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Introduction
• The first example of AdS/CFT:  [Maldacena,……..] 

Type IIB string in    

Obtained by taking the decoupling limit of a stalk of D3 branes


• Another well-studied example:  [ABJM 2008] 

M-theory on   ABJM theory 

Obtained by taking the decoupling limit of a stalk of M2 branes


•But what about examples of  ?

Known only in the tensionless limit:  [Eberhardt,Gaberdiel,Gopakumar] 

Type IIB string theory in  supported by 1 unit of NS-NS H-flux (tensionless limit) 

   

AdS5 × S5 ⟺ 𝒩 = 4, SYM

AdS4 × S7/Γ ⟺ 𝒩 = 6, d = 3

AdS3/CFT2

AdS3 × S3 × T4

⟺ 𝒩 = (4,4), d = 2, (T4)N /SN



Question:


What is the status of the  holographic duality at a generic point in the moduli 

space?


Answer:


We DO NOT know the answer in full generality!

AdS3/CFT2

However, progress has been made recently in understanding this duality when type IIB 
string theory   is supported by pure NS-NS 2-form B-flux.  In some cases, 

we understand the full/exact holographic duality, and in some other cases, we 
understand the duality in an effective sense. 

AdS3 × 𝒩

Black holes are the culprits!



Results/Proposal



(I) Exact duality

Full type IIB string theory in  with pure NS-NS flux and  





 ,   


•  is an exactly marginal operator in the  twisted sector


•  is normalizable


• Spacetime central charge: ,  is the F1 string number; 


• No normalizable ground state, no BTZ black holes in the spectrum


•  is sub-stringy, no SUGRA description


• All  models are non-critical; e.g.  

AdS3 × 𝒩 k =
R2

ads

α′ 

< 1

⟺

N = (2,2),
(ℝϕ × 𝒩)p

Sp
+ Σ[2] c = 6kp

Σ[2] ℤ2

Σ[2]

c = 6kp p g2
ws ∼ 1/p

AdS3

k < 1 AdS3 × (S1 × LGn)/ℤn ≡ AdS3 × S3
♭

[Balthazar,Giveon,Kutasov,Martinec]



(II) Effective duality

Perturbative type IIB string theory in  with pure NS-NS flux and  





  ,    in the  limit


•  is an exactly marginal operator in the  twisted sector


•  is non-normalizable


• Spacetime central charge: ,  is the F1 string number; 


• Valid for states that remain finite when the spacetime central charge goes to infinity

• No black hole states


• SUGRA description for large 


• Examples: , , , ,  , , etc.

AdS3 × 𝒩 k =
R2

ads

α′ 

≥ 1

⟺

N = (2,2),
(ℝϕ × 𝒩)p

Sp
+ Σ[2] c = 6kp p → ∞

Σ[2] ℤ2

Σ[2]

c = 6kp p g2
s ∼ 1/p

k
AdS3 × T3 k = 1 AdS3 × S3 × T4 k ≥ 2 AdS3 × S3 × S3 × S1 k ≥ 1

[Eberhardt]



All the exact string backgrounds discussed in the 
previous slides can be obtained as the decoupling limit of 

some NS5-F1 bound state systems!
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AdS3



1. Review of perturbative string theory in AdS3



Perturbative superstrings in  with NS-NS B-fluxAdS3 × 𝒩
•Fermionic strings in : bosonic  WZW model at  level  and  fermions 

 that give  affine Lie algebra at level 


•Total  level is  and 


•The worldsheet sigma model is invariant under  affine symmetry 

at level  ( , in general, is not an integer)


•  is a unitary compact  SCFT on the worldsheet whose central charge is 
determined from the worldsheet criticality





• If  has spacetime  superconformal symmetry, then type II GSO projection 
is imposed by demanding the mutual locality of the vertex operators with the spacetime 
supercharges [Argurio,Giveon,Shomer, 2000]

AdS3 SL(2,R) k + 2 3
ψa SL(2,R) −2

SL(2,R) (k + 2) + (−2) = k Rads = kα′ = kls
SL(2,R)L × SL(2,R)R

k k
𝒩 N = 1

(3 +
6
k ) +

3
2

+ c𝒩 = 15

𝒩 N = (2,2)



 vs k < 1 k > 1
 models are significantly different from those with  

•For , the spacetime CFT has normalizable  invariant ground state and the high 
energy spectrum is dominated by BTZ black holes


•For , neither the  invariant ground state nor the BTZ black holes are in the 
spectrum. Perturbative long strings dominate the high-energy spectrum  

k < 1 k > 1

k > 1 SL(2,C)

k < 1 SL(2,C)

