Generalized Mirror Models - Beyond

 Algebraic Toric SpacesTristan Hübsch
@ V-Tech, Blacksburg; 2023.04.24

Departments of Physics \& Astronomy and Mathematics, Howard University, Washington DC
Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia
Department of Mathematics, University of Maryland, College Park, MD

Generalized Mirror Models - Beyond

Algebraic Toric Spaces

Tristan Hübsch
@ V-Tech, Blacksburg; 2023.04.24
w/Per Berglund入: Mikiya Masuda

Departments of Physics \& Astronomy and Mathematics, Howard University, Washington DC Department of Physics, Faculty of Natural Sciences, Novi Sad University, Serbia

Department of Mathematics, University of Maryland, College Park, MD

Beyond Algebraic Toric Spaces

Playbill

The Story so Far...
Laurent Largo
Meromorphic March
Laurent-Toric Fugue
New? Toric Spaces

* "It doesn't matter what it's called, ...as long as it has substance."
- S.-T. Yau

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space
\bullet Reduce to 0 dimensions: $\mathbb{P}^{4}[5] \rightarrow \mathbb{P}^{3}[4] \rightarrow \mathbb{P}^{2}[3] \rightarrow \mathbb{P}^{1}[2]$

How Hard Can it Be?

Constructing CY © Some "Nice" Ambient Space - Reduce to 0 dimensions: $\mathbb{P}^{4}[5] \rightarrow \mathbb{P}^{3}[4] \rightarrow \mathbb{P}^{2}[3] \rightarrow \mathbb{P}^{1}[2]$

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space
\bullet Reduce to 0 dimensions: $\mathbb{P}^{4}[5] \rightarrow \mathbb{P}^{3}[4] \rightarrow \mathbb{P}^{2}[3] \rightarrow \mathbb{P}^{1}[2]$

Classical Constructions

smooth $_{\mathbb{R}}$ models

$$
b_{2}=2=h^{1,1} \text { dim. space of Kähler classes }
$$

$$
\frac{1}{2} b_{3}-1=86=h^{2,1} \mathrm{dim} . \text { space of complex structures }
$$

$$
-168=\chi=2\left(h^{1,1}-h^{2,1}\right) \text { the Euler \# }
$$

Zero-set of $p(x, y)=0, \operatorname{deg}[p]=\binom{1}{m}, \& q(x, y)=0, \operatorname{deg}[q]=\binom{4}{2-m}$ Generic $\{q=0\} \cap\{p=0\}$ smooth; $\operatorname{deg}_{\mathbb{P}_{n}}[p]+\operatorname{deg}_{\mathbb{P}_{n}}[q]=n+1 \Rightarrow c_{1}=0$

- Sequentially: $X_{m} \xrightarrow{q=0}\left(F_{m} \xrightarrow{p=0} \mathbb{P}^{4} \times \mathbb{P}^{1}\right) q(x, y) \stackrel{?}{\sim} \frac{q_{0}(x)}{y_{0}}+\frac{q_{1}(x)}{y_{1}}$

Q Chern: $\quad c=\frac{\left(1+J_{1}\right)^{5}\left(1+J_{2}\right)^{2}}{\left(1+J_{1}+m J_{2}\right)\left(1+4 J_{1}+(2-m) J_{2}\right)}=1+\left[6 J_{1}^{2}+(8-3 m) J_{1} J_{2}\right]-\left[20 J_{1}^{3}-\left(32+15 m J_{1}^{2} J_{2}\right)\right]$.
© C.T.C. Wall: $\left(a J_{1}+b J_{2}\right)^{3}=[2 a+3(\underline{(4 b+m a})] a^{2} C_{4-k}\left[\left(a J_{1}+b J_{2}\right)^{k}\right]=g(\underline{4 b+m a})$

- $p_{1}\left[a J_{1}+b J_{2}\right]=-88 a-12(\underline{4 b+m a}) \ldots$ the same " $4 b+m a$ "

Q So, $F_{m} \approx_{\mathbb{R}} F_{m(\bmod 4)} \& X_{m} \approx_{\mathbb{R}} X_{m(\bmod 4)}: 4$ diffeomorphism types
๑...but, $m=0,1,2,3 \Rightarrow \operatorname{deg}[q]=\binom{4}{-1}$?!

The Story so Far.

Why Haven't We Thought of This Before?

Q $\operatorname{deg}[q]=\left(\frac{4}{-1}\right)$ holomorphic sections?!
Q Not everywhere on $\mathbb{P}^{4} \times \mathbb{P}^{1}$ - (simple poles)
[AAGGL:1507.03235 + BH:1606.07420]
 Q but yes on $F_{3}^{(4)} \measuredangle \mathbb{P}^{4} \times \mathbb{P}^{1}-\geqslant 105$ of 'em!

QHow? On $F_{3}^{(4)}, q(x, y) \simeq q(x, y)+\lambda \cdot p(x, y)$ equivalence class!
Q [Hirzebruch, 1951] $\Rightarrow p=x_{0} y_{0}{ }^{3}+x_{1} y_{1}{ }^{3} \& q=c(x)\left(\frac{x_{0} y_{0}}{y_{1}{ }^{2}}-\frac{x_{1} y_{1}}{y_{0}{ }^{2}}\right) \operatorname{deg}[c]=\binom{3}{0}$ Q So, $\quad q_{\lambda}=q(x, y)+\frac{\lambda c(x)}{\left(y_{0} y_{1}\right)^{2}} p(x, y) \stackrel{\lambda \rightarrow-1}{=} c(x)\left(-2 \frac{x_{1} y_{1}}{y_{0}{ }^{2}}\right)$ where $y_{0} \neq 0$ $=W u$-Yang monopole! Q \& $\quad q_{\lambda}=q(x, y)+\frac{\lambda c(x)}{\left(y_{0} y_{1}\right)^{2}} p(x, y) \xlongequal{\lambda \rightarrow 1} c(x)\left(2 \frac{x_{0} y_{0}}{y_{1}{ }^{2}}\right)$ where $y_{1} \neq 0$ Q\& $q_{1}(x, y)-q_{0}(x, y)=2 \frac{c(x)}{\left(y_{0} y_{1}\right)^{2}} p(x, y)=0$, on $F_{3}:=\{p(x, y)=0\}$
Q [GvG, 1708.00517] scheme-theor. "generalized complete intersections" Reverse-engineered: Mayer-Vietoris sequence \& "patching" of the two charts

