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Recently there’s been a lot of interest in “generalized symmetries” of QFTT.

Today I will outline some basics aspects of those symmetries.

We'll see that sometimes, local theories with generalized symmetries
are equivalent to
disjoint unions of other local theories, known as “universes” in this context,
which gives rise to a notion of multiverses in gauge theories.

This is called decomposition, and explaining this will be the goal of this talk.

Let’s begin with a quick review of (ordinary) symmetries in physics.



Let’s begin with a quick review of (ordinary) symmetries in physics.

Classical physics:

Recall a group defines a symmetry of a theory if the action § is invariant.

This leads to Noether’s theorem, conserved currents.

Quantum mechanics:

Given a group G,
we can represent elements ¢ € G by unitary operators A(g) = exp(i1(g)),
such that A(g)A(h) = A(gh).

We say this is a symmetry if this commutes with the Hamiltonian, in the sense

A(QHA(Q)™ = H T(g),H| = 0



A simple common example: gauge transformations in electromagnetism

Here, physically, if A is the gauge field of electromagnetism,
then A ~ A+ da
for a any function,
because both define the same electric fields E and magnetic fields B.

The a describes an infinitesimal action of the group U(1),
and since we're identifying fields related by that action,
we say that we gauged the symmetry.



Now, how can this be generalized?

One way is to generalize the groups appearing to "higher’ groups.
A higher group is much like a group, except that some axioms are weakened.

Example: associativity
In a group, we require g,(2,23) = (218,83

In a higher group, we instead merely require the existence of isomorphisms
Wig1>82.83) (8182083 — 81(£283)

such that
s G0 —_v023
((£182)83)84 21(8,(8384))

W(lazax ﬁ(2’3’4)
(81(8283))84 I — 81((8283)84)

w(1,23,4) commutes.



Example: B fields

The B field is a two-form tensor potential B = B, dx" A dx” with a gauge invariance:

B ~ B+ dA
where A is a U(1) gauge field.

Here, the gauge transformation itself admits gauge transformations:

a gauge transformation by A
is equivalent to

a gauge transformation by A + da

As a result, gauge transformations can merely hope to be isomorphic to one another,
so associativity only holds up to isomorphism.

(Fields with this & related towers of gauge transformations for gauge transformations
are common in string theory.)



These structures may seem obscure,
but they’ve been known in various circles for a long time.

A few examples:
* In math, higher groups have been studied since at least the early ‘7os
* B fields and more general tensor field potentials arise in sugrav

* The String 2-group has been known in elliptic genus circles for many decades

* Two-dimensional gauge theories with trivially-acting subgroups
(Pantev, ES '06)

Recently, "generalized symmetries’ have become very popular:
a 2014 paper of Gaiotto et al now has 823 cites according to Inspire (4-16-23)....

I'll specialize to 2d gauge theory examples next,
as they’ll provide prototypical examples of decomposition.



* Two-dimensional gauge theories with trivially-acting subgroups  (Pantev, ES '06)

Example: Consider a theory of electromagnetism (a U(1) gauge theory)
in which all of the matter fields (electrons, ...) have charges that are multiples of k
so that Z, C U(1) acts trivially.

Technical point:
why is that different from a theory in which everything has charges that are multiples of 1 ?

Can'’t I just rescale all the charges ?

Answer: Perturbatively yes, but nonpert’ly that’s only one option. (Pantev, ES '06)

Another option: Add heavy charge *1 fields, with masses above cutoff scale.

This certainly distinguishes cases.
In 2d, at low energies, their presence can be detected via 6 angle periodicity.

Upshot: the difference is nonperturbative; are identical perturbatively.



* Two-dimensional gauge theories with trivially-acting subgroups  (Pantev, ES '06)

Example: Consider a theory of electromagnetism (a U(1) gauge theory)
in which all of the matter fields (electrons, ...) have charges that are multiples of k
so that Z, C U(1) acts trivially.

This theory has a (generalized) symmetry,
that interchanges the bundles / instantons of the U(1) gauge theory:

(U(1) bundle) = (U(1) bundle) ® (Z, bundle)
for any Z, bundle

~/

Formally: F » F + F

Because the subgroup Z, C U(1) acts trivially on all matter,
the action S weighting these contributions is the same under the replacement above.