0.0 0.5 1.0 1.5 2.0
k0.0

0.5

1.0

1.5

2.0
S•  is the correspondence point. The black hole 

entropy and the perturbative string entropy match 
(including numerical factors)

k = 1

String-Black hole 
transition at 


!k = 1
[Giveon,Kutasov,Rabinovici,Sever]



Perturbative string spectrum
Bosonic  current algebra:      


 : primary operators under bosonic  with worldsheet conformal dimension





 satisfies the following OPEs:





SL(2,R)k+2 ja(z)jb(0) ∼
k + 2
2z2

ηab + iϵab
c

jc(0)
z

Φ(0)
j,m,m̄ SL(2,R)k+2

h[Φ(0)
j,m,m̄] = −

j( j − 1)
k

Φ(0)
j,m,m̄

j3(z)Φ(0)
j;m,m̄(0) ∼

m
z

Φ(0)
j;m,m̄(0)

j±(z)Φ(0)
j;m,m̄(0) ∼

m ∓ ( j − 1)
z

Φ(0)
j;m±1,m̄(0)



Some of the operators  correspond to normalizable and delta function normalizable 
states. 


(i) Normalizable states (short string states/bound states) belong to unitary discrete 
representations  of . Unitarity and normalizability range for 


 


with  for , and  for   (  are in states and  are out 
states).


(ii) Delta-function normalizable states (long string states/scattering states) belong to the 
principal continuous series   of 


, 


 are in states,  are out states.

Φ(0)
j,m,m̄

D±
j SL(2,R) j

1
2

< j <
1
2

(k + 1)

m − j ∈ N≥0 D+
j −j − m̄ ∈ N≥0 D−

j D−
j D+

j

Cj SL(2,R)

j ∈
1
2

+ is, s ∈ R

s < 0 s > 0
The  vacuum corresponds to  which is non-normalizable for , 

according to the unitarity bound on .
AdS3 j = 1 k < 1

j



Spectrally flowed states
Bosonic  CFT also admits spectrally flowed representations. 


: spectrally flowed vertex operators with worldsheet dimension   





 satisfies the following OPEs:


       





In superstrings:               which is equivalent to      

SL(2,R)

Φ(w)
j,m,m̄

h[Φ(w)
j,m,m̄] = −

j( j − 1)
k

−mw −
k + 2

4
w2

Φ(w)
j,m,m̄

j3(z)Φ(w)
j;m,m̄(0) ∼

m+ k + 2
2 w

z
Φ(w)

j;m,m̄(0)

j±(z)Φ(w)
j;m,m̄(0) ∼

m ∓ ( j − 1)
z±w+1

Φ(w)
j;m±1,m̄(0)

Φ(w)
j,m,m̄ → e−iw(Hsl+H̄sl)Φ(w)

j,m,m̄ k → k − 2

However, the winding  is not a conserved quantum number!w



Short strings vs Long strings

Short strings/bound states Long strings/scattering states

[Maldacena,Ooguri]



Normalizable/delta-function normalizable states in string theory in 




States in the Hilbert space of the boundary 

AdS3
⟺

CFT2

Non-normalizable worldsheet operators




Local operators of the boundary CFT
⟺

Via the holographic duality string theory in  is dual to a conformal field theory living 
on the boundary 

AdS3




with        

hst = − m −
kw
2

, h̄st = − m̄ −
kw
2

m − m̄ ∈ ℤ

Spacetime OPE coefficient   Worldsheet OPE coefficients⟺

Holographic dictionary

[Giveon-Kutasov-Seiberg]

[Kutasov-Seiberg]

[Maldacena-Ooguri]

[Eberhardt-Dei]



2. An intuitive realization of the proposal



Long Strings in AdS3 × 𝒩
• The theory on a single long string was analyzed by Seiberg&Witten in 1999. For string 

theory on  with pure NS-NS flux, the theory on a single long string is 
described by a sigma model


   .


•  can be identified as the radial direction of .


• The theory on  has a linear dilaton with slope:


 .


• Effective coupling of the long strings (not to be confused with the worldsheet coupling): 


.


• The dynamics of the long strings heavily depend on the if .


AdS3 × 𝒩

ℳ(ℓ)
6k = ℝϕ × 𝒩

ϕ AdS3

ℝϕ

Qℓ = (1 − k)
2
k

gℓ(ϕ) ∼ exp (−
1
2

Qℓ ϕ)
k < 1, k > 1



•For  the Seiberg-Witten long strings are free near the boundary ( ).k < 1 ϕ → ∞

ϕ

gl(ϕ)

weakly coupled 

long strings

• Near the boundary, the SW long strings form a symmetric 
product


 ,   .