Laurent Largo

..in well-tempered counterpoint
$m \quad m \quad m-\ell \quad \ell \quad\left[\mathbb{P}^{n}| | 1\right] \quad$ +more
 $:=p(x, y ; 0)$ even $p(x, y ; 0)$ is transverse, so $p^{-1}(0)$ is smooth
QThe central $(\epsilon=0)$ member of the family is a Hirzebruch scroll F_{m} :
Qirectrix: $S:=\{\mathfrak{\xi}(x, y)=0\},[S]=\left[H_{1}\right]-m\left[H_{2}\right] \&[S]^{n}=-(n-1) m ;$
Q where $\mathfrak{B}(x, y):=\left(\frac{x_{0}}{y_{1} m^{m}}-\frac{x_{1}}{y_{0^{m}}}\right)+\frac{\lambda}{\left(y_{0} y_{1}\right)^{m}}\left[x_{0} y_{0}^{m}+x_{1} y_{1}^{m}\right] \quad$ degree $\left(-\frac{1}{m}\right)$
$Q \& \underline{h^{0}\left(K^{*}\right)}=3\binom{2 n-1}{n}+\delta_{\epsilon, 0} \vartheta_{3}^{m}\binom{2 n-2}{2}(m-3), \underline{h^{0}(T)}=n^{2}+2+\delta_{\epsilon, 0} \vartheta_{1}^{m}(n-1)(m-1)$
Q \& $\underline{h^{1}\left(K^{*}\right)}=\delta_{\epsilon, 0} \vartheta_{3}^{m}\binom{2 n-2}{2}(m-3), \quad \underline{h^{1}(T)}=\delta_{\epsilon, 0} \vartheta_{1}^{m}(n-1)(m-1)$
Q All "exceptionals" cancel (incrementally) from H^{*} for $\left(\epsilon_{\alpha} \neq 0\right)$ deformations resulting in discrete deformations $F_{m}^{(n)} \rightarrow F_{\left(m_{1}, m_{2}, \ldots\right)}^{(n)} \& \cdots \& \approx_{\mathbb{R}} F_{[m(\bmod n)]}^{(n)}$
OThese $F_{\left(m_{1}, m_{2}, \ldots\right)}^{(n)}$'s are distinct toric varieties... $\mathrm{w} /\left\{\mathfrak{\mathcal { S }}_{r}, r \leqslant m_{i}\right\}$

Laurent Largo

...in well-tempered counterpoint
Q On $F_{m}^{(n)}: p(x, y ; 0)=x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathfrak{Z}$
$Q \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$
$\begin{array}{lllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6}\end{array}$
$Q \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action:
$\begin{array}{lllllll}1 & 1 & 1 & 1 & 0 & 0<\mathbb{p}^{4}\end{array}$
QBTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.
$-m \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{P}^{1}$
Q Need $\operatorname{deg}[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$
@ $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2}$
standard wisdom
© $m>2,\{f(X)=0\}=\left\{X_{1}=0\right\} \cup\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$

Laurent Largo

 ..in well-tempered counterpointQ On $F_{m}^{(n)}: p(x, y ; 0)=x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathcal{Z}^{+ \text {more }}$
Q \& $\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$
$\begin{array}{lllllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6}\end{array}$
$Q \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action:
QBTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.
$-m \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{P}^{1}$

Q Need $\operatorname{deg}[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$
© $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2}$
standard wisdom
@ $m>2,\{f(X)=0\}=\left\{X_{1}=0\right\} \cup\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\} \rightarrow$ itself a

- $\{f(X)=0\}^{\#}=\left\{X_{1}=0\right\} \cap\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$

Laurent Largo

 ...in well-tempered counterpoint@On $F_{m}^{(n)}: p(x, y ; 0)=x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathfrak{\mathcal { G }}$
$\left.@ \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right) \begin{array}{cccccc}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \\ \hline 1 & 1 & 1 & 1 & 0 & 0 \\ -m & 0 & 0 & 0 & 1 & 1\end{array}\right)$
$\bullet \mathbb{P}^{4} \times \mathbb{P}^{4}{ }^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action:
$\left.@ \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right) \begin{array}{cccccc}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \\ \hline 1 & 1 & 1 & 1 & 0 & 0 \sim \mathbb{P}^{4} \\ @ \mathbb{P}^{4} \times \mathbb{P}^{1} \text { bi-degree } \rightarrow \text { toric }\left(\mathbb{C}^{\times}\right)^{2} \text {-action: } & \text { m } & 0 & 0 & 0 & 1 \\ \hline\end{array}\right)$ Q BTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.
Q Need $\operatorname{deg}[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$

© $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2}$
standard wisdom
© $m>2,\{f(X)=0\}=\left\{X_{1}=0\right\} \cup\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$
Q $\{f(X)=0\}^{\sharp}=\left\{X_{1}=0\right\} \cap\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$

itself a
codimension-2 Calabi-Yau
*Reverse-Lngineered Model

aurent Largo

... with a meandering melody

\bullet Deform: $p_{1}(x, y)=x_{0} y_{0}^{5}+x_{1} y_{1}^{5}+x_{2} y_{0} y_{1}{ }^{4}$ toric $F_{(4,1,0, \ldots)}^{(n)}$
© Find: $\mathfrak{B}_{1,1}(x, y)=\frac{x_{0} y_{0}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{4}}-\frac{x_{1}}{y_{1}{ }^{4}} \& \mathfrak{J}_{1,2}(x, y)=\frac{x_{0}}{y_{1}}-\frac{x_{2}}{y_{0}}-\frac{x_{1} y_{1}{ }^{4}}{y_{0}{ }^{5}}$