So, this is some kind of symmetry,
interchanging the nonperturbative contributions....



This theory has a (generalized) symmetry,
that interchanges the bundles / instantons of the U(1) gauge theory:

(U(1) bundle) — (U(1) bundle) ® (Z, bundle)
for any Z, bundle

~J

Formally: F » F + F
Because the subgroup Z, C U(1) acts trivially on all matter,

the action S weighting these contributions is the same under the replacement above.

An action, not of an element of Z,, but rather a Z, bundle,
that interchanges nonperturbative contributions to the QFTT.

S0, it's a symmetry,
and because the symmetry parameters themselves have gauge transformations,
associativity etc only hold up to isomorphism.

This is a generalized symmetry, denoted BZ, or Zl(cl)



So far, we've seen that a gauge theory with a trivially-acting subgroup has a
generalized symmetry, that interchanges instanton sectors.

Let’s try to characterize such symmetries more precisely....



One way to think about these symmetries is in terms of operators.

Noethet’s theorem: | |
Consider an ordinary global symmetry.

Under an infinitesimal symmetry transformation parametrized by «,

S > § + J(da) Aj (Hodge dual of
typical description)

where jis a (d — 1)-form (Hodge dual of Noether current),
which obeys dj = 0 (conservation law).

Formally, we can associate an operator

Uy = eXp(J j)
M

supported along a submfld M, _; of dimd — 1.
[t’s invariant under deformations of M,_, b/c of conservation law dj = 0.

“topological operator”



That picture can be generalized. Consider a symmetry parametrized by a p-form a.

SI—>S+J (da) A j
M

wherejisa (d — p — 1)-form, obeying dj = 0 (conservation law).

We can associate an operator

U, = exp J J
Md—p—l

supported along a submanifold M,;_,_, of dimd —p — 1.

It’s invariant under deformations of M;_,_,, b/c of conservation law dj = 0.

We call thisa p-form symmetry.
Ordinary symmetries are O-form symmetries.

Gauge theory with trivially-acting subgroup has a 1-form symmetry (BK).



These generalized symmetries can sometimes have exotic effects.....

In d > 1 spacetime dimensions,

if a local quantum field theory has a global (d — 1)-form symmetry,
it is equivalent to a disjoint union of other local QFT’s,
known in this context as universes.

We call this decomposition.

(2d: Hellerman et al '06, ...;
d>2: Tanizaki-Unsal '19, Cherman-Jacobson "20, ...)

When this happens, we say the QF T "decomposes.
Decomposition of the QFT can be applied to give insight
into its properties, which I will explore in this talk.



In d > 1 spacetime dimensions,

if a local quantum field theory has a global (d — 1)-form symmetry,
it is equivalent to a disjoint union of other local QFT’s,
known in this context as "universes.

Prototypical example:

A two-dimensional G-gauge theory

with trivially-acting central subgroup K C G
is equivalent to

a disjoint union of | K| copies of (G/K) gauge theories,
each with a possibly different (discrete) theta angle.

G-gauge theory = H (G/K-gauge theory),

K
X (the universes of the decomposition)



Why is the existence of decomposition surprising?

To explain, let me distinguish a sum of QFTs from a product of QFTs.

Consider two QFTs with path integrals:  Z(T,) = J[D¢1] exp(=S,), Z(T,) = J[D@] exp(—3S,)

In a product of QFTs, we multiply partition functions:
A1, ®1,) = Z1)) 4T, = J[D¢1][D¢2] exp(—5; — 5,

There always exists a local action for a product. Here, it’s §; + 5,

In a sum of QFTs, we add partition functions: (connected spacetime)

Z(T1HT2) = A1)+ AT, = J[Dqﬁﬂ exp(—9;) + J[D¢2] exp(—3,)

log(x + )

Ordinarily, no way to write this in the form J[D¢1][D¢z] exp(—=3) forsomesS: " 1001+ (logy)

But that’s exactly what happens in decomposition!



What does it mean for one local QFT to be a sum of other local QFTSs?

(Hellerman et al '06)

1) Existence of projection operators

The theory contains topological operators 11; such that

LI, = &, 11 Zni = 1 11, 0] = 0
Operators I1; simultaneously diagonalizable; state space = # = @, .

