Generalized Mirror Models – Beyond Algebraic Toric Spaces

Tristan Hübsch

@ V-Tech, Blacksburg; 2023.04.24

Departments of Physics & Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia Department of Mathematics, University of Maryland, College Park, MD

Generalized Mirror Models – Beyond Algebraic Toric Spaces

Tristan Hübsch

w/*Per Berglund*

🙏: Mikiya Masuda

@ V-Tech, Blacksburg; 2023.04.24

Departments of Physics & Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia Department of Mathematics, University of Maryland, College Park, MD

Beyond Algebraic Toric Spaces Playbill

The Story so Far... Laurent Largo Meromorphic March Laurent-Toric Fugue

New? Toric Spaces

* "It doesn't matter what ít's called, ...as long as ít has substance." — S.-T. Yau

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space \bigcirc Reduce to 0 dimensions: $\mathbb{P}^4[5] \to \mathbb{P}^3[4] \to \mathbb{P}^2[3] \to \mathbb{P}^1[2]$

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space \bigcirc Reduce to 0 dimensions: $\mathbb{P}^4[5] \to \mathbb{P}^3[4] \to \mathbb{P}^2[3] \to \mathbb{P}^1[2]$

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space \bigcirc Reduce to 0 dimensions: $\mathbb{P}^4[5] \to \mathbb{P}^3[4] \to \mathbb{P}^2[3] \to \mathbb{P}^1[2]$

[arXiv:1606.07420 The Story so Far... Classical Constructionssmooth \mathbb{R} modelsspecial?
symplectic \odot E.g: $X_m \in \begin{bmatrix} \mathbb{P}^4 & 1 & 4 \\ \mathbb{P}^1 & m & 2-m \end{bmatrix}_{-168}^{(2,86)}$ $amoth \mathbb{R}$ models $b_2 = 2 = h^{1,1}$ dim. space of Kähler classes $\frac{1}{2}b_3 - 1 = 86 = h^{2,1}$ dim. space of complex structures $\frac{1}{2}b_3 - 1 = 86 = h^{2,1}$ dim. space of complex structures \bigcirc Zero-set of p(x,y)=0, deg $[p]=\binom{1}{m}$, & q(x,y)=0, deg $[q]=\binom{4}{2-m}$ $\widehat{} \text{Sequentially: } X_m \xrightarrow{q=0} \left(F_m \xrightarrow{p=0} \mathbb{P}^4 \times \mathbb{P}^1 \right) \quad q(x,y) \xrightarrow{?} \frac{q_0(x)}{y_0} + \frac{q_1(x)}{y_1} \in \mathbb{P}^4 \times \mathbb{P}^1$ \subseteq C.T.C. Wall: $(aJ_1+bJ_2)^3 = [2a+3(4b+ma)]a^2 C_{4-k}[(aJ_1+bJ_2)^k] = g(4b+ma)$ $p_1[aJ_1+bJ_2] = -88a - 12(4b + ma)...$ the same "4b + ma" \bigcirc So, $F_m \approx_{\mathbb{R}} F_{m \pmod{4}}$ & $X_m \approx_{\mathbb{R}} X_{m \pmod{4}}$: 4 <u>diffeomorphism types</u> $\bigcirc \dots \text{but, } m = 0, 1, 2, 3 \implies \deg[q] = \binom{4}{-1} ?! - q$

The Story so Far... Why Haven't We Thought of This Before? AAGGL:1507.03235 <u>+</u> 2,86) \bigcirc Not everywhere on $\mathbb{P}^4 \times \mathbb{P}^1$ — (simple poles) $X_m \in \left[\begin{array}{c} \mathbf{n} \\ \mathbb{P}^1 \end{array} \right]$ \bigcirc but <u>yes</u> on $F_3^{(4)} \subset \mathbb{P}^4 \times \mathbb{P}^1 \longrightarrow 105$ of 'em! \bigcirc How? On $F_3^{(4)}$, $q(x, y) \simeq q(x, y) + \lambda \cdot p(x, y) \leftarrow equivalence class!$ $[\text{Hirzebruch, 1951}] \Rightarrow p = x_0 y_0^3 + x_1 y_1^3 \& q = c(x) \left(\frac{x_0 y_0}{y_1^2} - \frac{x_1 y_1}{y_0^2} \right) \deg[c] = {3 \choose 0}$ $ext{ So, } q_{\lambda} = q(x, y) + \frac{\lambda c(x)}{(y_0 y_1)^2} p(x, y) \stackrel{\lambda \to -1}{=} c(x) \left(-2 \frac{x_1 y_1}{y_0^2} \right)$ where $y_0 \neq 0$ -Yang monopole! $q_{\lambda} = q(x, y) + \frac{\lambda c(x)}{(y_0 y_1)^2} p(x, y) \xrightarrow{\lambda \to 1} c(x) \left(2 \frac{x_0 y_0}{y_1^2}\right)$ where $y_1 \neq 0$ **⊗ &** $@\& q_1(x,y) - q_0(x,y) = 2 \frac{c(x)}{(v_0,v_1)^2} p(x,y) = 0, \text{ on } F_3 := \{ p(x,y) = 0 \}$ Reverse-engineered: Mayer-Vietoris sequence & "patching" of the two charts

Laurent Largo ... in well-tempered counterpoint [BH:1606.07420, 1611.10300 & 2205.12827] $\bigcirc \text{ For } \left\{ \underbrace{x_0 y_0^m + x_1 y_1^m}_{:= p(x, y; 0)} = -\sum_{a, \ell} \epsilon_{a\ell} x_a y_0^{m-\ell} y_1^{\ell} \right\} = F_{m; \mathfrak{e}}^{(n)} \in \begin{bmatrix} \mathbb{P}^n & \| 1 \\ \mathbb{P}^1 & \| m \end{bmatrix}$ even p(x, y; 0) is transverse, so $p^{-1}(0)$ is smooth +more \subseteq The central ($\epsilon = 0$) member of the family is a Hirzebruch scroll F_m : \subseteq <u>Directrix</u>: $S := \{ g(x, y) = 0 \}$, $[S] = [H_1] - m[H_2] \& [S]^n = -(n-1)m;$ $ext{ where } \mathbf{s}(x,y) := \left(\frac{x_0}{y_1^m} - \frac{x_1}{y_0^m}\right) + \frac{\lambda}{(y_0y_1)^m} [x_0y_0^m + x_1y_1^m]$ degree $\begin{pmatrix} 1 \\ -m \end{pmatrix}$ - $\bigotimes \underbrace{h^0(K^*)}_n = 3 \binom{2n-1}{n} + \delta_{\epsilon,0} \vartheta_3^m \binom{2n-2}{2} (m-3), \quad \underline{h^0(T)}_n = n^2 + 2 + \delta_{\epsilon,0} \vartheta_1^m (n-1)(m-1)$ $\bigotimes \underbrace{h^1(K^*)}_{\epsilon,0} = \delta_{\epsilon,0} \vartheta_3^m \binom{2n-2}{2} (m-3), \quad \underline{h^1(T)}_{\epsilon,0} = \delta_{\epsilon,0} \vartheta_1^m (n-1)(m-1)$ $\ @$ All "exceptionals" <u>cancel</u> (incrementally) from H^* for $(\epsilon_{\alpha} \neq 0)$ deformations resulting in discrete deformations $F_m^{(n)} \to F_{(m_1,m_2,\cdots)}^{(n)} \& \cdots \& \approx_{\mathbb{R}} F_{[m(\mathrm{mod}\,n)]}^{(n)}$ These $F_{(m_1,m_2,\dots)}^{(n)}$'s are distinct toric varieties... $w/\{g_r, r \leq m_i\}$