aurent Largo

....with a meandering melody

\bullet Deform: $p_{1}(x, y)=x_{0} y_{0}^{5}+x_{1} y_{1}^{5}+x_{2} y_{0} y_{1}{ }^{4}$ toric $F_{(4,1,0, \ldots)}^{(n)}$
© Find: $\mathfrak{B}_{1,1}(x, y)=\frac{x_{0} y_{0}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{4}}-\frac{x_{1}}{y_{1}{ }^{4}} \& \mathfrak{J}_{1,2}(x, y)=\frac{x_{0}}{y_{1}}-\frac{x_{2}}{y_{0}}-\frac{x_{1} y_{1}{ }^{4}}{y_{0}{ }^{5}}$
Q \& det \(\left[\begin{array}{l}\partial\left(p_{1}, \mathfrak{s}_{1,1}, \mathfrak{s}_{1,2}, x_{3}, \cdots ; y_{0}, y_{1}\right)

\hline \partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)\end{array}\right]=\) const. | X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | $0-p^{4}$ |
| -4 | -1 | 0 | 0 | 1 | $1-\mathrm{p}^{1}$ |

Q Deform: $p_{2}(x, y)=x_{0} y_{0} 5+x_{1} y_{1} 5+x_{2} y_{0}{ }^{2} y_{1}{ }^{3} \quad$ toric $F_{(3,2,0}^{(n)}$ $2,0, \ldots$) © Find: $\mathfrak{g}_{2,1}(x, y)=\frac{x_{0} y_{0}{ }^{2}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{3}}-\frac{x_{1}}{y_{1}{ }^{3}} \& \mathfrak{G}_{2,2}(x, y)=\frac{x_{0}}{y_{1}{ }^{2}}-\frac{x_{2}}{y_{0}{ }^{2}}-\frac{x_{1} y_{1}{ }^{3}}{y_{0}{ }^{5}}$
\(Q \& \operatorname{det}\left[\begin{array}{l}\partial\left(p_{2}, \mathfrak{z}_{2,1}, \mathfrak{s}_{2,2}, x_{3}, \cdots ; y_{0}, y_{1}\right)

\partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)\end{array}\right]=\) const. | X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | $0-\mu^{4}$ | $-3-2 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{P}^{1}$

aurent Largo ...with a meandering melody

Q Deform: $p_{1}(x, y)=x_{0} y_{0}^{5}+x_{1} y_{1}^{5}+x_{2} y_{0} y_{1}{ }^{4}$ toric $F_{(4,1,0, \ldots)}^{(n)}$
QFind: $\mathfrak{B}_{1,1}(x, y)=\frac{x_{0} y_{0}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{4}}-\frac{x_{1}}{y_{1}{ }^{4}} \& \mathfrak{J}_{1,2}(x, y)=\frac{x_{0}}{y_{1}}-\frac{x_{2}}{y_{0}}-\frac{x_{1} y_{1}{ }^{4}}{y_{0}{ }^{5}}$
$Q \& \operatorname{det}\left[\left[\begin{array}{l}\partial\left(p_{1}, \mathfrak{s}_{1,1}, \mathfrak{s}_{1,2}, x_{3}, \cdots ; y_{0}, y_{1}\right) \\ \hline \partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)\end{array}\right]=\right.$ const. $\begin{array}{cccccc}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \\ \hline 1 & 1 & 1 & 1 & 0 & 0 \\ \hline-4 & -1 & 0 & 0 & 1 & 1-\mathrm{p}^{-1}\end{array}$

Q Deform: $p_{2}(x, y)=x_{0} y_{0} 5+x_{1} y_{1} 5+x_{2} y_{0}{ }^{2} y_{1}{ }^{3} \quad$ toric $F_{(3,2,0, \ldots)}^{(n)}$
© Find: $\mathfrak{\Xi}_{2,1}(x, y)=\frac{x_{0} y_{0}{ }^{2}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{3}}-\frac{x_{1}}{y_{1}{ }^{3}} \& \mathfrak{G}_{2,2}(x, y)=\frac{x_{0}}{y_{1}{ }^{2}}-\frac{x_{2}}{y_{0}{ }^{2}}-\frac{x_{1} y_{1}{ }^{3}}{y_{0}{ }^{5}}$
$Q \& \operatorname{det}\left[\left[\begin{array}{l}\partial\left(p_{2}, \mathfrak{\xi}_{2,1}, \mathfrak{s}_{2,2}, x_{3}, \cdots ; y_{0}, y_{1}\right) \\ \partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)\end{array}\right]=\right.$ const. $\begin{array}{llllll}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \\ \hline 1 & 1 & 1 & 1 & 0 & 0\end{array}$
$\odot \ldots$ and $p_{3}(x, y)=x_{0} y_{0} 5+x_{1} y_{1}^{5}+x_{2} y_{0}{ }^{2} y_{1}^{3}+x_{3} y_{0}{ }^{3} y_{1}^{2}$
$\Theta \rightarrow$ toric $F_{(2,2,1, \cdots)}^{(n)}$ for $n=3, F_{(2,2,1)}^{(3)} \approx F_{(1,1,0)}^{(3)}$

Laurent Largo ...with a meandering melody

 $F_{m ; \epsilon}^{(n)} \in\left[\begin{array}{c||c}\mathbb{P}^{n} & 1 \\ \mathbb{P}^{1} & m\end{array}\right]$$\bullet$ Deform: $p_{1}(x, y)=x_{0} y_{0}^{5}+x_{1} y_{1}^{5}+x_{2} y_{0} y_{1}{ }^{4}$ toric $F_{(4,1,0, \ldots)}^{(n)}$
Q Find: $\mathfrak{B}_{1,1}(x, y)=\frac{x_{0} y_{0}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{4}}-\frac{x_{1}}{y_{1}{ }^{4}} \& \mathfrak{J}_{1,2}(x, y)=\frac{x_{0}}{y_{1}}-\frac{x_{2}}{y_{0}}-\frac{x_{1} y_{1}{ }^{4}}{y_{0}{ }^{5}}$
$\bullet \& \operatorname{det}\left[\left[\begin{array}{cccccc}\partial\left(p_{1}, \mathfrak{B}_{1,1}, \mathfrak{s}_{1,2}, x_{3}, \cdots ; y_{0}, y_{1}\right) \\ \hline \partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)\end{array}\right]=\right.$ constr. $\begin{array}{cccccc}X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \\ \hline 1 & 1 & 1 & 1 & 0 & 0 \\ \hline-4 & -1 & 0 & 0 & 1 & 1-\mathrm{p}^{\mathrm{p}}\end{array}$