In the language of extended objects / defects from earlier,
ap = (d— 1)-form symmetry in d dimensions has operators supported along

submanifolds of dimensiond — p — 1, whichhere =d—-(d—-1)—-1 = 0.

These are the projectors 11, above.

In the case of gauge theories w/ triv’ acting subgroups, because the action is trivial,
the operators commute with everything — hence diagonalize the state space.



What does it mean for one local QFT to be a sum of other local QFTSs?

(Hellerman et al '06)

1) Existence of projection operators

The theory contains topological operators 11; such that

I, = &, 11, Zni = 1 11, 0] = 0

Operators I1; simultaneously diagonalizable; state space = # = @, .

Correlation functions:
(0,0,) = Y (I,0,-6,) = ) ((16,)-(11,6,)) = ) (6,-0,),
2) Partition functions decompose

Z= ) exp(~pH) = ) Y exp(~pH) = )7,

states
(on a connected spacetime)



There are many examples of decomposition !

. . : (‘T Panteyv, ES '05;
Finite gauge theories in 2d (orbifolds): D Robbins ESS

Common thread: a subgroup of the gauge group acts trivially. T Vandermeulen '21)

Example: If K C center(I') C I acts trivially, then [X/T'] = H [(X/([T/K)],
irreps K

Gauge theories:

Il
» 2d U(1) gauge theory with nonmin’ charges = sum of U(1) theories w/ min charges Hielierman

et al '06)
Ex: charge p Schwinger model

* 2d G gauge theory w/ center-invt matter = sum of G/Z(G) theories w/ discrete theta  (ES '14)
Ex: SU(2) theory (w/ center-invt matter) = SO(3),. H SO(3)_ (w/ same matter)

* 2d pure G Yang-Mills = sum of trivial QFTs indexed by irreps of G  (Nguyen, Tanizaki, Unsal 21)
(U@1): Cherman, Jacobson 20)

Ex: pure SU(2) = H (sigma model on pt)
irreps SU(2)

There are also higher-dimensional examples....



There are many examples of decomposition !
More examples :

» 3d Chern-Simons theory with gauged noneffectively-acting 1-form symmetry (Pantev, ES 22)

= disjoint union of ordinary Chern-Simons theories

(On the boundary, this reduces to 2d decomposition.)

. : : : g ) (Pantev, Robbins, ES,
3d orbifold by finite noneffectively-acting 2-group Vandermeulen "a2:

= disjoint union of ordinary 3d orbifolds Perez-Lona, ES '23)

(Example: Yetter model vs union of Dijkgraaf-Witten theories)

* 4d Yang-Mills w/ restriction to instantons of deg’ divisible by k (Tanizaki, Unsal '19)
= disjoint union of ordinary 4d Yang-Mills w/ different @ angles

More examples ....



There are many examples of decomposition !

More examples :

TFTs: 2d unitary TFTs w/ semisimple local operator algebras decompose to invertibles
Examp]es; (Implicit in Durhuus, Jonsson '93; Moore, Segal '06)

(Also: Komargodski et al 20, Huang et al 2110.029358)

* 2d abelian BF theory at level k = disjoint union of k invertibles (sigma models on pts)

o . . . . (Hellerman, ES, 1012.5990)
* 2d G/G model at level k = disjoint union of invertible theories

' (K dski et al
as many as integrable reps of the Kac-Moody algebra oA e

2008.07567)

* 2d Dijkgraaf-Witten = sum of invertible theories, as many as irreps
(In fact, is a special case of finite gauge theories already mentioned.)

Sigma models on gerbes = disjoint union of sigma models on spaces w/ B fields

Solves tech issue w/ cluster decomposition. (T Pantev, ES “05)



Decomposition # spontaneous symmetry breaking

SSB: Decomposition:

Superselection sectors: Universes:
» separated by dynamical domain walls » separated by nondynamical domain walls
. only genuinely disjoint in IR . disjoint at all energy scales
. only one overall QFT . multiple different QFTs present
Prototype: Prototype:

BROKEN SYMMETRY

-J
<
[
2
Wy

1 | 1
- ) 2
FIELD

Y-

(see e.g. Tanizaki-Unsal 1912.01033)