... in well-tempered counterpoint [BH:1606.07420, 1611.10300 & 2205.12827] $On F_m^{(n)}: p(x, y; 0) = x_0 y_0^m + x_1 y_1^m = 0 \Rightarrow x_0 = -x_1 (y_1 / y_0)^m \& x_1 \to X_1 = \mathfrak{s}^+$ $\& (X_i, i=2,\cdots,n+2) = (x_2,\cdots,x_n;y_0,y_1)$ $\mathbb{Q} \mathbb{P}^4 \times \mathbb{P}^1$ bi-degree \rightarrow toric $(\mathbb{C}^{\times})^2$ -action: -m 0 0 0 1 1 $\leftarrow \mathbb{P}^1$ $ext{ Weed } \deg[f(X)] = \binom{4}{2-m}, \text{ with } \deg[X_1 X_{5,6}^m] = \binom{1}{0} = \deg[X_{2,3,4}]$ $= f(X) = X_1^4 X_{5,6}^{2+3m} \bigoplus X_1^3 X_{2,3,4} X_{5,6}^{2+2m} \cdots \bigoplus X_1 X_{2,3,4}^3 X_{5,6}^2 \bigoplus \frac{\text{standard}}{\text{wisdom}}$

... in well-tempered counterpoint [BH:1606.07420, 1611.10300 & 2205.12827] $On F_m^{(n)}: p(x, y; 0) = x_0 y_0^m + x_1 y_1^m = 0 \Rightarrow x_0 = -x_1 (y_1 / y_0)^m \& x_1 \to X_1 = \mathfrak{s}^+$ $\& (X_i, i=2,\cdots,n+2) = (x_2,\cdots,x_n;y_0,y_1)$ $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6$ 1 1 1 1 0 $\mathbb{P}^4 \times \mathbb{P}^1$ bi-degree \rightarrow toric $(\mathbb{C}^{\times})^2$ -action: $() \leftarrow \mathbb{P}^4$ $-m \ 0 \ 0 \ 1$ $I \leftarrow \mathbb{P}^1$ $Weed \ \deg[f(X)] = \binom{4}{2-m}, \ \text{with} \ \deg[X_1 X_{5,6}^m] = \binom{1}{0} = \deg[X_{2,3,4}]$ $\bigcirc f(X) = X_1^4 X_{5,6}^{2+3m} \oplus X_1^3 X_{2,3,4} X_{5,6}^{2+2m} \dots \oplus X_1 X_{2,3,4}^3 X_{5,6}^2 | \oplus |$ standard wisdom itself a $\mathbb{Q} \left\{ f(X) = 0 \right\}^{\sharp} = \left\{ X_{1} = 0 \right\} \cap \left\{ \bigoplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+km} = 0 \right\}$ Calabi-Yau $\begin{bmatrix} \mathbb{P}^n \\ \mathbb{P}^1 \end{bmatrix} \begin{pmatrix} 1 & n-1 \\ m & 2 \end{bmatrix} = \begin{bmatrix} \mathbb{P}^n \\ \mathbb{P}^1 \end{bmatrix} \begin{pmatrix} 1 \\ m \end{bmatrix} \begin{pmatrix} 1 \\ m \end{bmatrix} \begin{pmatrix} n-1 \\ 2 \end{bmatrix} \xrightarrow{\cong} \begin{bmatrix} \mathbb{P}^{n-2} \\ \mathbb{P}^1 \end{bmatrix} \begin{pmatrix} n-1 \\ 2 \end{bmatrix} \xrightarrow{\mathsf{Tyurin}}$ degenerate $p=0=s \Leftrightarrow x_0=0=x_1$

... in well-tempered counterpoint [BH:1606.07420, 1611.10300 & 2205.12827] $\bigcirc On F_m^{(n)}: p(x, y; 0) = x_0 y_0^m + x_1 y_1^m = 0 \Rightarrow x_0 = -x_1 (y_1 / y_0)^m \& x_1 \to X_1 = \mathfrak{s}$ $\bigotimes \& (X_i, i=2, \dots, n+2) = (x_2, \dots, x_n; y_0, y_1) \xrightarrow{X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6}$ $\bigotimes \mathbb{P}^4 \times \mathbb{P}^1 \text{ bi-degree} \to \text{ toric } (\mathbb{C}^{\times})^2 \text{-action:} \xrightarrow{-m \ 0 \ 0 \ 0 \ 1 \ 1 \ \dots \ 1}^{-m \ \nu_3}$ REM* W Need deg[f(X)] = $\binom{4}{2-m}$, with deg[$X_1 X_{5,6}^m$] = $\binom{1}{0}$ = deg[$X_{2,3,4}$] ν_5 standard $= f(X) = X_1^4 X_{5,6}^{2+3m} \oplus X_1^3 X_{2,3,4} X_{5,6}^{2+2m} \cdots \oplus X_1 X_{2,3,4}^3 X_{5,6}^2 \oplus$ wisdom itself a $\mathbb{Q} \left\{ f(X) = 0 \right\}^{\sharp} = \left\{ X_{1} = 0 \right\} \cap \left\{ \bigoplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+km} = 0 \right\}$ Hable $\begin{bmatrix} \mathbb{P}^n \\ \mathbb{P}^1 \end{bmatrix} \begin{pmatrix} 1 & n-1 \\ m & 2 \end{bmatrix} = \begin{bmatrix} \mathbb{P}^n \\ \mathbb{P}^1 \end{bmatrix} \begin{pmatrix} 1 \\ m \end{bmatrix} \begin{pmatrix} 1 \\ m \end{bmatrix} \begin{pmatrix} n-1 \\ 2 \end{bmatrix} \xrightarrow{\simeq} \begin{bmatrix} \mathbb{P}^{n-2} \\ \mathbb{P}^1 \end{bmatrix} \begin{pmatrix} n-1 \\ 2 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} n-1 \\ 2 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} n-1 \\ 2 \end{bmatrix}$ Tyurin 5moo degenerate $p=0=\mathfrak{s} \Leftrightarrow x_0=0=x_1$ Engineered Model