Q Deform: $p_{2}(x, y)=x_{0} y_{0} 5+x_{1} y_{1} 5+x_{2} y_{0} y_{1} y_{1}^{3} \quad$ tori $F_{(3,2,0, \ldots)}^{(n)}$ © Find: $\mathfrak{G}_{2,1}(x, y)=\frac{x_{0} y_{0}{ }^{2}}{y_{1}{ }^{5}}+\frac{x_{2}}{y_{1}{ }^{3}}-\frac{x_{1}}{y_{1}{ }^{3}} \& \mathfrak{\Xi}_{2,2}(x, y)=\frac{x_{0}}{y_{1}{ }^{2}}-\frac{x_{2}}{y_{0}{ }^{2}}-\frac{x_{1} y_{1}{ }^{3}}{y_{0}{ }^{5}}$
\(Q \& \operatorname{det}\left[\begin{array}{l}\partial\left(p_{2}, \mathfrak{z}_{2,1}, \mathfrak{B}_{2,2}, x_{3}, \cdots ; y_{0}, y_{1}\right)

\partial\left(x_{0}, x_{1}, x_{2}, x_{3}, \cdots ; y_{0}, y_{1}\right)\end{array}\right]=\) constr. | X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | $0-\mathrm{c}^{4}$ |

$\odot \ldots$ and $p_{3}(x, y)=x_{0} y_{0}^{5}+x_{1} y_{1} 5+x_{2} y_{0}{ }^{2} y_{1}^{3}+x_{3} y_{0}{ }^{3} y_{1}^{2}$
$\Theta \rightarrow$ boric $F_{(2,2,1, \ldots)}^{(n)}$ for $n=3, F_{(2,2,1)}^{(3)} \approx F_{(1,1,0)}^{(3)}$

Laurent Largo
 ... with a meandering melody

Q Algorithm:

Construction 2.1 Given a degree $-\frac{1}{m}$) hypersurface $\left\{p_{\vec{\epsilon}}(x, y) 0\right\} \subset \mathbb{P}^{n} \times \mathbb{P}^{1}$ as in (2.2), construct

$$
\operatorname{deg}=\left({ }_{m-r_{0}-r_{1}}^{1}\right): \mathfrak{s}_{\vec{\epsilon}}(x, y ; \lambda):=\left[\operatorname{Flip}_{y_{0}}\left[\frac{1}{y_{0} r_{0} y_{1} r_{1}} p_{\vec{\epsilon}}(x, y)\right]\left(\bmod p_{\vec{\epsilon}}(x, y)\right), \quad\left[\begin{array}{c||c}
\mathbb{P}^{n} & 1 \\
\mathbb{P}^{1} & m
\end{array}\right]\right.
$$

progressively decreasing $r_{0}+r_{1}=2 m, 2 m-1, \cdots$, and keeping only Laurent polynomials containing both y_{0} - and y_{1}-denominators but no y_{0}, y_{1}-mixed ones. The "Flip $y_{y_{i}}$ " operator changes the relative sign of the rational monomials with y_{i}-denominators. For algebraically independent such sections, restrict to a subset with maximally negative degrees that are not overall $\left(y_{0}, y_{1}\right)$-multiples of each other.

$\left\{\left\{\frac{x_{0}}{y_{0}^{3}}+\frac{x_{1} y_{1}^{-}}{y_{0}^{5}}, \frac{x_{0}}{y_{0}^{2} y_{1}^{2}}+\frac{x_{1} y_{1}}{y_{0}^{4}}, \frac{x_{1}}{y_{0}^{3}}+\frac{x_{0}}{y_{0} y_{1}^{2}}, \frac{x_{0}}{y_{1}^{3}}+\frac{x_{1}}{y_{0}^{2}}, \frac{x_{0} y_{0}}{y_{1}}+\frac{x_{1}}{x_{0}}, \frac{x_{0} y_{0}}{y_{1}^{2}}+\frac{x_{1}}{y_{1}^{3}}, \frac{y_{1}, y_{0}}{1}\right.\right.$,

Q finds $\mathfrak{S}(x, y)=\left(\frac{x_{0}}{y_{1}{ }^{2}}-\frac{x_{1}}{y_{0}{ }^{2}}\right) \bmod \left(x_{0} y_{0} 2+x_{1} y_{1} 2\right) ; \operatorname{deg}=\binom{1}{2}, \quad\left[\mathfrak{B}^{-1}(0)\right]=\left[J_{1}\right]-2\left[J_{2}\right]$.
THE exceptional curve $[S]^{2}=-1$ in $F_{2}^{(2)}$

Meromorphic March

...back to the median motif
QOn $F_{m}^{(n)}: x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=马$
$\bullet \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$

| X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$Q \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\star}\right)^{2}$-action:
$\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 0\end{array} \mathrm{r}^{4}$
Q BTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \vec{z}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{}\right]=$ const. $-m \begin{array}{llllll}0 & 0 & 0 & 1 & 1 \cdots p^{1}\end{array}$
\bigoplus Need $[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$
Q $f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2} \quad \underset{\substack{\text { standard } \\ \text { wisdom }}}{\text { s. }}$

- $m>2,\{f(X)=0\}=\left\{X_{1}=0\right\} \cup\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}$
- $\{f(X)=0\}^{\sharp}=\left\{X_{1}=0\right\} \cap\left\{\oplus_{k} X_{1}^{k} X_{2,3,4}^{2} X_{5,6}^{2+k m}=0\right\}: R_{\mu \nu}=0$

