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• As is well-known, gauge theories are of extreme importance in our modern understanding 
of physics: Particle Physics, Condensed Matter, Pure Mathematics, etc. 

• In particular, our best description of elementary particles is given in terms of a gauge theory 
known as the standard model of particle physics. 

• However, the QCD sector is rather difficult too understand due to asymptotic freedom.  

•  High-Energy regime well-understood: Weakly coupled as . 

•  Low-Energy regime mysterious to this day: Strongly coupled as , and perturbative 
methods lose their usefulness. We do not understand why QCD is trivially gapped! 

• Valuable to gather intuition about QCD in strongly coupled regime by studying related 
models.
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• Quantum Chromodynamics in two spacetime dimensions an important 
playground for studying strongly-coupled dynamics. 

• Recent Advances: Non-Invertible Symmetries help understand important 
properties in QFT: (de)confinement; vacuum structure; spectra. 

• This work: Characterize the spectrum of 2D QCD theories when gapped. 

Introduction and Motivation



A pedagogical Example
Introducing key concepts:



The low-energy regime of QFTs can be organized as follows: 

• Gapless:  There are states with an energy arbitrarily closed to that of the vacuum. 
                   

• Typically described by a CFT (e.g. Free Maxwell Theory in Four Dimensions).
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•Particles: Excitations above a single vacuum state. 

•Solitons: Excitations that interpolate between distinct vacua. 

Some Key Concepts: Particles and Solitons

x

ϕ(x)

x

ϕ(x)

Cannot continuously deform soliton to particle: requires changing boundary condition at infinity.

|Ω1⟩

|Ω2⟩

|Ω0⟩|Ω0⟩

Two qualitative different type of physical excitations:
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ϕ
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Schematically: Scalar field theory in two spacetime dimensions.  
Landau-Ginzburg realization of the model with potential

• Turning on  sets up a relevant deformation 
(  deformation).  

• Spectrum is gapped, and there are two ground 
states.

λ
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An integrable/pedagogical Example

No reflection symmetry in potential!

ϕ

V (ϕ ) V(ϕ) = ϕ6 − 10λ3ϕ3 + 12λ5ϕ

Schematically: Scalar field theory in two spacetime dimensions.  
Landau-Ginzburg realization of the model with potential

[Lassig-Mussardo-Cardy, Zamolodchikov]

mp = ms

Natural interpretation to this phenomenon?

All the states have the same mass:

|s⟩ |p⟩| s̄⟩

Massive spectrum of the theory consists of a soliton-
antisoliton pair connecting the two vacua, and a single 
particle state on one vacuum only:

Tricritical Ising Model ( ) deformed by a magnetic deformation ( ).M4 +λ ϕ(2,1)



  Generalized Symmetry and Topology 
   Contemporary understanding of symmetry in a physical system:  A physical excitation in the system 
which can be continuously deformed at no cost in energy. A topological operator in the theory.  
[D. Gaiotto, A. Kapustin, N. Seiberg, B. Willet. 1412.5148]. 
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  Generalized Symmetry and Topology 

U(M) = exp(∫M
j) Ua × Ub = 1 Ua × Ub = ∑

c

Nc
abUc

 !

U(M) U(M 0)

Ua

Ub

=

Ua ⇥ Ub

Textbook example: (Invertible) (Non-Invertible) 

Spontaneous Symmetry Breaking.  

Imply energetic degeneracies.

Can be anomalous (and thus constrain RG flows).  

May be gauged if non-anomalous
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Simplest Example: Verlinde Line Operators in 2D RCFT

Z(ℛ)
T2 (τ, τ̄) = ∑

i

χi(τ) χ̄i(τ̄) ϕi × ϕj = ∑
k

Nk
ij ϕk

ℒk |ϕi⟩ =
Ski

S0i
|ϕi⟩

[Verlinde Nucl. Phys. B300 (1988) 360–376]. 
[N. Drukker, D. Gaiotto, J. Gomis (1003.1112)].
[C-M. Chang, Y-H. Lin, S-H. Shao, Y. Wang, X. Yin. (1802.04445)].