Foric Varieties ALABY AU MANIFUL

Laurent Largo ...with a meandering melody BH:1606.07420, 1611.10300 & 2205.12827 $Deform: p_1(x, y) = x_0y_0^5 + x_1y_1^5 + x_2y_0y_1^4 \quad \text{toric } F_{(4,1,0,...)}^{(n)}$ $Find: \$_{1,1}(x, y) = \frac{x_0y_0}{y_1^5} + \frac{x_2}{y_1^4} - \frac{x_1}{y_1^4} & \$_{1,2}(x, y) = \frac{x_0}{y_1} - \frac{x_2}{y_0} - \frac{x_1y_1^4}{y_0^5}$ $\circledast \det \left[\frac{\partial(p_1, \$_{1,1}, \$_{1,2}, x_3, \cdots; y_0, y_1)}{\partial(x_0, x_1, x_2, x_3, \cdots; y_0, y_1)} \right] = \text{const.} \quad \frac{x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6}{1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ e^1}$

Laurent Largo ...with a meandering melody [BH:1606.07420, 1611.10300 & 2205.12827] $\begin{aligned} & \bigcirc \text{Deform: } p_1(x,y) = x_0 y_0 5 + x_1 y_1 5 + x_2 y_0 y_1 4 & \text{toric } F_{(4,1,0,\ldots)}^{(n)} \\ & @ \text{Find: } \$_{1,1}(x,y) = \frac{x_0 y_0}{y_1 5} + \frac{x_2}{y_1 4} - \frac{x_1}{y_1 4} & \& \$_{1,2}(x,y) = \frac{x_0}{y_1} - \frac{x_2}{y_0} - \frac{x_1 y_1 4}{y_0 5} \\ & @ \& \det \left[\frac{\partial(p_1, \$_{1,1}, \$_{1,2}, x_3, \cdots; y_0, y_1)}{\partial(x_0, x_1, x_2, x_3, \cdots; y_0, y_1)} \right] = \text{const. } \frac{X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6}{1 \ 1 \ 1 \ 1 \ 0 \ 0 \ -1 \ 1 \ -1 \ 1 \ -1 \ 1 \ -1 \ 1 \ -1$ +more $\begin{aligned} & \bigcirc \text{Deform: } p_2(x,y) = x_0 y_0 5 + x_1 y_1 5 + x_2 y_0 2 y_1 3 & \text{toric } F_{(3,2,0,\ldots)}^{(n)} \\ & & \bigcirc \text{Find: } \mathfrak{S}_{2,1}(x,y) = \frac{x_0 y_0^2}{y_1^5} + \frac{x_2}{y_1^3} - \frac{x_1}{y_1^3} & \& \mathfrak{S}_{2,2}(x,y) = \frac{x_0}{y_1^2} - \frac{x_2}{y_0^2} - \frac{x_1 y_1^3}{y_0^5} \\ & & & & & & \\ \hline \mathbf{F}_{2,1}(x,y) = \frac{x_0 y_0^2}{y_1^5} + \frac{x_2}{y_1^3} - \frac{x_1}{y_1^3} & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_2}{y_0^5} - \frac{x_1 y_1^3}{y_0^5} \\ & & & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_2}{y_0^5} - \frac{x_1 y_1^3}{y_1^3} \\ & & & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_1 y_1^3}{y_1^3} \\ & & & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_1 y_1^3}{y_1^3} \\ & & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^3} \\ & & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_0^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{F}_{2,2}(x,y) = \frac{x_0 y_0^2}{y_1^5} - \frac{x_1 y_1^3}{y_1^5} \\ & & \\ \hline \mathbf{$ ν_2 $\bigotimes \det \left[\frac{\partial(p_2, \mathfrak{s}_{2,1}, \mathfrak{s}_{2,2}, x_3, \dots; y_0, y_1)}{\partial(x_0, x_1, x_2, x_3, \dots; y_0, y_1)} \right] = \operatorname{const.} \quad \frac{X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6}{1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \leftarrow \mathbb{P}^4}$ <u>-3 -2 0 0 1 1 ← P</u>

8

Laurent Largo ...with a meandering melody [BH:1606.07420, 1611.10300 & 2205.12827] +moreDeform: $p_1(x, y) = x_0 y_0 5 + x_1 y_1 5 + x_2 y_0 y_1^4$ toric $F_{(4,1,0,...)}^{(n)}$ \bigcirc Find: $\mathfrak{S}_{1,1}(x, y) = \frac{x_0 y_0}{y_1^5} + \frac{x_2}{y_1^4} - \frac{x_1}{y_1^4} \& \mathfrak{S}_{1,2}(x, y) = \frac{x_0}{y_1} - \frac{x_2}{y_0} - \frac{x_1 y_1^4}{y_0^5}$ Sector: $p_1(x, y) = x_0 y_0^5 + x_1 y_1^5 + x_2 y_0 y_1^4$ $\bigotimes \det \left[\frac{\partial(p_1, \mathfrak{s}_{1,1}, \mathfrak{s}_{1,2}, x_3, \dots; y_0, y_1)}{\partial(x_0, x_1, x_2, x_3, \dots; y_0, y_1)} \right] = \operatorname{const.} \quad \frac{X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6}{1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \leftarrow \mathbb{P}^4}$ \bigcirc Deform: $p_2(x, y) = x_0 y_0^5 + x_1 y_1^5 + x_2 y_0^2 y_1^3$ toric $F_{(3,2,0,...)}^{(n)}$ ν_2 $\bigotimes \det \left[\frac{\partial(p_2, \mathfrak{s}_{2,1}, \mathfrak{s}_{2,2}, x_3, \dots; y_0, y_1)}{\partial(x_0, x_1, x_2, x_2, \dots; y_0, y_1)} \right] = \operatorname{const.} \quad \frac{X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6}{1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad e^{\varphi^4}}$ $-3 - 2 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{P}^1 \quad \nu_4$ flat convex $\subseteq \dots$ and $p_3(x, y) = x_0 y_0 5 + x_1 y_1 5 + x_2 y_0 2y_1 3 + x_3 y_0 3y_1 2$ rectangle $\bigcirc \rightarrow$ toric $F_{(2,2,1,\dots)}^{(n)}$ for n=3, $F_{(2,2,1)}^{(3)} \approx F_{(1,1,0)}^{(3)}$ $F^{(3)}_{(1,1,0)}$

Laurent Largo $F_{m;\epsilon}^{(n)} \in \begin{bmatrix} \mathbb{P}^n & 1 \\ \mathbb{P}^1 & m \end{bmatrix}$...with a meandering melody [BH:1606.07420, 1611.10300 & 2205.12827] +moreDeform: $p_1(x, y) = x_0 y_0 5 + x_1 y_1 5 + x_2 y_0 y_1^4$ toric $F_{(4,1,0,...)}^{(n)}$ \bigcirc Find: $\mathfrak{S}_{1,1}(x, y) = \frac{x_0 y_0}{y_1^5} + \frac{x_2}{y_1^4} - \frac{x_1}{y_1^4} \& \mathfrak{S}_{1,2}(x, y) = \frac{x_0}{y_1} - \frac{x_2}{y_0} - \frac{x_1 y_1^4}{y_0^5}$ Sector: $p_1(x, y) = x_0 y_0^5 + x_1 y_1^5 + x_2 y_0 y_1^4$ $\bigotimes \det \left[\frac{\partial(p_1, \mathfrak{s}_{1,1}, \mathfrak{s}_{1,2}, x_3, \dots; y_0, y_1)}{\partial(x_0, x_1, x_2, x_3, \dots; y_0, y_1)} \right] = \operatorname{const.} \quad \frac{X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6}{1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \leftarrow \mathbb{P}^4} \\ -4 -1 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{P}^1$ \bigcirc Deform: $p_2(x, y) = x_0 y_0 5 + x_1 y_1 5 + x_2 y_0 2y_1 3$ toric $F_{(3,2,0,...)}^{(n)}$ $\bigotimes \det \left[\frac{\partial(p_2, \mathfrak{s}_{2,1}, \mathfrak{s}_{2,2}, x_3, \dots; y_0, y_1)}{\partial(x_0, x_1, x_2, x_3, \dots; y_0, y_1)} \right] = \operatorname{const.} \quad \frac{X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6}{1 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0 \quad e^{p^4}}$ $-3 - 2 \quad 0 \quad 0 \quad 1$ convex ... and $p_3(x, y) = x_0 y_0^5 + x_1 y_1^5 + x_2 y_0^2 y_1^3 + x_3 y_0^3 y_1^2$ ectangle $\bigcirc \rightarrow \text{toric } F_{(2,2,1,\cdots)}^{(n)} \text{ for } n=3, \ F_{(2,2,1)}^{(3)} \approx F_{(1,1,0)}^{(3)}$