Since 2005, decomposition has been checked in many examples in many ways. Examples:

* GLSM’s: mirrors, quantum cohomology rings (Coulomb branch)
(T Pantev, ES '05; Gu et al '18-'20)

* Orbifolds: partition f’'ns, massless spectra, elliptic genera (T Pantev, ES 'os; Robbins et al 21)
* Open strings, K theory (Hellerman et al hep-th/0606034)

* Susy gauge theories w/ localization (ES 1404.3986)

* Nonsusy pure Yang-Mills ala Migdal  (ES14; Nguyen, Tanizaki, Unsal "21)
* Adjoint QCD, (Komargodskietal'20)  * Numerical checks (lattice gauge thy) (Honda et al "21)
* Versions in d-dim’l theories w/ (d-1)-form symmetries (Tanizaki, Unsal, '19; Cherman, Jacobson "20)

Applications include:

» Sigma models with target stacks & gerbes (T Pantev, ES "05)
* Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, E Andreini, etc starting '08)

* Nonperturbative constructions of geometries in GLSMs  (Caldararu et al 0709.3855, Hori 1, ...

* Elliptic genera (Eager et al 20) * Anomalies in orbifolds (Robbins et al "21) -~ Romo et al 21



So far:

In d spacetime dimensions,
a theory decomposes when it has a global (d — 1)-form symmetry.

This has been checked in many ways since 2003,
and there are lots of examples of decomposition in practice.

Next, I'll focus on one particular family of examples:
2d gauge theories with trivially-acting subgroups



Decomposition in 2d gauge theories (Hellerman et al "06)

S’pose have G-gauge theory, G semisimple, with finite central K C G acting trivially.

As discussed previously, has 1-form symmetry (specifically, BK).

So far, this sounds like just one QFTT.

However, I'll outline how, from another perspective,
QFTs of this form are also each
a disjoint union of other QFTs;
they “decompose.”

DUCK

3
RABBIT




Decomposition in 2d gauge theories (Hellerman et al "06)

S’pose have G-gauge theory, G semisimple, with finite central K C G acting trivially.

As discussed previously, has 1-form symmetry (specifically, BK).

Claim this theory decomposes.
Where are the projection operators?
Math understanding:

Briefly, the projection operators (twist fields, Gukov-Witten) correspond to
elements of the center of the group algebra C[K].

Existence of those projectors (idempotents), forming a basis for the center,
is ultimately a consequence of Wedderburn’s theorem.

Universes <> [rreducible representations of K

Partition functions & relation of decomp’ to restrictions on instantons....



Decomposition in 2d gauge theories (Hellerman et al "06)

S’pose have G-gauge theory, G semisimple, with finite central K C G acting trivially.

As discussed previously, has 1-form symmetry (specifically, BK).

Statement of decomposition (in this example):

QFT(G—gauge theory) = H QFT (G/K—gauge theory w/ discrete theta angles)

char’s K
Example: pure SU(2) gauge theory = sum SO(3), + SO(3)_ pure gauge theories

where = denote discrete theta angles (w,)

Perturbatively, the SU(2), SO(3) . theories are identical
— differences are all nonperturbative.



Decomposition in 2d gauge theories (Hellerman et al "06)

S’pose have G-gauge theory, G semisimple, with finite central K C G acting trivially.

As discussed previously, has 1-form symmetry (specifically, BK).

Statement of decomposition (in this example):

QFT(G—gauge theory) = H QFT (G/K—gauge theory w/ discrete theta angles)

char’s K
Example: pure SU(2) gauge theory = sum SO(3), + SO(3)_ pure gauge theories

where = denote discrete theta angles (w,)

SU(2) instantons (bundles) C SO(3) instantons (bundles)

The discrete theta angles weight the non-SU(2) SO(3) instantons so as to
cancel out of the partition function of the disjoint union.

Summing over the SO(3) theories projects out some instantons, giving the SU(2) theory.



Decomposition in 2d gauge theories (Hellerman et al "06)

S’pose have G-gauge theory, G semisimple, with finite central K C G acting trivially.

As discussed previously, has 1-form symmetry (specifically, BK).