ℒi × ℒj = ∑
k

Nk
ij ℒk

Diagonal 2D RCFT :ℛ Primary operators ϕi

�i �i=
Ski

S0i

ℒk

Line operators ℒi
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Simplest Example: Verlinde Line Operators in 2D RCFT

Z(ℛ)
T2 (τ, τ̄) = ∑

i

χi(τ) χ̄i(τ̄) ϕi × ϕj = ∑
k

Nk
ij ϕk

ℒk |ϕi⟩ =
Ski

S0i
|ϕi⟩

[Verlinde Nucl. Phys. B300 (1988) 360–376]. 
[N. Drukker, D. Gaiotto, J. Gomis (1003.1112)].
[C-M. Chang, Y-H. Lin, S-H. Shao, Y. Wang, X. Yin. (1802.04445)].

ℒi × ℒj = ∑
k

Nk
ij ℒk

Diagonal 2D RCFT :ℛ Primary operators ϕi

Trigger a Renormalization Group Flow by a 
relevant operator :ϕi*

ℛ + λ ϕi*
Verlinde lines preserved throughout the RG flow

ℒk preserved ⟺
Sk i*

S0 i*
=

Si 0

S0 0

ℛ
+λ ϕi* RG Flow

�i �i=
Ski

S0i

ℒk

Line operators ℒk



CC

UV

IR

M4

M4 + λ ϕ(2,1)

Massive/Gapped Phase
Two Vacua

An integrable/pedagogical Example
Minimal models are clearly under good technical control.

W × W = 1 + W

η × η = 1

(Known spectra of primaries, modular S-matrix, etc…)

η × N = N × η = N
N × N = 1 + η

At the UV CFT point:

Triggering the  deformationϕ(2,1)

+λ ϕ(2,1)

W × W = 1 + W
Preserved along the flow

[C-M. Chang, Y-H. Lin, S-H. Shao, Y. Wang, X. Yin. (1802.04445)]
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Minimal models are clearly under good technical control.

W × W = 1 + W

η × η = 1

(Known spectra of primaries, modular S-matrix, etc…)

η × N = N × η = N
N × N = 1 + η

At the UV CFT point:

Triggering the  deformationϕ(2,1)

+λ ϕ(2,1)

W × W = 1 + W
Preserved along the flow

[C-M. Chang, Y-H. Lin, S-H. Shao, Y. Wang, X. Yin. (1802.04445)]

Interestingly, this is a non-invertible symmetry!
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Symmetry and Boundary Conditions

   Solitons: Need to quantize the theory over the real line. Impose boundary conditions at infinity.

   Topologically gapped 2D QFT: IR is a 2D TQFT, consisting on many vacua (topological local operators), 
acted over by the (possibly non-invertible) symmetry of the QFT.

[T-C. Huang, Y-H. Lin, S. Seifnashri (2110.02958)].
[G. Moore, G. Segal (0609042].

[G. Moore. ‘‘ A few remarks on topological field theory ’’]

QFT 𝒯

Vacua at infinity.

Boundary conditions given by the 
vacua of the IR 2D TQFT.
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Symmetry and Boundary Conditions

nm : Hm,n

   The Hilbert space is decomposed into sectors labeled by the boundary conditions to the infinite 
left and to the infinite right 

• If  with : state is a soliton. 

• If  state is a particle over the vacua . No interpolation of vacua.

|ψm,n⟩ ∈ ℋm,n m ≠ n

|ψn,n⟩ ∈ ℋn,n |Ωn⟩

• Clearly, local operators preserve sector. 

• Spontaneously broken symmetry: acts over the vacua. Sectors may be permuted/intertwined.

‘‘Interpolates between vacua  at  and  at ’’|Ωm⟩ −∞ |Ωn⟩ +∞

r

m

a
s

n

: Hm,n ! Hr,s



An integrable/pedagogical Example

ϕ

V (ϕ )

V(ϕ) = ϕ6 − 10λ3ϕ3 + 12λ5ϕ

Massive spectrum consists of a soliton-antisoliton pair connecting the two vacua, and a single particle state 
on one vacuum only. All the states have the same mass.

W × W = 1 + W

   Multiplets of states relating particles and solitons in 2D via non-invertible symmetry [2403.08883]:

W

1

W
W

W

nm : Hm,n

   Symmetry spontaneously broken (gapped phase):

[C-M. Chang, Y-H. Lin, S-H. Shao, Y. Wang, X. Yin. (1802.04445)].