...with a meandering melody

Algorithm:

Construction 2.1 Given a degree $\binom{1}{m}$ hypersurface $\{p_{\vec{\epsilon}}(x,y)0\} \subset \mathbb{P}^n \times \mathbb{P}^1$ as in (2.2), construct

$$\deg = \begin{pmatrix} 1 \\ m - r_0 - r_1 \end{pmatrix} \colon \quad \mathfrak{s}_{\vec{\epsilon}}(x, y; \lambda) \coloneqq \operatorname{Flip}_{y_0} \left[\frac{1}{y_0^{r_0} y_1^{r_1}} p_{\vec{\epsilon}}(x, y) \right] \pmod{p_{\vec{\epsilon}}(x, y)}, \qquad \left[\begin{array}{c} \mathbb{P}^n \\ \mathbb{P}^1 \end{array} \right] \begin{pmatrix} 1 \\ \mathbb{P}^1 \end{array} \right]$$

progressively decreasing $r_0+r_1=2m, 2m-1, \cdots$, and keeping only Laurent polynomials containing both y_0 - and y_1 -denominators but no y_0, y_1 -mixed ones. The "Flip $_{y_i}$ " operator changes the relative sign of the rational monomials with y_i -denominators. For algebraically independent such sections, restrict to a subset with maximally negative degrees that are not overall (y_0, y_1) -multiples of each other.

$$\begin{split} & \bigotimes \mathbf{E} \cdot \underbrace{\mathbf{g} \cdot \mathbf{x}_{0}}_{\mathbf{y}_{0}} = \underbrace{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} + \mathbf{x}_{1} \, \mathbf{y}_{1}^{2}}_{\mathbf{y}_{0}} \, \exp[\alpha_{-}] := \mathsf{Table}\left[\frac{1}{\mathbf{y}_{0}^{\alpha-i} \, \mathbf{y}_{1}^{i}}, \, \{\mathbf{i}, \mathbf{0}, \alpha\}\right]; \, \mathsf{Expand} \, / \mathfrak{E} \, (\mathsf{p0} \, \{\mathsf{ep[5]}, \mathsf{ep[4]}, \mathsf{ep[3]}\}) \\ & \left\{ \left\{ \underbrace{\mathbf{x}_{0}}_{\mathbf{y}_{0}^{2}} + \frac{\mathbf{x}_{1} \, \mathbf{y}_{1}}{\mathbf{y}_{0}^{5}}, \, \frac{\mathbf{x}_{0}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{3}} + \frac{\mathbf{x}_{0}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{0}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{0}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{0}^{3}} + \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{1}^{3}} + \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{1}^{3}} + \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{1}^{3}} + \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{1}^{3}} + \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{1}^{3}} + \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{1}^{4}} + \frac{\mathbf{x}_{1}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}}{\mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{i}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{x}_{1}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{x}_{1}}{\mathbf{y}_{0}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{2} \, \mathbf{x}_{1}^{2} \, \mathbf{y}_{1}^{2} \, \mathbf{y}_{1}^{2} \, \mathbf{y}_{1}^{2} \, \mathbf{y}_{1}^{2}}, \, \frac{\mathbf{x}_{0} \, \mathbf{y}_{0}^{2} \, \mathbf{y}_{1}^{2}}, \, \frac{$$

Toric Varieties ALABI Au MANIFULDS Sectary for David A. Car John B. Little Herry K. Schenck

+more

[BH:1606.07420, 1611.10300 & 2205.12827]

Meromorphic March ...back to the median motif $On F_m^{(n)}: x_0 y_0^m + x_1 y_1^m = 0 \implies x_0 = -x_1 (y_1 / y_0)^m \& x_1 \to X_1 = \mathbf{S}$ $\& (X_i, i=2,\cdots,n+2) = (x_2,\cdots,x_n;y_0,y_1)$ $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6$ $1 \ 1 \ 1 \ 1 \ 0 \ 0 \leftarrow \mathbb{P}^4$ $\mathbb{P}^4 \times \mathbb{P}^1$ bi-degree \rightarrow toric $(\mathbb{C}^{\times})^2$ -action: $-m \ 0 \ 0 \ 0 \ 1 \ 1 \leftarrow \mathbb{P}^1$ $Weed [f(X)] = \binom{4}{2-m}, \text{ with } deg[X_1 X_{5,6}^m] = \binom{1}{0} = deg[X_{2,3,4}]$ $f(X) = X_1^4 X_{5,6}^{2+3m} \bigoplus X_1^3 X_{2,3,4} X_{5,6}^{2+2m} \cdots \bigoplus X_1 X_{2,3,4}^3 X_{5,6}^2 \bigoplus \frac{\text{standard}}{\text{wisdom}}$ wisdom $\{ f(X) = 0 \}^{\sharp} = \{ X_1 = 0 \} \cap \{ \bigoplus_k X_1^k X_{2,3,4}^2 X_{5,6}^{2+km} = 0 \} : R_{\mu\nu} = 0$

Meromorphic March 1611.10300 & 2205.12827 +much more ...back to the median motif $\bigcirc \text{On } F_m^{(n)}: x_0 y_0^m + x_1 y_1^m = 0 \implies x_0 = -x_1 (y_1 / y_0)^m \& x_1 \to X_1 = \mathfrak{S}$ $\& (X_i, i=2,\cdots,n+2) = (x_2,\cdots,x_n;y_0,y_1)$ $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6$ $1 \ 1 \ 1 \ 1 \ 0 \ 0 \leftarrow \mathbb{P}^4$ $\mathbb{P}^4 \times \mathbb{P}^1$ bi-degree \rightarrow toric $(\mathbb{C}^{\times})^2$ -action: -m 0 0 0 1 1 $\leftarrow \mathbb{P}^1$ $Weed [f(X)] = \binom{4}{2-m}, \text{ with } deg[X_1 X_{5,6}^m] = \binom{1}{0} = deg[X_{2,3,4}]$ $= f(X) = X_1^4 X_{5,6}^{2+3m} \oplus X_1^3 X_{2,3,4} X_{5,6}^{2+2m} \dots \oplus X_1 X_{2,3,4}^3 X_{5,6}^2 \oplus X_{2,3,4}^4 X_{5,6}^{2-m}$ $m > 2, \{f(X) = 0\}$ $\{f(X) = 0\}$ Embrace the Laurent terms = transverse "Intrinsic limit" (*L'Hôpital-"repaired"*) \rightarrow smooth (*pre?*) complex spaces singularity 10