Meromorphic March

...back to the median motif
\bigcirc On $F_{m}^{(n)}: x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 \Rightarrow x_{0}=-x_{1}\left(y_{1} / y_{0}\right)^{m} \& x_{1} \rightarrow X_{1}=\mathfrak{Z}$
$\bullet \&\left(X_{i}, i=2, \cdots, n+2\right)=\left(x_{2}, \cdots, x_{n} ; y_{0}, y_{1}\right)$

| X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\bullet \mathbb{P}^{4} \times \mathbb{P}^{1}$ bi-degree \rightarrow toric $\left(\mathbb{C}^{\times}\right)^{2}$-action:
$\begin{array}{llllll}1 & 1 & 1 & 1 & 0 & 0\end{array} \mathbb{p}^{4}$
Q BTW, $\operatorname{det}\left[\frac{\partial\left(p(x, y), \mathfrak{B}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const.
$-m \quad 0 \quad 0 \quad 0 \quad 1 \quad 1 \leftarrow \mathbb{P}^{1}$
$@$ Need $[f(X)]=\binom{4}{2-m}$, with $\operatorname{deg}\left[X_{1} X_{5,6}^{m}\right]=\binom{1}{0}=\operatorname{deg}\left[X_{2,3,4}\right]$

Meromorphic March ...back to the median motif

$\Theta f(X)=X_{1}^{4} X_{5,6}^{2+3 m} \oplus X_{1}^{3} X_{2,3,4} X_{5,6}^{2+2 m} \cdots \oplus X_{1} X_{2,3,4}^{3} X_{5,6}^{2} \oplus X_{2,3,4}^{4} X_{5,6}^{2-m}$

- $m>2$, Laurent terms \& "intrinsic limit"

[dA. A. Gholampour]

Q Virtual varieties [F. Severi], i.e., Weil divisors
QE.g., $\mathbb{P}_{(3: 1: 1)}^{2}[5]: 0=x_{3} 5+x_{4} 5+\frac{x_{2}{ }^{2}}{x_{4}}=\frac{x_{3}{ }^{5} x_{4}+x_{4}{ }^{6}+x_{2}{ }^{2}}{x_{4}}$
Q Denominator contributions tend to subtract from those of the numerator
Q Change variables [David Cox]: $\left(x_{2}, x_{3}, x_{4}\right) \mapsto\left(z_{3} \sqrt{z_{2}}, z_{1}^{2}, z_{2}\right)$
$\oplus x_{3} 5+x_{4}^{5}+\frac{x_{2}^{2}}{x_{4}} \mapsto z_{1}^{10}+z_{2}^{5}+z_{3}^{2}$ in $\mathbb{P}_{(1: 2: 5)}^{2}[10]$
\bullet Generalized to all $F_{m}^{(n)}\left[c_{1}\right] \nabla$ - not a fluke
QA desingularized finite quotient of a branched multiple cover
\bullet...and a variety of "general type" ($c_{1}<0$ or even $c_{1} \gtrless 0$)
.there's ∞ of those, just as of VEX polytopes!

Meromorphic March

...back to the median motif
QOn $F_{m}^{(n)}: x_{0} y_{0}^{m}+x_{1} y_{1}^{m}=0 ; \operatorname{det}\left[\frac{\partial\left(p(x, y), \tilde{s}(x, y), x_{2}, \cdots ; y_{0}, y_{1}\right)}{\partial\left(x_{0}, x_{1}, x_{2}, \cdots ; y_{0}, y_{1}\right)}\right]=$ const. \& $p(x, y)=0$. Q $\mathbb{P}^{n} \times \mathrm{P}^{1}$-degrees \rightarrow Mori vectors 9 central in family $F_{m ; \epsilon}^{(n)} \in\left[\begin{array}{c||c}\mathbb{P}^{n} & 1 \\ \mathbb{P}^{1} & m\end{array}\right]$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0 \sim \mathrm{p}^{4}$
$-m$	0	0	0	1	$1 \sim \mathbb{p}^{1}$

A Generalized Construction of
Calabi-Yau Mirror Models arXiv:1611.10300 + 2205.12827

+ lots more...

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	0
$-m$	0	0	0	1	$1-\mathrm{p}^{4}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}{ }^{1} X_{2}{ }^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0<\mathbb{p}^{4}$
$-m$	0	0	0	1	$1 \leftarrow \mathbb{P}^{1}$

-- $\begin{gathered}\text { universal } \\ X_{1} X_{2} X_{3} X_{4}\end{gathered}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
$@$ Transpolar: functions on which space?
- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0<\mathbb{p}^{4}$
$-m$	0	0	0	1	$1 \leftarrow \mathbb{P}^{1}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$

Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\oplus Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
$@$ Transpolar: functions on which space?
- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
$@$ Transpolar: functions on which space?
- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$

Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{2} \Theta_{i}\right)$;
\bullet Compute $\left.\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}\right\}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$

Q Transpolar: functions on which space?

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0<\mathbb{p}^{4}$
$-m$	0	0	0	1	$1 \leftarrow \mathbb{P}^{1}$

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{2} \Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Θ Transpolar: functions on which space?
- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Θ Transpolar: functions on which space?
- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{2} \Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

14

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-
๑ $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}$ (convex Θ_{i});
\oplus Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0-\mathrm{p}^{4}$
$-m$	0	0	0	1	$1-\mathrm{p}^{1}$

-

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$

Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$
${ }^{\ominus}$ (Re)assemble dually $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

$$
\begin{array}{rlllll}
X_{1} & X_{2} & X_{3} & X_{4} & X_{5} & X_{6} \\
\hline 1 & 1 & 1 & 1 & 0 & 0<\mathbb{p}^{4} \\
-m & 0 & 0 & 0 & 1 & 1<\mathbb{P}^{1}
\end{array}
$$

-

aurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Θ Transpolar: functions on which space?
$\bullet \Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{-} \Theta_{i}\right)$;

Q Compute $\Theta_{i} \rightarrow \Theta^{\circ} \cdot=\{1$, overlap gluing $>1>010$ | X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} |
| ---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | 1 | 0 | $0 \leftrightarrow \mathbb{p}^{4}$ |
| $-m$ | 0 | 0 | 0 | 1 | 1 |

$\Theta_{(\text {Re }) \text { assemble d loca }}$
$\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-

- $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$

Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.^{2} \Theta_{i}\right)$;

Q Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}^{\bullet}$
${ }^{\ominus}$ (Re)assemble dually $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	$0 \leftrightarrow \mathbb{p}^{4}$
$-m$	0	0	0	1	1

Laurent-Toric Fugue

๑ $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?