• Winding    twisted sector 


• The SW long string symmetric product description 
breaks down at finite  .

(ℳ(ℓ)
6k )p

Sp
c = 6kp

w ↔ ℤ|w|

ϕ

• This is expected because the discrete states live at finite  and DO NOT form a 
symmetric product.


Full boundary CFT =  twisted marginal deformation 

ϕ

(ℳ(ℓ)
6k )p

Sp
+ (Σ[2])

k < 1



Properties of the deforming operator
1. Should be an exactly marginal  operator in the  twisted sector


2. The radial profile (or the  profile) is such that it goes to zero  near the boundary and 

shields the strong coupling region (like Liouville theory) 


3. Must preserve supersymmetry


4. Must generate the full spectrum of discrete states


5. Normalizable

ℤ2

ϕ

Remember: there are no black holes in the spectrum 

(perturbative string states account for the full spectrum)




EXACT description of the boundary CFT

⟺

Identify  from the worldsheet analysisΣ[2]



k > 1
•For  the SW, long strings are strongly coupled near the boundary ( ).k > 1 ϕ → ∞

ϕ

gl(ϕ)

weakly coupled 

long strings

•Strong coupling of the long strings accounts for  the 
black hole states  [Giveon,Kutasov,Rabinovici,Sever] 

•Worldsheet perturbation theory will not see the 
strong coupling region  

•SW symmetric product description of the long strings is 
still valid in perturbation theory


•SW symmetric product description breaks down at 
finite 

(g2
ws ∼ k/p)

ϕ As an effective  duality, one can still propose


   


as the boundary theory  for 

AdS3/CFT2

(ℳ(ℓ)
6k )p

Sp
+ Σ[2], large  p

E ≪ EBTZ



Properties of the deforming operator
1. Should be an exactly marginal operator in the  twisted sector


2. The radial profile (or the  profile) is such that it goes to zero  near the boundary and 

shields the weak coupling region (UNLIKE Liouville theory) 


3. Must generate the full spectrum of discrete states


4. Must preserve supersymmetry


5. Non-normalizable

ℤ2

ϕ

The full theory has BTZ black holes in the spectrum, but the effective 
 duality will not see the non-perturbative states!AdS3/CFT2



The  case is a bit tricky.


The boundary CFT is still


.


But it’s unclear whether the proposed duality is exact or effective.


This requires more analysis.

k = 1

(ℳ(ℓ)
6k )p

Sp
+ Σ[2]

k = 1



3. Identify  from the worldsheet analysisΣ[2]



Superstrings in  with pure NS-NS flux.


Consider the operator         in the SW long string 

theory  .


It has spacetime dimensions:  .


The corresponding worldsheet operator in the  picture:


   


with     .

AdS3 × 𝒩

eβϕ, β = −
Qℓ

2
+ ip, p ∈ ℝ

ℳ(ℓ)
6k = ℝϕ × 𝒩

hst = h̄st = −
1
2

β(β + Qℓ) =
p2

2
+

Q2
ℓ

8

(−1, − 1)

eβϕ ⟷ e−φ−φ̄ ei(Hsl+H̄sl) Φ(−1)
j;m,m̄

j =
1
2

+ is, p = s
2
k

Worldsheet analysis (k < 1)



Taking derivative:       


In the limit  (removing LSZ poles on the worldsheet side)


∂xeβϕ ⟷ e−φ−φ̄ [J−
0 , ei(Hsl+H̄sl) Φ(−1)

j;m,m̄]
β → 0

∂xϕ ⟷ e−φ−φ̄ [ 1

2(1 − k)
(∂φ + i∂Hsl) ei(Hsl+H̄sl) Φ(−1)

1− k
2 ; k

2 −1, k
2

− ψ3
sl eiH̄sl Φ(−1)

1− k
2 ; k

2 , k
2 ]

In the SW theory, the operator  is holomorphic: .

(Because it doesn’t know anything about the physics at finite )


BUT


In the full spacetime theory  is not holomorphic.

In fact, in the full theory (information about the deforming operator )

∂xϕ ∂x∂x̄ϕ = 0
ϕ

∂xϕ
∂x∂x̄ϕ = Σ[2]



To probe the deformation of the SW symmetric product, one needs to calculate  in 
the bulk (full worldsheet) description.


This gives (up to BRST exact terms)


. 


This is an operator with  that must correspond to an operator in the untwisted 
sector of the symmetric product.


The spacetime dual of the RHS is proportional to  .


The Lagrangian of the deformed SW theory: .