Meromorphic March 1611.10300 & 2205.12827 +much more ...back to the median motif $\subseteq m > 2$, Laurent terms & "intrinsic limit" \subseteq [A. Gholampour] \mathbb{S} E.g., $\mathbb{P}^2_{(3:1:1)}[5]: 0 = x_3^5 + x_4^5 + \frac{x_2^2}{x_4} = \frac{x_3^5 x_4 + x_4^6 + x_2^2}{x_4}$ Denominator contributions tend to subtract from those of the numerator [] H. Schenck] Generation of the second conditions of $\bigotimes x_3^5 + x_4^5 + \frac{x_2^2}{x_4} \mapsto z_1^{10} + z_2^5 + z_3^2$ in $\mathbb{P}^2_{(1:2:5)}[10]$ \bigcirc Generalized to all $F_m^{(n)}[c_1]$ \checkmark — not a fluke A <u>desingularized</u> <u>finite quotient</u> of a <u>branched multiple cover</u> \odot ...and a variety of "general type" ($c_1 < 0$ or even $c_1 \gtrless 0$) ...there's ∞ of those, just as of VEX polytopes! 11

Meromorphic March

...back to the median motif

- 1611.10300 & 2205.12827 +much more $On F_m^{(n)}: x_0 y_0^m + x_1 y_1^m = 0; \det \left[\frac{\partial(p(x, y), \mathfrak{s}(x, y), x_2, \dots; y_0, y_1)}{\partial(x_0, x_1, x_2, \dots; y_0, y_1)} \right] = \text{const. } \& p(x, y) = 0.$ $\bigotimes \mathbb{P}^{n} \times \mathbb{P}^{1} \text{-degrees} \to \text{Mori vectors} \qquad \underbrace{X_{1}^{\not l} X_{2} X_{3} X_{4} X_{5} X_{6}}_{\text{I 1 1 1 1 0 0 } \leftarrow \mathbb{P}^{4}}$ $\bigotimes \text{ central in family } F_{m;\epsilon}^{(n)} \in \begin{bmatrix} \mathbb{P}^{n} & \| & 1 \\ \mathbb{P}^{1} & \| & m \end{bmatrix} \qquad \underbrace{-m \ 0 \ 0 \ 0 \ 1 \ 1 \leftarrow \mathbb{P}^{1}}_{\text{-m 0 0 0 0 1 }}$ conver $Grace{Deformations} p(x, y; \epsilon) := p(x, y; 0) + \sum_{a\ell} \epsilon_{a\ell} \delta p_{a\ell}$ **REM*** \bigcirc have less non-convex sp. polytopes & less singular $\Gamma[\mathscr{K}^*(F_{\overrightarrow{w}}^{(n)})]$
- $= f(X) = X_1^4 X_{5,6}^{2+3m} \oplus X_1^3 X_{2,3,4} X_{5,6}^{2+2m} \cdots \oplus X_1 X_{2,3,4}^3 X_{5,6}^2 \oplus X_{2,3,4}^4 X_{5,6}^{2-m}$ (m>2, regular = "unsmoothable" Turin degeneration)
 - Laurent smoothing (w/L'Hôpital repair)
 - \bigcirc CY = Weyl divisors in non-Fano
 - lesingularized finite quotient of branched multiple covers \leftrightarrow general type var's

transverse

Laurent-Toric Fugue (a not-so-new Toric Geometry)

ACC HILCO HILCO HI

11 DE My gill

BH

A Generalized Construction of Calabi-Yau Mirror Models arXiv:1611.10300 + 2205.12827

Laurent-Toric Fugue

& Non-Convex Mirrors $m=3^{-2D Proof-of-Concept-}$ $\bigotimes X_1^2 X_2^0 (X_3 \bigoplus X_4)^{2+1m}$

1.10300 & 2205.12827 +much more

BH

Toric Varieties

John B. Little Henry K. Sche

Toric Varietie Laurent-Toric Fugue 10300 & 2205.12827 + much more & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ $X_1 X_2 X_3 X_4 X_5 X_6$ Transpolar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}$ universal

0

Foric Varietie Laurent-Toric Fugue 10300 & 2205.12827 + much more & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ $X_1 X_2 X_3 X_4 X_5 X_6$ Transpolar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}$ universal

Laurent-Toric Fugue & Non-Convex Mirrors $m=3^{-2D \operatorname{Proof-of-Concept}}$ $X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ $X_1 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ Transpolar: functions on which space? $<math>\Delta \to \bigcup_i (\operatorname{convex} \Theta_i);$ $\oplus \operatorname{Compute} \Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}^{\bullet}$

universal

Laurent-Toric Fugue & Non-Convex Mirrors $m=3^{-2D \operatorname{Proof-of-Concept}}$ $X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ $X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ Transpolar: functions on which space? $<math>\Delta \to \bigcup_i (\operatorname{convex} \Theta_i);$ $\otimes \operatorname{Compute} \Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}^{\bullet}$

universal

oric Varietie Laurent-Toric Fugue 10300 & 2205.12827 + much more & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6$ Transpolar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}$ universal $X_1 X_2 X_3$ 14

oric Varietie Laurent-Toric Fugue 10300 & 2205.12827 + much more & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ $X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad X_6$ Transpolar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}$

oric Varietie Laurent-Toric Fugue 10300 & 2205.12827 + much more & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ Transpolar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}$

oric Varietie Laurent-Toric Fugue 10300 & 2205.12827 + much more & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ Transpolar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}$

Laurent-Toric Fugue & Non-Convex Mirrors $m=3^{-2D Proof-of-Concept}$ $X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ $X_1^2 X_2^0 (x_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (x_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ Transpolar: functions on which space? $<math>\Delta \rightarrow \bigcup_i (\text{convex } \Theta_i);$ $\oplus \text{ Compute } \Theta_i \rightarrow \Theta_i^* := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}$

Laurent-Toric Fugue 1611.10300 & 2205.12827 + much more 1 m & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ *Trans*polar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0 \}^{\bullet}$ (Re)assemble dually $(\theta_i \cap \theta_i)^\circ = [\theta_i^\circ, \theta_i^\circ]$ with "neighbors" Concave: universal