Statement of decomposition (in this example):

QFT(G—gauge theory) = H QFT (G/K—gauge theory w/ discrete theta angles)

char’s K

Formally, the partition function of the disjoint union can be written icion operator

z=3Y /[DA] exp(—S) exp _e/wQ(A)_ = /[DA] exp(—S) | ) exp :H/MQ(A):

QEK D

isioint union Ve K

where we have moved the summation inside the integral.

This is an interference effect between universes: multiverse interference



Decomposition in 2d gauge theories

2

0cK

DA exp(
D

~S)exp [0 [wn(a)

1Sjoint union

(Hellerman et al '06)

projection operator

/[DA] exp(—95) Z exp

0c K

o




Decomposition in 2d gauge theories (Hellerman et al "06)

One effect is a projection on nonperturbatlve SeCtors: projection operator

> /[DA] exp(—5) exp H/wz(A) — /[DA] exp(—S) | Y exp _H/wQ(A)_

A

veK Disjoint union PEK - )
Disjoint union of - "One’ QFT with a restriction on
several QFTs / universes nonperturbative sectors

— ‘multiverse interference’

Schematically,
two theories combine to form a distinct third:

universe universe
SO@3).) (5O(3)_)

multiverse interference effect
SU(2))



Before going on, let’s quickly check these claims for pure SU(2) Yang-Mills in 2d.

The partition function Z, on a Riemann surface of genus g, is

(Migdal, Rusakov)

Z(SU(2)) = ) (dim R)* 9 exp(—AC3(R)) Sum over all SU(2) reps
R

Z(SO(3)4+) = » (dimR)* 9 exp(—AC,(R)) Sum over all SO(3) reps
R

(Tachikawa '13)

Z(SO(3)_) = Z(dim R)2~29 exp(— AC,(R)) Sum over all SU(2) reps
R that are not SO(3) reps

Result: Z(SU(Q)) — Z(SO(3)+) —I—Z(SO(3)_) as expected,



Suppose we try to require that the total instanton number always vanish in our QFTT.
Start with a field configuration with no net instantons.

Now, move them far away from one another:

anti-instanton __ Instanton

Nonzero Total instanton number : 0 Nonzero
instanton number instanton number
here! here!

If physics is local (“cluster decomposition”),
then in those widely-separated regions, the theories have instantons.
So, even if we start with no net instantons,
cluster decomposition implies we get instantons!



Cluster decomposition:

For this reason, Steven Weinberg taught us:

All local quantum field theories must sum over all instantons,
SO as to preserve cluster decomposition.

Disjoint unions of QFTs also violate cluster decomposition
Loophole: (ex: multiple dimension zero operators),

but in principle are straightforward to deal with.

So, if a theory with a restriction on instantons is also a disjoint union,
of theories which are well-behaved, then all is OK.




Recap:
So far we have discussed, in a simple set of examples,

the form of decomposition,
and how it explains restrictions on instantons —
— as a multiverse interference effect.

What if one has a Wilson line that is charged under the trivially-acting K C G ?

Such Wilson lines are defects linking different universes.

Here’s an easy example in a different context:

Ex: 2d abelian BF theory at level k
Projectors: = — 2 c"o, = exp(27i/k)

_shi — £Pq _
Clock-shift commutation relatlons. OW, =¢MWO0O, < O,W =WI,,,



Decomposition has been checked in many ways,
including, for example, gauge duals & mirrors.

In such a dual, the nonperturbative physics of the original theory
becomes perturbative in the dual theory, and so one can see decomposition perturbatively.

N

model

Example: susy CI

The susy CP"Y model is a 2d susy U(1) gauge theory,
with N + 1 (chiral super)fields each of charge + 1.

Semiclassically, the Higgs moduli space is CP”, thus the name.

The mirror to this theory is a susy Landau-Ginzburg model with superpotential
W —_ EXp(—Yl) + €Xp(—Y2) + *e° + EXp(—YN_l) + lep(_I_Yl + Y2 + *e° + YN—l)

The mirror encodes the nonperturbative physics of the original theory (eg instantons)

as classical / perturbative physics in the mirror.
Decomposition?



N

model

Example: susy CI

The susy CP" model is a 2d susy U(1) gauge theory,

with N + 1 (chiral super)fields each of charge + 1.