- $\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
© Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}$
- (Re)assemble dually $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}
1	1	1	1	0	0
$-m$	0	0	0	1	1

Laurent-Toric Fugue

\& Non-Convex Mirrors $m=3$ 2D Proof-of-Concept-
๑ $X_{1}^{2} X_{2}^{0}\left(X_{3} \oplus X_{4}\right)^{2+1 m} \oplus X_{1}^{1} X_{2}^{1}\left(X_{3} \oplus X_{4}\right)^{2+0 m} \oplus X_{1}^{0} X_{2}^{2}\left(X_{3} \oplus X_{4}\right)^{2-1 m}$
Q Transpolar: functions on which space?
$-\Delta \rightarrow \bigcup_{i}\left(\right.$ convex $\left.\Theta_{i}\right)$;
\bullet Compute $\Theta_{i} \rightarrow \Theta_{i}^{\circ}:=\left\{v:\left\langle v \mid \forall u \in \Theta_{i}\right\rangle+1>0\right\}$

- (Re)assemble dually $\left(\theta_{i} \cap \theta_{j}\right)^{\circ}=\left[\theta_{i}^{\circ}, \theta_{j}^{\circ}\right]$ with "neighbors"

Q Consistent with all standard methods (pre)complex algebraic geometry

Laurent-Toric Fugue

\& Non-Convex Mirrors

Θ (Toric) transposition:

—3D Proof-of-Concept-

combinatorially many choices... $=$ multiple mirrors

$f\left(x ; \Delta_{F_{m}^{(3)}}^{(3)}\right)=a_{1} x_{1}^{3} x_{4}^{2 m+2}+a_{2} x_{1}^{3} x_{5}^{2 m+2}+\underline{a_{3} \frac{x_{2}^{3}}{x_{4}^{m-2}}}+a_{4} \frac{x_{2}^{3}}{x_{5}^{m-2}}+a_{5} \frac{x_{3}^{3}}{x_{4}{ }^{m-2}}+a_{6} \frac{x_{3}^{3}}{x_{5}{ }^{m-2}}$
$g\left(y ; \Delta_{F_{m}^{\star}}^{\star(3)}\right)=\underbrace{b_{1} y_{1}^{3} y_{2}^{3}}_{\nu_{1}}+b_{2} \underline{y 3}_{3}^{3} y_{4}^{3}+b_{3} \underline{y 5}_{\bullet}^{3} y_{6}^{3}+b_{4} \frac{y_{1}^{2 m+2}}{\left(\underline{y_{3} y_{5}}\right)^{m-2}}+b_{5} \frac{y_{2}^{2 m+2}}{\left(y_{4} y_{6}\right)^{m-2}}$

$$
\mathbb{E}=\left[\begin{array}{ccccc}
3 & 0 & 0 & 2 m+2 & 0 \\
3 & 0 & 0 & 0 & 2 m+2 \\
0 & 3 & 0 & 2-m & 0 \\
0 & 3 & 0 & 0 & 2-m \\
0 & 0 & 3 & 2-m & 0 \\
0 & 0 & 3 & 0 & 2-m
\end{array}\right]
$$

Laurent-Tor \& Non-Convex Mirrors

Q (Toric) $\quad g(y)^{\top}=f(x)=a_{1} x_{1}{ }^{3} x_{4}^{2 m+2}+a_{2} x_{1}{ }^{3} x_{5}^{2 m+2}+\underline{a_{3}} \frac{x_{2}{ }^{3}}{x_{4}^{m-2}}+a_{4} \frac{x_{3}{ }^{3}}{x_{4}{ }^{m-2}}+\underline{a_{5}} \frac{x_{2}{ }^{3}}{x_{5}^{m-2}}+a_{6} \frac{x_{3}^{3}}{x_{5}{ }^{m-2}}$ trans-
5×6 matrix of exponents $\downarrow_{\text {transpose }}$ position: $f(x)^{\top}=g(y)=b_{1} y_{1}{ }^{3} y_{2}^{3}+b_{2} \underline{y_{3}{ }^{3}} y_{4}^{3}+b_{3} \underline{y_{5}^{3}} y_{6}^{3}+b_{4} \frac{y_{1}^{2 m+2}}{\left(\underline{y_{3}} \underline{y_{5}}\right)^{m-2}}+b_{5} \frac{y_{2}^{2 m+2}}{\left(y_{4} y_{6}\right)^{m-2}}$