ℋ1,1 ⊕ ℋ1,W ⊕ ℋW,1 ⊕ ℋW,W

[Lassig-Mussardo-Cardy, Zamolodchikov]

e.g. : ℋ1,W → ℋW,W



An integrable/pedagogical Example

ϕ

V (ϕ )

V(ϕ) = ϕ6 − 10λ3ϕ3 + 12λ5ϕ

Massive spectrum consists of a soliton-antisoliton pair connecting the two vacua, and a single particle state 
on one vacuum only. All the states have the same mass.

W × W = 1 + W

1 W

   Multiplets of states relating particles and solitons in 2D via non-invertible symmetry [2403.08883]:

W

1

W
W

W

nm : Hm,n

   Symmetry spontaneously broken (gapped phase):

[C-M. Chang, Y-H. Lin, S-H. Shao, Y. Wang, X. Yin. (1802.04445)].
[Lassig-Mussardo-Cardy, Zamolodchikov]

Recover the particle-soliton degeneracies 
of the spectrum from the non-invertible 
(Fibonacci) symmetry in the flow!

e.g. : ℋ1,W → ℋW,W

ℋ1,1 ⊕ ℋ1,W ⊕ ℋW,1 ⊕ ℋW,W



Another example: M4 − λ ϕ(1,3)

η × η = 1 η × N = N × η = N

N × N = 1 + η

Fully spontaneously broken.

ϕ

V (ϕ )

 Tambara-Yamagami (Ising) Soliton Degeneracy:ℤ2

Lines  preserved by  deformation.1, η and N ϕ(1,3)
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N × N = 1 + η

Fully spontaneously broken.

ϕ

V (ϕ )

 Tambara-Yamagami (Ising) Soliton Degeneracy:ℤ2

1 N η

Allowed quiver diagrams (representations):

Lines  preserved by  deformation.1, η and N ϕ(1,3)
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Another example: M4 − λ ϕ(1,3)

η × η = 1 η × N = N × η = N

N × N = 1 + η

Generalization: Mn − ϕ(1,3)

⋯
-fold soliton degeneracy2(n − 2) [Zamolodchikov. Nucl.Phys.B 358 (1991) 497-523].

Fully spontaneously broken.

ϕ

V (ϕ )

 Tambara-Yamagami (Ising) Soliton Degeneracy:ℤ2

1 N η

Allowed quiver diagrams (representations):

Lines  preserved by  deformation.1, η and N ϕ(1,3)

1

N

η

1 N η

[2403.08883]
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1 vA 1 A B v

SO(3) + ψ5 PSU(4) + ψ15

Core Finding: Particle and Soliton states often appear in the same 
representation of a non-invertible symmetry, and thus have equal masses.

Goal: Apply this observation in the context of 2D QCD.

Concrete QCD Examples:

The goal

  Non-simply-connected gauge groups to disregard one-form symmetry throughout the flow: finite excitations only



Setting up 2D QCD



Setup for (massless) 2D QCD 

Sf(gYM) = ∫ d2x[ −
1

4g2
YM

Tr(F2) + Tr(ψT iD ψ)]

The theory we consider is QCD in two spacetime dimensions. The gauge group is  and the 
matter fields are massless fermions transforming in some (irreducible) representation  of . In 
other words:

G
R G

Bosonize: Gauged WZW model with  matter content and  gauge fields, plus 
kinetic term for gauge fields:

Spin(dim(R))1 G

Sb(gYM) = SWZW(gYM, A) −
1

4g2
YM ∫Σ

d2x Tr(F2)
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Setup for (massless) 2D QCD 

Sf(gYM) = ∫ d2x[ −
1

4g2
YM

Tr(F2) + Tr(ψT iD ψ)]

The theory we consider is QCD in two spacetime dimensions. The gauge group is  and the 
matter fields are massless fermions transforming in some (irreducible) representation  of . In 
other words:

G
R G

Bosonize: Gauged WZW model with  matter content and  gauge fields, plus 
kinetic term for gauge fields:

Spin(dim(R))1 G

Sb(gYM) = SWZW(gYM, A) −
1

4g2
YM ∫Σ

d2x Tr(F2)

In principle, no loss of information: fermionization/bosonization invertible.
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Constrains on Particle-Soliton states  Focus on gapped 2D QCD theories.⟹

Setup for (massless) 2D QCD 

When is a 2D QCD theory gapped?