Laurent-Toric Fugue 1611.10300 & 2205.12827 + much more 1 m & Non-Convex Mirrors $m=3^{-2D}$ Proof-of-Concept $= X_1^2 X_2^0 (X_3 \oplus X_4)^{2+1m} \oplus X_1^1 X_2^1 (X_3 \oplus X_4)^{2+0m} \oplus X_1^0 X_2^2 (X_3 \oplus X_4)^{2-1m}$ Transpolar: functions on which space? Θ Compute $\Theta_i \to \Theta_i^\circ := \{v: \langle v | \forall u \in \Theta_i \rangle + 1 > 0\}^{\bullet}$ [Fulton] F_3 (Σ,\prec) $(\theta_i \cap \theta_j)^\circ = [\theta_i^\circ, \theta_j^\circ]$ with "neighbors" universal

Laurent-Toric Fugue -3D Proof-of-Concept

& Non-Convex Mirrors

1611.10300 & 2205.1282 +much more 1282 x: $(Toric) \quad g(y)^{\mathsf{T}} = f(x) = a_1 x_1^3 x_4^{2m+2} + a_2 x_1^3 x_5^{2m+2} + \underline{a_3} \frac{x_2^3}{x_4^{m-2}} + a_4 \frac{x_3^3}{x_4^{m-2}} + \underline{a_5} \frac{x_2^3}{x_5^{m-2}} + a_6 \frac{x_3^3}{x_5^{m-2}} + a_6 \frac{x_5^3}{x_5^{m-2}} + a_6 \frac{x_5^$

$\begin{aligned} x_{1} &= 1, \ \underline{a_{3}}, \underline{a_{5}} = 0 \mathbb{P}^{3}_{(3:3:1;1)}[8] \\ a_{1} x_{4}^{8} + a_{2} x_{5}^{8} + a_{4} \frac{x_{2}^{3}}{x_{5}} + a_{6} \frac{x_{3}^{3}}{x_{5}} : \\ b_{1} &= 0, \ \underline{y_{3}}, \underline{y_{5}} = 1 \mathbb{P}^{3}_{(3:5:8:8)}[24] \\ b_{2} y_{4}^{3} + b_{3} y_{6}^{3} + b_{4} y_{1}^{8} + b_{5} \frac{y_{2}^{8}}{y_{4} y_{6}} : \end{aligned}$	$ \left\{ \begin{array}{c} (\mathbb{Z}_{8}, \frac{1}{8}, 0, 0, 0) \\ (\mathbb{Z}_{3}; 0, 0, \frac{1}{3}, \frac{2}{3}) \\ \hline (\mathbb{Z}_{8}; \frac{5}{24}, \frac{3}{24}, \frac{1}{3}, \frac{1}{3}) \end{array} \left[\begin{array}{c} g_{1} \\ y_{2} \\ y_{4} \\ y_{6} \end{array} \right] : \right. $	$\begin{cases} \mathcal{G}^{\nabla} = \mathbb{Z}_8 \times \mathbb{Z}_3, \\ \overline{\mathcal{Q}^{\nabla}} = \mathbb{Z}_{24}. \end{cases}$
$x_{1} = 1, \ a_{4}, a_{5} = 0 \mathbb{P}^{3}_{(3:3:1:1)}[8]$ $a_{1} x_{4}^{8} + a_{2} x_{5}^{8} + a_{4} \frac{x_{2}^{3}}{x_{5}} + a_{5} \frac{x_{3}^{3}}{x_{4}} :$ $b_{1} = 1, \ y_{4}, y_{5} = 0 \mathbb{P}^{3}_{(1:1:2:2)}[6]$	$\begin{cases} \left(\mathbb{Z}_{3}:\frac{1}{3},\frac{1}{3},0,0\right)\\ \left(\mathbb{Z}_{24}:\frac{1}{24},\frac{23}{24},\frac{1}{8},\frac{7}{8}\right)\\ \hline \left(\mathbb{Z}_{8}:\frac{3}{8},\frac{3}{8},\frac{1}{8},\frac{1}{8}\right) \end{cases} \begin{bmatrix} x_{2}\\ x_{3}\\ x_{4}\\ x_{5} \end{bmatrix}: \\ \left(\mathbb{Z}_{4}:\frac{1}{24},\frac{1}{24},\frac{23}{24},\frac{1}{8},\frac{7}{8}\right) \end{bmatrix} \begin{bmatrix} x_{2}\\ x_{3}\\ x_{4}\\ x_{5} \end{bmatrix}$	$\begin{cases} \frac{\mathcal{G} = \mathbb{Z}_3 \times \mathbb{Z}_{24},}{\mathcal{Q} = \mathbb{Z}_8.} \end{cases}$

$$\begin{array}{l} {}_{1}=1, \ y_{4}, y_{5}=0 \quad \mathbb{P}^{5}_{(1:1:2:2)}[6] \\ {}_{b_{2}} y_{4}^{3}+b_{3} y_{5}^{3}+b_{4} \frac{y_{1}^{8}}{y_{5}}+b_{5} \frac{y_{2}^{8}}{y_{4}}: \quad \left\{ \begin{array}{l} \left(\mathbb{Z}_{4}:\frac{1}{4},\frac{1}{4},0,0\right) \\ \left(\mathbb{Z}_{24}:\frac{1}{24},\frac{23}{24},\frac{1}{3},\frac{2}{3}\right) \\ \hline \left(\mathbb{Z}_{6}:\frac{1}{6},\frac{1}{6},\frac{1}{3},\frac{1}{3}\right) \end{array} \right\} \left[\begin{array}{c} y_{1} \\ y_{2} \\ y_{3} \\ y_{6} \end{array} \right]: \quad \left\{ \begin{array}{c} \mathcal{G}^{\nabla}=\mathbb{Z}_{4}\times\mathbb{Z}_{24} \\ \hline \mathcal{G}^{\nabla}=\mathbb{Z}_{6}. \end{array} \right.$$