Just modifies the kinetic term on  which can be removed by field redefinition. 

Thus, the symmetric product structure is preserved. 


We want an operator in the  twisted sector!

∂x∂x̄ϕ

∂x∂x̄ϕ ⟷ e−φ−φ̄ ei(Hsl+H̄sl) (∂φ + i∂Hsl)(∂̄φ̄ + i∂̄H̄sl) Φ(−1)
1− k

2 ; k
2 −1, k

2 −1

w = − 1

∂xϕ∂x̄ϕ e−Qℓϕ

ℒblock = (1 + e−Qℓϕ) ∂xϕ∂x̄ϕ + ℒ𝒩

ℝϕ

ℤ2



FZZ duality: relates winding  operators with  winding 


.

w w − 1

Φ(w)
j;−j,−j ≡ Φ(w−1)

k
2 +1−j; k

2 +1−j, k
2 +1−j

So the relevant normalizable operator with winding  is 





This corresponds to a  twisted marginal operator in the spacetime.


Its  radial profile goes like    where


.


In the  covering space, the radial profile is .


w = − 2

e−φ−φ̄ ei(Hsl+H̄sl) (∂φ + i∂Hsl)(∂̄φ̄ + i∂̄H̄sl) Φ(−2)
k;k,k .

ℤ2

e
− 1

2 k
ϕS

ϕS =
1

2
(ϕ1 + ϕ2)

ℤ2 e− k
2 ϕ



ϕ

gl(ϕ)

Weak coupling
Wall

• The wall shields the strong coupling region.


• The wall nicely explains the discrete states

Next step: dress it up with appropriate twist operators 



 superconformal background N = 2 AdS3 × S1 × ℳ
The deformation preserves supersymmetry: it must be the top component of a 
superfield. The bottom component should be a chiral (anti-chiral) primary of dimension  

 of the form


 


The -twisted marginal operator is given by


.    


Example:    a.k.a       [Balthazar,Giveon,Kutasov,Martinec]

( 1
2

,
1
2 )

Σ±Σ̄±, Σ± = exp [−
1

2 k
(ϕS ∓ iYS)](σϕA

σYA
σ±

ψA
)Σ±

ℳ .

ℤ2

Σ[2] ∼ Gα
− 1

2
Ḡᾱ

− 1
2
ΣαΣ̄ᾱ

AdS3 × (S1
Y × LGn)/ℤn AdS3 × S3

♭



k ≥ 1
•Everything discussed for  also holds for  


•The worldsheet operator is non-normalizable; non-normalizable 
deformation


•The deformation exactly reproduces the discrete states in the spectrum                                                                                                                                                                          
[Eberhardt] [Hikida,Schomerus]


•Tells us nothing about the BTZ black hole states; hence effective


•Not clear if black holes exist in the  case; requires more analysis

k < 1 k ≥ 1

k = 1



Weak Coupling
Wall

•The wall shields the weak coupling region


•The wall reproduces the  perturbative discrete states


•Perturbative string theory will not see the strong coupling region


•Can’t say anything about the black hole states

ϕ

gl(ϕ)



Examples

•  for  ,  is a positive integer


 


.


• ,   ,   positive integers  ,





.


AdS3 × S3 × T4 k ≥ 2 k

N = (4,4), (ℝϕ × SU(2)k × T4)
p
/Sp + Σ[2],

Σ = σϕA
σWZWσ𝕋4sαe

− 1
2 k

ϕS

AdS3 × S3 × S3 × S1 1
k

=
1
k1

+
1
k2

k1,2 ≥ 2

N = (4,4), (ℝϕ × SU(2)k1
× SU(2)k2

× S1)
p
/Sp + Σ[2],

Σ = σϕA
σWZW1

σWZW2
σ𝕊1sαe

− 1
2 k

ϕS



Checks

• 1-1 scattering of long strings: Poles of the reflection coefficient  give the 
full spectrum of discrete states  [Hikida,Schomerus]


• Matching of the correlation function in perturbation theory [Eberhardt]



Conclusion
•String theory in  with NS-NS H-flux  symmetric product of  SW 

long string CFT deformed by a twist two marginal operator.


•For  the duality is an exact one


•For  the duality is an effective one (holds for )


•The black holes or any non-perturbative state are not present in either of the two 
cases


•We do not fully understand the case . Further analysis is required. 


•There are twist-2, marginal RR moduli. Requires investigation

•How to bring the black holes into the spectrum? Any comments/suggestions are 
welcomed!

AdS3 × 𝒩 ⟺

Rads/ls < 1

Rads/ls ≥ 1 E ≪ EBTZ

Rads/ls = 1



Thank you!