[Z. Komargodski, K. Ohmori, K. Roumpedakis, S. Seifnashri. (2008.07567)] 
[D. Delmastro, J. Gomis, M. Yu. (2108.02202)]

A series of results illuminate how to describe the low-energy regime:

Gap criterion: The theory is gapped if and only if the corresponding coset has a vanishing 
central charge:

Spin(dim(R))1

GI(R)

with cSpin(dim(R))1
GI(R)

= cSpin(dim(R))1
− cGI(R)

= 0

Constrains on Particle-Soliton states  Focus on gapped 2D QCD theories.⟹

Setup for (massless) 2D QCD 
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[D. Delmastro, J. Gomis, M. Yu. (2108.02202)]

Gap criterion: The theory is gapped if and only if the corresponding coset has a vanishing 
central charge:

Spin(dim(R))1

GI(R)

with cSpin(dim(R))1
GI(R)

= cSpin(dim(R))1
− cGI(R)

= 0

Constrains on Particle-Soliton states  Focus on gapped 2D QCD theories.⟹

lim
gYM→∞

Sb(gYM) = SgWZW(A)

Wish to study the action of non-invertible symmetries over vacua:

Spin(dim(R))1

GI(R)
Topological Coset

Setup for (massless) 2D QCD 



Setup for (massless) 2D QCD 

Sf(gYM) = ∫ d2x[ −
1

4g2
YM

Tr(F2) + Tr(ψT iD ψ)]

The theory we consider is QCD in two spacetime dimensions. The gauge group is  and the 
matter fields are massless fermions transforming in some (irreducible) representation  of . In 
other words:

G
R G

In the UV: Free Fermions (Bosonized).

Bosonize: Gauged WZW model with  matter content and  gauge fields, plus 
kinetic term for gauge fields:

Spin(dim(R))1 G

Sb(gYM) = SgWZW(gYM, A) −
1

4g2
YM ∫Σ

d2x Tr(F2)

In the IR: Gauged WZW Model.

UV

IR

gYM ⟶ ∞

Spin(dim(R))1

SgWZW(A)



2D Theories from 3D TQFTs

[S. Elitzur, G. Moore, A. Schwimmer, N. Seiberg. (Nucl.Phys.B 326 (1989) 108-134)]

Gk

GkGk

S =
k

4π ∫Y
Tr(A dA +

2
3

A3) A0
∂Y

= 0

k
4π ∫∂Y

Tr(U−1∂ϕU U−1∂tU) +
k

12 ∫Y
Tr(U−1dU)3

A fruitful way of describing cosets makes use of an appropriate 3D TQFT construction.

Gk

Gk

Gk

Gk

Gk

Gk

The data of the 2D theory is easily reconstructed from that of the bulk TQFT:

Recall the relationship between  Chern-Simons theory and  WZW theory.Gk Gk

Local operators: Verlinde lines:
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A fruitful way of describing cosets makes use of an appropriate 3D TQFT construction:
[G. Moore, N. Seiberg. (Phys.Lett.B 220 (1989) 422-430)] (Gapless)

The 2D CFT obtained at the boundary corresponds to the gauged WZW model  .Gk /Hk̃

Gk →H→k̃

Gk/Hk̃Gk/Hk̃

Hk̃ ↪ Gk

   New boundary condition describing the embedding of 
gauge groups at the boundary:

More precisely, Moore & Seiberg instructs us to construct the Chern-Simons theory

(Gk × H−k̃)/ℤ(1)
G∩H

• The algebraic data of the coset CFT  may then be obtained following the ‘‘three-step gauging rule’’.Gk /Hk̃

•  Physical interpretation: Quotienting (gauging) the common center  removes additional topological sectors in the  
boundary 2D theory, resulting in a 2D CFT with single vacuum.

ℤ(1)
G∩H
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boundary 2D theory, resulting in a 2D CFT with single vacuum.

