y2 + 54 + 4y2 + 2y4 + y6

,

⌦(cIII) = 50 ,

⌦(cIV) = 50 . (5.4)

We find that ⌦(I) = ⌦(cIII) and ⌦(IV) = ⌦(bII), again as anticipated.

Perhaps equally noteworthy is the fact that if one starts in disallowed sub-chambers,
where mutation on this node is not justified, Witten indices before and after the mu-
tation do not match. In fact, even the dimension of the classical moduli spaces can
di↵er before and after mutation. This example thus demonstrates that the selection
rules for the mutable node and choice of the mutation orientation are very much
necessary.

Apart from checking the mutation invariance numerically, this exercise gives a
valuable hint on how to demonstrate mutation invariance between a pair of (1, 1, N)
type quivers. For general quivers, classifying poles according to JK positivity test
poses a big combinatorial challenge. This is further aggravated by the presence of
degenerate poles where more than r singular hyperplanes collide. When such a degen-
erate pole passes JK positivity test, the iterated residue becomes order-dependent and
further combinatorial task emerges. Such technical issues, however, are much amelio-
rated when one can exclude hyperplanes associated with vector multiplets from the
analysis. This not only reduces poles passing JK test drastically but also tends to
remove a lot of degenerate singularities.

For simple quivers, such as primitive tree-like quivers, there is a reasonable argu-
ment why JK-acceptable singularities involving the vector multiplet poles must have
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Summary and Outlook 

• d=4 N=2 BPS states were studied via d=1 N=4 Quiver GLSM

• Wall-crossing-sensitive indices have wall-crossing-safe invariants

• The quiver invariants of an abelian cyclic quiver theory are naturally 
characterised as the “middle” cohomology; 
non-abelian generalisation of the geometric interpretation? 

• The moduli space geometry for a non-abelian quiver can be tackled via 
abelianisation and/or path integral

• Mutation of d=1 quiver theory can only be selectively performed to 
preserve Witten index

• Asymptotics in the large-rank limit and d=4 N=2 BPS black-hole microstates?
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