$$
\begin{aligned}
& x_{1}=1, \underline{a_{3}}, \underline{a_{5}}=0 \quad \mathbb{P}_{\left(3: 3: 1_{3} 1\right)}^{3}[8]
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=1, a_{4}, a_{5}=0 \quad \mathbb{P}_{(3: 3: 1: 11)}^{3}[8] \\
& a_{1} x_{4}^{8}+a_{2} x_{5}^{8}+a_{4} \frac{x_{2}^{2}}{x_{5}}+a_{5} \frac{x_{3}^{3}}{x_{4}}:\left\{\begin{array}{l}
\left(\frac{\left(\mathbb{Z}_{24}: \frac{1}{3}, \frac{1}{3}, 0,0\right)}{\left(\mathbb{Z}_{8}: \frac{3}{8}, \frac{3}{8}, \frac{1}{8}, \frac{1}{8}\right)}, \frac{1}{8}\right)
\end{array}\left[\begin{array}{l}
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]:\left\{\begin{array}{l}
\mathcal{G}=\mathbb{Z}_{3} \times \mathbb{Z}_{24}, \\
\mathcal{Q}=\mathbb{Z}_{8} .
\end{array}\right.\right. \\
& b_{1}=1, y_{4}, y_{5}=0 \quad \mathbb{P}_{(1: 1: 2: 2)}^{3}[6] \\
& b_{2} y_{4}^{3}+b_{3} y_{5}^{3}+b_{4} \frac{y_{1}^{8}}{y_{5}}+b_{5} \frac{y_{2}^{8}}{y_{4}}:\left\{\begin{array}{l}
\left(\mathbb{Z}_{4}: \frac{1}{4}, \frac{1}{4}, 0,0\right) \\
\frac{\left(\mathbb{Z}_{24}: \frac{1}{24}, \frac{23}{24}, \frac{1}{3}, \frac{2}{3}\right)}{\left(\mathbb{Z}_{6}: \frac{1}{6}, \frac{1}{6}, \frac{1}{3}, \frac{1}{3}\right)}\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{6}
\end{array}\right]:\left\{\begin{array}{l}
\mathcal{G}^{\nabla}=\mathbb{Z}_{4} \times \mathbb{Z}_{24}, \\
\mathcal{Q}^{\nabla}=\mathbb{Z}_{6} .
\end{array}\right.
\end{array} .\right.
\end{aligned}
$$

Laurent-Toric Fugue

\& Non-Convex Mirrors

 trans-
5×6 matrix of exponents \downarrow transpose POSition: $f(x)^{\top}=g(y)=b_{1} y_{1}^{3} y_{2}^{3}+b_{2} \underline{y_{3}}{ }^{3} y_{4}^{3}+b_{3} \underline{y_{5}^{3}} y_{6}^{3}+b_{4} \frac{y_{1}^{2 m+2}}{\left(\underline{y_{3}} \underline{y_{5}}\right)^{m-2}}+b_{5} \frac{y_{2}^{2 m+2}}{\left(y_{4} y_{6}\right)^{m-2}}$

$$
\begin{aligned}
& x_{1}=1, a_{3}, a_{5}=0 \quad \mathbb{P}_{\left(3: 3: 1_{\dot{3}} 1\right)}^{3}[8]
\end{aligned}
$$

$$
\begin{aligned}
& b_{1}=0, y_{3}, \underline{y_{5}}=1 \quad \mathbb{P}_{(3: 5: 8: 8)}^{3}[24] \\
& b_{2} y_{4}^{3}+b_{3} y_{6}^{3}+b_{4} y_{1}^{8}+b_{5} \frac{y_{2}^{8}}{y_{4} y_{6}}:
\end{aligned}
$$

> quotient either one of the two models
> by the \mathbb{Z}_{3}
> $x_{1}=1, a_{4}, a_{5}=0 \quad \mathbb{P}_{\left(3: 3: 11_{1} 1\right)}^{3}[8]$
> $a_{1} x_{4}^{8}+a_{2} x_{5}^{8}+a_{4} \frac{x_{2}^{3}}{x_{5}}+a_{5} \frac{x_{3}^{3}}{x_{4}}:$

> for example
> $b_{1}=1, y_{4}, y_{5}=0 \quad \mathbb{P}_{(1: 1: 2: 2)}^{3}[6]$
> $b_{2} y_{4}^{3}+b_{3} y_{5}^{3}+b_{4} \frac{y_{1}^{8}}{y_{5}}+b_{5} \frac{y_{2}^{8}}{y_{4}}:$

Laurent Family Picture

Summary

- CY($n-1$)-folds in Hirzebruch n-folds

Q Euler characteristic ∇
Q Chern class, term-by-term ∇

- Hodge numbers (jump @ \#X)
- Cornerstone polynomials \& mirror
$@$ Phase-space regions \& mirror ∇
Q Phase-space discriminant \& mirror
QThe "other way around" (limited!)
QYukawa couplings

Q World-sheet instantons ∇
Q Gromov-Witten invariants soon? $\underset{\sim}{\square}$

- Will there be anything else? ...being ML-datamined $d\left(\theta^{(k)}\right):=k!\operatorname{Vol}\left(\theta^{(k)}\right)$ [BH: signed by orientation!]
© Trans-polar ${ }^{\nabla}$ constr.
- Newton $\Delta_{X}:=\left(\Delta_{X}^{\star}\right)^{\nabla}$
@ VEX polytopes s.t.: $\left((\Delta)^{\nabla}\right)^{\nabla}=\Delta$
@ Star-triangulable w/flip-folded faces
- Polytope extension
\Leftrightarrow Laurent monomials
Toric textbooks to be

Laurent Family Picture

Summary

CY(n-1)-folds in Hirzebruch n-folds F

A deformation family picture
© Oriented polytopes

mials
ks to be xtended

Laurent Family Picture

Summary

 - ...threescore-six moons ago, today -© CY($n-1$)-folds in Hirzebruch n-folds
© Oriented polytopes

Laurent Family Picture

Summary

© CY($n-1$)-folds in Hirzebruch n-folds
© Oriented polytopes
$\sqrt{ }$ regular defo $\xrightarrow{\epsilon \rightarrow 0}$ Laurent defo

New? Toric Spaces

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
$\Theta^{\text {A deformation family of }}$ CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{9}$ In toric-speak (blueprint):

New? Toric Spaces

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
θ A deformation family of CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{\bullet}$ In toric-speak (blueprint):
© Pick one \& transpose [BH '92]

New? Toric Spaces

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
θ A deformation family of CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{\bullet}$ In toric-speak (blueprint):
@ Pick one \& transpose [BH '92]

New? Toric Spaces

BH

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
$Q_{\text {A deformation family of }}$ CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{9}$ In toric-speak (blueprint):
Q Pick one \& transpose [BH '92]

- Fano ($m=0,1,2$): " $\nabla=\circ$ " ("polar") $m>2$, transpolat dice-wise polar)
- The "extension" \leftrightarrow "non-convexity" for all $m>2$