ℤ(1)
G∩H
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A fruitful way of describing cosets makes use of an appropriate 3D construction:
[G. Moore, N. Seiberg. (Phys.Lett.B 220 (1989) 422-430)]

Important observation: Topological cosets are always associated to a topological 
boundary condition of the corresponding bulk Chern-Simons theories.

[A. Davydov, M. Müger, D. Nikshych, V. Ostrik. (1009.2117)] 
[YZ. Huang, A. Kirillov Jr., J. Lepowsky. (1406.3420)]
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3D TQFT Description of Topological Cosets



The algebraic theory of anyons
Main important point: 3D TQFTs are theories consisting solely of topological line operators: anyons. 

In practice: a finite set of lines fulfilling a finite set of data.

• The set of lines 

• Fusion rules 

• Topological Spin/Conformal weight 

• Modular S Matrix

= θa θa = e2πiha

 Mathematically, these line operators are described by the formalism of modular tensor categories.

In principle, any correlator can be 
computed from this finite set of data.
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Main important point: 3D TQFTs are theories consisting solely of topological line operators: anyons. 

In practice: a finite set of lines fulfilling a finite set of data.

• The set of lines 

• Fusion rules 

• Topological Spin/Conformal weight 

• Modular S Matrix

= θa θa = e2πiha

 Mathematically, these line operators are described by the formalism of modular tensor categories.

  In the current application we will be mostly working with  Chern-Simons theories, in 
which case the above properties are mostly inherited from the corresponding WZW theory.

Gk

In principle, any correlator can be 
computed from this finite set of data.



• Topological boundary conditions of a 3D TQFT described by a linear combination of anyons in the theory 
called Lagrangian Algebra: 

• Physical interpretation: Lagrangian algebra dictates which anyon can end at topological boundary. 
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• Topological boundary conditions of a 3D TQFT described by a linear combination of anyons in the theory 
called Lagrangian Algebra: 

• Physical interpretation: Lagrangian algebra dictates which anyon can end at topological boundary. 

• Topological boundary conditions of a 3D TQFTs are always endowed by an associated fusion category . 
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ℱ

ℱ ⟹

ℒ = ⨁
a
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  Gauging of generalized symmetry : Insert a mesh of  
throughout the spacetime region where the original theory  
is defined. [1412.5148].

ℱ ℱ
𝒞   ‘‘Anyon condensation’’  

in condensed matter.
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• Topological boundary conditions of a 3D TQFT described by a linear combination of anyons in the theory 
called Lagrangian Algebra: 

• Physical interpretation: Lagrangian algebra dictates which anyon can end at topological boundary. 

• Topological boundary conditions of a 3D TQFTs are always endowed by an associated fusion category . 

• From 2D perspective:  are topological lines  Symmetries of (massless) 2D QCD. 

ℱ
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na a, na ∈ ℕ a 2 L

Topological Boundary Conditions in 3D TQFTs

[J. Kaidi, Z. Komargodski, K. Ohmori, S. Seifnashri, S-H. Shao. (2107.13091)]

How do we characterize this associated fusion category  at the boundary?ℱ
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• Simple bulk anyons  become generically at boundary via “splitting rule”: 

• How the bulk anyons split depend on the Lagrangian algebra. 

a

a = ∑
α

zα
a α, zα

a ∈ ℕ

a
P

↵ z↵a ↵

a = ∑
α

zα
a α ⟹ da = ∑

b

zα
a dα .

a = ∑
α

zα
a α ⟹ ā = ∑

α

zα
a ᾱ .

a ⊗ b = ⨁
c

Nc
a,b c ⟹ (∑

α

zα
a α) × (∑

β

zβ
b β) = ∑

c,γ

Nc
a,b zγ

c γ .