7-7	aurent-Toric Fugue	BH BH 300 & 2205 much 2205 more 12827 3 3 3 3 3 3		
$ (10r1C) g(y)^{T} = f(x) = a_{1} x_{1}^{3} x_{4}^{2m+2} + a_{2} x_{1}^{3} x_{5}^{2m+2} + \underline{a_{3}} \frac{1}{x_{4}^{m-2}} + \underline{a_{4}} \frac{1}{x_{4}^{m-2}} + \underline{a_{5}} \frac{1}{x_{5}^{m-2}} + a_{6} \frac{1}{x_{5}^{m-$				
	$ \begin{array}{c} x_{1} = 1, \ \underline{a_{3}}, \underline{a_{5}} = 0 \mathbb{P}^{3}_{(3:3:1;1)}[8] \\ a_{1} x_{4}^{\ 8} + a_{2} x_{5}^{\ 8} + a_{4} \frac{x_{2}^{3}}{x_{5}} + a_{6} \frac{x_{3}^{3}}{x_{5}} : \\ b_{1} = 0, \ \underline{y_{3}}, \underline{y_{5}} = 1 \mathbb{P}^{3}_{(3:5:8:8)}[24] \\ b_{2} y_{4}^{\ 3} + b_{3} y_{6}^{\ 3} + b_{4} y_{1}^{\ 8} + b_{5} \frac{y_{2}^{\ 8}}{y_{4} y_{6}} : \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{3} : \frac{1}{24}, \frac{1}{24}, 0, \frac{1}{8} \right) \\ \left(\mathbb{Z}_{24} : \frac{1}{24}, \frac{1}{24}, 0, \frac{1}{8} \right) \\ \left(\mathbb{Z}_{8} : \frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8} \right) \\ \left(\mathbb{Z}_{8} : \frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8} \right) \\ \left(\mathbb{Z}_{8} : \frac{1}{8}, 0, 0, 0 \right) \\ \left(\mathbb{Z}_{3} : 0, 0, \frac{1}{3}, \frac{2}{3} \right) \\ \left(\mathbb{Z}_{3} : 0, 0, \frac{1}{3}, \frac{2}{3} \right) \\ \left(\mathbb{Z}_{8} : \frac{5}{24}, \frac{3}{24}, \frac{1}{3}, \frac{1}{3} \right) \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{2} \\ y_{4} \\ y_{6} \end{array} \\ \vdots \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, 0, 0, 0 \right) \\ \left(\mathbb{Z}_{8} : \frac{5}{24}, \frac{3}{24}, \frac{1}{3}, \frac{1}{3} \right) \\ \left(\mathbb{Z}_{8} : \frac{5}{24}, \frac{3}{24}, \frac{1}{3}, \frac{1}{3} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{2} \\ y_{4} \\ y_{6} \end{array} \\ \vdots \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, 0, 0, 0 \right) \\ \left(\mathbb{Z}_{8} : \frac{5}{24}, \frac{3}{24}, \frac{1}{3}, \frac{1}{3} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, 0, 0, 0 \right) \\ \left(\mathbb{Z}_{8} : \frac{5}{24}, \frac{3}{24}, \frac{1}{3}, \frac{1}{3} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{2} \\ y_{4} \\ y_{6} \end{array} \\ \end{array} \\ \vdots \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, \frac{1}{8}, \frac{1}{8} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, 0, 0, 0 \right) \\ \left(\mathbb{Z}_{8} : \frac{5}{24}, \frac{3}{24}, \frac{1}{3}, \frac{1}{3} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{2} \\ y_{4} \\ y_{6} \end{array} \\ \end{array} \\ \vdots \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, \frac{1}{8}, \frac{1}{8} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, 0, 0, 0 \right) \\ \left(\mathbb{Z}_{8} : \frac{1}{8}, \frac{1}{8}, \frac{1}{8} \right) \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{2} \\ y_{4} \\ y_{6} \end{array} \\ \end{array} \\ \vdots \\ \begin{array}{c} \left(\mathbb{Z}_{8} : \frac{1}{8}, \frac{1}{8}, \frac{1}{8} \right) \\ \end{array} \\ \end{array} \\ \begin{array}{c} y_{1} \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{2} \\ y_{4} \\ y_{6} \end{array} \\ \end{array} \\ \begin{array}{c} y_{1} \\ \end{array} \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{1} \\ y_{2} \end{array} \\ \end{array} \\ \begin{array}{c} y_{1} \\ y_{1} \\ y_{1} \\ \end{array} \\ \end{array} $	quotient either one of the two models by the \mathbb{Z}_3		
deforn	$\begin{array}{l} x_{1} = 1, \ a_{4}, a_{5} = 0 \mathbb{P}^{3}_{(3:3:1:1)}[8] \\ a_{1} x_{4}^{8} + a_{2} x_{5}^{8} + a_{4} \frac{x_{2}^{3}}{x_{5}} + a_{5} \frac{x_{3}^{3}}{x_{4}}: \begin{cases} \left(\mathbb{Z}_{3} : \frac{1}{3}, \frac{1}{3}, 0, 0\right) \\ \left(\mathbb{Z}_{24} : \frac{1}{24}, \frac{23}{24}, \frac{1}{8}, \frac{7}{8}\right) \\ \left(\mathbb{Z}_{8} : \frac{3}{2}, \frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \end{cases} \right) : \begin{cases} \mathcal{G} = \mathbb{Z}_{3} \times \mathbb{Z}_{6} \\ \mathcal{G} = \mathbb{Z}_{8} \times \mathbb{Z}_{4} \end{cases}$	\mathbb{Z}_4 r example \mathbb{Z}_3		

Laurent Family Picture

BH arXiv: "real soon"

Summary $- \dots$ threescore-six moons a \mathbb{O} \mathbb{O}

- Euler characteristic 🔽
- Sechern class, term-by-term
- \bigcirc Hodge numbers \checkmark (jump @ $\ddagger \mathscr{X}$)
- Second Cornerstone polynomials & mirror
- Phase-space regions & mirror
- Phase-space discriminant & mirror
- Yukawa couplings
- World-sheet instantons
- Gromov-Witten invariants 式?
 - [©] Will there be anything else? ...being ML-datamined

 $d(\theta^{(k)}) := k! \operatorname{Vol}(\theta^{(k)})$ [BH: signed by orientation!]

Oriented polytopes

- VEX polytopes

s.t.: $((\Delta)^{\nabla})^{\nabla} = \Delta$

- Star-triangulable w/flip-folded faces
- Polytope extension
 - \Leftrightarrow Laurent monomials

Laurent Family Picture

...threescore-six moons ago, today —

 \bigcirc CY(*n*-1)-folds in Hirzebruch *n*-folds

Summary

arXiv: "real soon"

- Sit Tight and Assess
- Step back for the "big picture"

Section (complex algebraic) variety

A deformation family of
CY hypersurfaces: $F_m^{(n)}[c_1]$

In toric-speak (blueprint):

 $\Gamma(\mathscr{K}_{F^{(n)}}^{*})$

- Sit Tight and Assess
- Step back for the "big picture"

Section Formation Formation Formation Section Section

- A deformation family of CY hypersurfaces: $F_m^{(n)}[c_1]$
- In toric-speak (blueprint):

Pick one & transpose [BH '92]

- Sit Tight and Assess
- Step back for the "big picture"
- Section For Section Sectio
 - Solution A deformation family of CY hypersurfaces: $F_m^{(n)}[c_1]$
 - In toric-speak (blueprint):
 - Pick one & transpose [BH '92]

1611.10300 & 2205.12827 + much more

 $\mathcal{K}^*_{\nabla F}(n)$

 $\{f(y) = 0\}$

 $\nabla F^{(n)}$

m > 2, transpolar (face-wise polar)

 $\Gamma(\mathscr{K}^{*}_{F^{(n)}})$

 ${f(x) = 0}$

 Δ_{F}, Δ_{F}

 $x_3^5 + x_4^5$

- Sit Tight and Assess
- Step back for the "big picture"
- Section (Complex algebraic) variety
 - A deformation family of
 CY hypersurfaces: $F_m^{(n)}[c_1]$
 - In toric-speak (blueprint):
 - Pick one & transpose [BH '92]
 - ^{\bigcirc} Fano (*m*=0,1,2): " ∇ = ∘ " ("polar")
 - Solution Set The "extension" ↔ "non-convexity" for all m > 2

1611.10300 & 2205.12827 + much more

 $\mathcal{K}^*_{\nabla F}(n),$

 $\{f(y) = 0\}$

 $\nabla F^{(n)}$

m > 2, transpolar (face-wise polar)