Q Pick simplicial subsets for defining sections \rightarrow multiple mirrors

$$
x_{3}^{5}+x_{4}^{5}+\frac{x_{2}^{2}}{x_{4}}
$$

New? Toric Spaces

BH

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
$Q_{\text {A deformation family of }}$ CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{9}$ In toric-speak (blueprint):
Q Pick one \& transpose [BH '92]

$Q^{\text {Fano }(~} m=0,1,2$): " $\nabla=\circ$ " ("polar") $m>2$, transpolat face-wise polar)

- The "extension" \leftrightarrow "non-convexity" for all $m>2$
- Pick simplicial subsets for defining sections \rightarrow multiple mirrors

$$
x_{3}^{4} x_{4}+x_{4}^{5}+\frac{x_{2}^{8}}{x_{4}}
$$

New? Toric Spaces

BH

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
$Q_{\text {A deformation family of }}$ CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{9}$ In toric-speak (blueprint):
Q Pick one \& transpose [BH '92]

- Fano ($m=0,1,2$): " $\nabla=\circ$ " ("polar") $m>2$, transpolat face-wise polar)
- The "extension" \leftrightarrow "non-convexity" for all $m>2$
Q Pick simplicial subsets for defining sections \rightarrow multiple mirrors

$$
x_{18}^{4} x_{4}+x_{3} x_{4}^{4}+\frac{x_{2}^{2}}{x_{4}}
$$

New? Toric Spaces

BH

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
$Q_{\text {A deformation family of }}$ CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{9}$ In toric-speak (blueprint):
Q Pick one \& transpose [BH '92]

$\bigoplus^{\text {Fano (}} m=0,1,2$): " $\nabla=\circ$ " ("polar") $m>2$, transpolar face-wise polar)
Q The "extension" \leftrightarrow "non-convexity" for all $m>2$

Q Pick simplicial subsets for defining sections \rightarrow multiple mirrors

New? Toric Spaces

BH

Sit Tight and Assess

Q Step back for the "big picture"
Q Toric (complex algebraic) variety
$Q_{\text {A deformation family of }}$ CY hypersurfaces: $F_{m}^{(m)}\left[c_{1}\right]$
${ }^{\bullet}$ In toric-speak (blueprint):
Q Pick one \& transpose [BH '92]

$\ominus^{\text {Fano (}} m=0,1,2$): " $\nabla=\circ$ " ("polar") $m>2$, transpolar face-wise polar)
Q The "extension" \leftrightarrow "non-convexity" for all $m>2$
Q Pick simplicial subsets for defining sections \rightarrow multiple mirrors
${ }^{\bullet}$ This "big picture" $\stackrel{?}{=}$ "generating function"

New? Toric Spaces

Sit Tight and Assess

© GLSM: $U(1)^{n}$-gauge symmetry; worldsheet SuSy: $U(1)^{n} \rightarrow\left(\mathbb{C}^{*}\right)^{n}$
Q Regular monomials \leftrightarrow toric (complex algebraic) variety
Q which ${ }^{\nabla} F_{m}^{(n)} \ldots$ isn't. - Who ordered ${ }^{\nabla} F_{m}^{(n)}$?
Q Just as $\Sigma_{F_{m}^{(n)}}$ encodes $F_{m}^{(n)}$: Q top cone = local chart; Q codim-1-cone = gluing

Q so does its transpolar Qa $2 n$-dim manifold $\mathrm{w} / U(1)^{n}$-action Q the.. transpolar of $F_{m}^{(n)}$, denoted ${ }^{\nabla} F_{m}^{(n)}$
© General multifans (\& multitopes) correspond to
Q torus manifolds $=$ real $2 n$-dim mflds $w / U(1)^{n}$-action [Masuda, 1999, 2000; Hattori +Masuda, 2003]

New? Toric Spaces

Sit Tight and Assess
Can we now use all of it?!

Q What is this " ${ }^{(n) " \text { " }}$? (Such that ${ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right] \stackrel{\text { mm }}{\longleftrightarrow} F_{m}^{(n)}\left[c_{1}\right]$?)
$@$ Fan $\left\{\sigma_{i} ;<\right\}$ of $\Delta_{F_{m}^{(n)}} \leftrightarrow$ atlas of charts $U_{\sigma_{i}} \approx \mathbb{C}^{n}, \operatorname{dim} \sigma_{i}=n$
Q But one chart is oriented reversely...

New? Toric Spaces

Sit Tight and Assess

$@$ Fan $\left\{\sigma_{i} ;<\right\}$ of $\Delta_{F_{m}^{(n)}} \leftrightarrow$ atlas of charts $U_{\sigma_{i}} \approx \mathbb{C}^{n}, \operatorname{dim} \sigma_{i}=n$
QBut one chart is oriented reversely...
Q Every flip-folded cone/facet can be surgically rev.-engineered

New? Toric Spaces

Sit Tight and Assess
Can we now use all of it?!
Q What is this " ${ }^{(n) " ~}$? (Such that ${ }^{\nabla} F_{m}^{(n)}\left[c_{1}\right] \stackrel{\text { mm }}{\longleftrightarrow} F_{m}^{(n)}\left[c_{1}\right]$?)
\ominus Fan $\left\{\sigma_{i} ;<\right\}$ of $\Delta_{F_{m}^{(n)}} \leftrightarrow$ atlas of charts $U_{\sigma_{i}} \approx \mathbb{C}^{n}, \operatorname{dim} \sigma_{i}=n$
QBut one chart is oriented reversely...
Q Every flip-folded cone/facet can be surgically rev.-engineered
Q...from regular (cpx. alg.) toric varieties and (non-algebraic) torus manifolds
[Masuda, 1999, 2000; torus
Hattori + Masuda, 2003]

How Hard Can it Be?

Constructing CY \subset Some "Nice" Ambient Space

- Reduce to 0 dimensions: $\mathbb{P}^{4}[5] \rightarrow \mathbb{P}^{3}[4] \rightarrow \mathbb{P}^{2}[3] \rightarrow \mathbb{P}^{1}[2]$