⟹

Simple anyons in the Lagrangian algebra  always 
have a component of the identity line of the boundary theory: 

ℒ = ⊕a a

a → 1 + ⋯

Find fusion ring of the 2D boundary by these splitting rules

Topological Boundary Conditions in 3D TQFTs



a=�a

m n : Hm,n

r

m

a
s

n

: Hm,n ! Hr,s

b

a

Once we know how the fusion category acts over the boundary conditions, we can ask how Hilbert spaces defined by different 
boundary conditions are related by the action of the non-invertible symmetry:

Reconstruct local operators of the 2D IR theory from the 3D bulk TQFT:

Topological Boundary Conditions in 3D TQFTs

C

 [C. Córdova, K. Ohmori, N. Holfester. (2408.11045)]

 [S. Cecotti, C. Vafa. (9211097)]

General Story

For our purposes, the degeneracies can be encoded in quiver diagrams:

• For each vacuum/topological local operator , write a node in the quiver. 

• Irreducible representations are labeled by the lines  of the fusion category. Write  directed arrows from  to .

m

a Nn
ma m n
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Strategy for 2D QCD
• Start with a gapped 2D QCD theory. This is, a QCD theory such that   . 

• Bulk Chern-Simons theory we wish to study is 

• Set coset (topological) boundary conditions on both ends, describing the (conformal) embedding 
. 

• Use the technology of Lagrangian algebras/anyon condensation, to read explicit 2D fusion category at the 
topological boundary   action over vacua/local operators. 

cSpin(dim(R))1
− cGI(R)

= 0

GI(R) ↪ Spin(dim(R))1

⟹

Z(ℱ) =
Spin(dim(R))1 × G−I(R)

ℤ(1)
Spin(dim(R))∩G

In order to deal with finite excitations only, we can project by gauging any exact abelian one-form symmetry. This 
changes the bulk TQFT as

Z(ℱ) = Spin(dim(R))1 × G−I(R)

Effectively, in the 2D theory this quotient shifts the global form of the gauge group  to a non-simply connected 
version thereof.

G

(simply-connected gauge group)
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Characterizing the vacua of 2D QCD

⟨ϕa⟩i = ⟨vi |ϕa |vi⟩

 [D. Delmastro, J. Gomis. (2211.09036)]
Flow of local operators in 2D QCD

ϕ(UV)
a

ϕ(IR)
a

gYM ⟶ ∞

Characterize the vacua of the theory by examining the expectation value of local operators in 
each vacua (order parameters):

Matrix of condensates
Bai = ⟨vi |ϕa |vi⟩

SO(3) + ψ5 PSU(5) + ψ15



Fusion Category:  
Three lines  with fusion rules: {1,v, A}

Particle-Soliton Degeneracy in SO(3) + ψ5

vA

Coset TQFT: 
Spin(5)1 × SU(2)−10

ℤ(1)
2

1vA1
1

A
v

Concrete example:  gauge theories with fermions in the SO(3) 5

v × v = 1 v × A = A × v = A

A × A = 1 + v + 2A

Three vacua with three irreducible multiplets.



Fusion Category:  
Three lines  with fusion rules: {1,v, A}

vA

Coset TQFT: 
Spin(5)1 × SU(2)−10

ℤ(1)
2

1vA1
1

A
v

Concrete example:  gauge theories with fermions in the SO(3) 5

v × v = 1 v × A = A × v = A

A × A = 1 + v + 2A

Three vacua with three irreducible multiplets.
Non-empty Hilbert space: States in the connected quiver must exist!

Particle-Soliton Degeneracy in SO(3) + ψ5



•  Fusion Category: Four lines  with fusion rules: {1,v, A, B}

Particle-Soliton Degeneracy in PSU(4) + ψ15

Coset TQFT:  
Spin(15)1 × SU(4)−4

ℤ(1)
4

Another example:  gauge theories with fermions in the PSU(4) 15

1 A B v

1

A

B

v
A

1 B

v

Excitations are necessarily members of the multiplets:



Summary of Results and Future Directions



• Used non-invertible to constrain spectra of gapped 2D QCD theories. 

• In particular, non-invertible symmetry implies novel mass degeneracies, e.g.  relating the 
mass of particles and solitons. 

• We have seen the importance of appropriately taking into account topological sectors in 
2D QFT to understand finite energy physics. 

• Seen the practical use of anyon condensation (“gauging of non-invertible one-form 
symmetry”) to derive specific fusion categories in 2D QFTs. 
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Thanks for your attention!  Questions? 

[C. Copetti, L. Cordova, S. Komatsu. (2403.04835)]