 $\Gamma(\mathscr{K}_{F^{(n)}}^{*})$

 ${f(x) = 0}$

 $\Delta_F, \Delta_F^{\star}$

 $x_3^4 x_4 + x_4^5$

- Sit Tight and Assess
- Step back for the "big picture"
- Section (Complex algebraic) variety
 - A deformation family of
 CY hypersurfaces: $F_m^{(n)}[c_1]$
 - In toric-speak (blueprint):
 - Pick one & transpose [BH '92]
 - ^{\bigcirc} Fano (*m*=0,1,2): " ∇ = ∘ " ("polar")
 - Solution Set The "extension" ↔ "non-convexity" for all m > 2

1611.10300 & 2205.12827 + much more

 $\mathcal{K}^*_{\nabla F}(n),$

 $\{f(y) = 0\}$

 $\nabla F^{(n)}$

m > 2, transpolar (face-wise polar)

 $\Gamma(\mathscr{K}_{F^{(n)}}^{*})$

 ${f(x) = 0}$

 $\Delta_F, \Delta_F^{\star}$

 $x_3^4 x_4 + x_3 x_4^4$

- Sit Tight and Assess
- Step back for the "big picture"
- Section Toric (complex algebraic) variety
 - A deformation family of
 CY hypersurfaces: $F_m^{(n)}[c_1]$
 - In toric-speak (blueprint):
 - Pick one & transpose [BH '92]
 - ^{\bigcirc} Fano (*m*=0,1,2): " ∇ = ∘ " ("polar")
 - Solution Set The "extension" ↔ "non-convexity" for all m > 2

1611.10300 & 2205.12827 + much more

 $\mathcal{K}^{*}_{\nabla F^{(n)}_{m}}$

 $\{f(y) = 0\}$

 $\nabla F^{(n)}$

m > 2, transpolar (face-wise polar)

 $\Gamma(\mathscr{K}_{F^{(n)}}^{*})$

 ${f(x) = 0}$

 $\Delta_F, \Delta_F^{\star}$

 $x_3x_4^4 + x_3^2x_2$

- Sit Tight and Assess
- Step back for the "big picture"
- Section Toric (complex algebraic) variety
 - A deformation family of
 CY hypersurfaces: $F_m^{(n)}[c_1]$
 - In toric-speak (blueprint):
 - Pick one & transpose [BH '92]
 - ^{\bigcirc} Fano (*m*=0,1,2): " ∇ = ∘ " ("polar")

1611.10300 & 2205.12827 + much more

 $\mathcal{K}^{*}_{\nabla F}(n)$

 $\{ {}^{\mathsf{T}} f(y) = 0 \}$

 $\nabla F^{(n)}$

m > 2, transpolar (face-wise polar)

 $\Gamma(\mathscr{K}^{*}_{F^{(n)}})$

 $\{f(x) = 0\}$

 $\Delta_F, \Delta_F^{\star}$

 $F^{(n)}$

- Sit Tight and Assess
- Step back for the "big picture"
- Toric (complex algebraic) variety
 - A deformation family of
 CY hypersurfaces: $F_m^{(n)}[c_1]$
 - In toric-speak (blueprint):
 - Pick one & transpose [BH '92]
 - ^{\bigcirc} Fano (*m*=0,1,2): " ∇ = ∘ " ("polar")
 - Solution Set The "extension" ↔ "non-convexity" for all m > 2
 - See Pick simplicial subsets for defining sections → multiple mirrors
 - This "big picture" $\stackrel{?}{=}$ "generating function"

$F_m^{(n)} \epsilon$ New? Toric Spaces

Sit Tight and Assess

1611.10300 & 2205.12827 +much more n \subseteq GLSM: $U(1)^n$ -gauge symmetry; worldsheet SuSy: $U(1)^n \rightarrow (\mathbb{C}^*)^n$ What of that flip-foldin which $\nabla F_m^{(n)} \dots isn't.$ — *Who ordered* $\nabla F_m^{(n)} ?$ ν_{41}^{∇}

 ν_3

 ν_1

 ν_{23}^{∇}

 $F_m^{(n)}[c_1] \stackrel{\text{mm}}{\longleftrightarrow} \nabla F_m^{(n)}[c_1]$

 \bigcirc Just as $\Sigma_{F_m^{(n)}}$ encodes $F_m^{(n)}$: \bigcirc top cone = local chart; \bigcirc codim-1-cone = gluing

So does its *trans*polar

 \bigcirc a 2*n*-dim manifold w/U(1)ⁿ-action \subseteq the ... transpolar of $F_m^{(n)}$, denoted $\nabla F_m^{(n)}$

General multifans (& multitopes) correspond to \subseteq torus manifolds = <u>real 2n-dim mflds w/U(1)ⁿ-action</u> ν_{12}^{∇} [Masuda, 1999, 2000; Hattori+Masuda, 2003]

Sit Tight and Assess Sit Tight and Assess What <u>is</u> this " $\nabla F_m^{(n)}$ "? (Such that $\nabla F_m^{(n)}[c_1] \leftrightarrow F_m^{(n)}[c_1]$?) Fan $\{\sigma_i; \prec\}$ of $\Delta_{F_m^{(n)}} \Leftrightarrow$ atlas of charts $U_{\sigma_i} \approx \mathbb{C}^n$, dim $\sigma_i = n$ But one chart is oriented reversely...

20

Sit Tight and Assess Sit Tight and Assess What <u>is</u> this " $\nabla F_m^{(n)}$ "? (Such that $\nabla F_m^{(n)}[c_1] \leftrightarrow F_m^{(n)}[c_1]$?) Fan $\{\sigma_i; \prec\}$ of $\Delta_{F_m^{(n)}} \Leftrightarrow$ atlas of charts $U_{\sigma_i} \approx \mathbb{C}^n$, dim $\sigma_i = n$ But one chart is oriented reversely...

Every flip-folded cone/facet can be surgically rev.-engineered

1611.10300 & 2205.12827 +much more Can we now use <u>all</u> of it?! Sit Tight and Assess \bigcirc What <u>is</u> this " $\nabla F_m^{(n)}$ "? (Such that $\nabla F_m^{(n)}[c_1] \xleftarrow{mm} F_m^{(n)}[c_1]$?) Set {σ_i; ≺} of Δ_{F⁽ⁿ⁾_m ↔ at las of charts U_{σ_i} ≈ Cⁿ, dim σ_i = n} But one chart is oriented reversely...

Servery flip-folded cone/facet can be surgically rev.-engineered

⊆…from regular (cpx. alg.) toric • varieties and (non-algebraic) • torus manifolds

[Masuda, 1999, 2000; torus

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space \bigcirc Reduce to 0 dimensions: $\mathbb{P}^{4}[5] \rightarrow \mathbb{P}^{3}[4] \rightarrow \mathbb{P}^{2}[3] \rightarrow \mathbb{P}^{1}[2]$

https://tristan.mishost.com/

 \bigcirc

Departments of Physics & Astronomy and M Department of Physics, Faculty of Nat Department of Physics, Faculty of Nat

0

Howard University, Washington DC Novi Sad University, Serbia vland, College Park, MD

0