The mirror to this theory is a susy Landau-Ginzburg model with superpotential
W —_ eXp(—Yl) + €Xp(—Y2) + *e + eXp(—YN_l) + lep(‘l‘Yl + Y2 + *e + YN—l)

N

model

Example: gerby susy ClI

Consider a 2d susy U(1) gauge theory with N + 1 chiral superfields of charge k£ > 1.

Has BZ, one-form symmetry, decomposes into k copies of CI

N model.

Mirror was computed using methods of (Hori, Vafa ‘00) in (Pantev, ES, '06); result:

W = exp(—-Y)) + exp(=1,)

exp(—Yy_1) + gqY exp(+7

where Y is a Z,-valued field.

6

Yy-1)

Path integral sum over values of Y = disjoint union, perturbatively.



N

model

Example: gerby susy CI

Consider a 2d susy U(1) gauge theory with N + 1 chiral superfields of charge £ > 1.
N

model.

Has BZ, one-form symmetry, decomposes into k copies of CI

Mirror was computed using methods of (Hori, Vafa '00) in (Pantev, ES, '06); result:
W = exp(=Y)) +exp(=Y,) + - +exp(—=Yy_) + gYexp(+Y, + Yo+ -+ Yy )
where Y is a Z,-valued field.

Path integral sum over values of Y = disjoint union, perturbatively.

In passing:
Ordinarily I describe decomposition in terms of universes with variable

@ angles or B fields — complex Kahler parameters.

In the mirror, these become complex structure parameters.



Another example: 4d Yang-Mills with a restriction on instantons

(Tanizaki-Unsal 19)

Start with an ordinary 4d Yang-Mills theory

and add a scalar field B of periodicity 2z and a 3-form potential C*);

| | 1 ko
S = — |TtFA*F + {|B| —TrFAF — —HWYW
292 812 27

where locally H® = dC®), and k is an integer.

| k
EOM for B: 8_,,2TrF AF = 2_71'H " 5o the instanton number is divisible by k

As discussed, restrictions on instantons violate cluster decomposition, but note....

there is a global 3-form symmetry: C® —» C® + A®) for dA®) =0

SO we expect a decomposition....



Another example: 4d Yang-Mills with a restriction on instantons

(Tanizaki-Unsal 19)

1 1 k
S = e JTrFA*F 1+ lJ'B (—TrF/\F — —H(4)>
g

872 27
1 ko w . g .
EOM for B: ng‘F A = 2_71'H so the instanton number is divisible by k

Global 3-form symmetry: C® = C® 4+ A®) for dA®) =0
EOM for C®: dB =0 so Bisconstant. (Infact, B = 2am/k for m an integer.)

Next, integrate out B and C®....

Since B can take finitely-many values, the path integral must sum over those values.

Result: on a connected spacetime,
k—1

| e I 2zm
7/ = ZJ[DA]exp — 22 [TrFA A T J'TrF/\F

m=0




Another example: 4d Yang-Mills with a restriction on instantons

(Tanizaki-Unsal 19)

1 | 1 ko
S = — |TrtFA*F + i|B|—TrFAF — —H®
292 812 27

Next, integrate out B and C®....

Result: on a connected spacetime,

7 ki[[DA] ( : JTF/\*F+ ! znmJTF/\F
— CX — | — 1§ 1§
P 292 87 k

m=(

This is the partition function of a decomposition,
a sum over k universes, each with a shifted theta angle.

Recap: Started with a 4d theory with restriction on instantons,
whose construction had global 3-form symmetry,
and we’ve discovered a decomposition.



Application: GW invariants

The Gromov-Witten (GW) invariants count minimal-area surfaces in a given space,
and form the instantons of 2d sigma models.

There exists a def’n of GW invariants of generalizations of spaces called gerbes.
(Chen, Ruan; Abramovitch, Graber, Vistoli ~2000)

Gerbes have 1-form symmetries geometrically;
a 2d sigma model with target a gerbe has a 1-form symmetry.

Decomposition predicts,
GW invariants of a gerbe = sum of GW invariants of universes

Q Checked by (H-H Tseng, Y Jiang, et al 08 on)



Application: GLSMs

(Caldararu et al '07)

S

looks like sigma model on P! = Proj C[p,, p,], with BZ, symmetry.

Consider the GLSM for e.g. P°[2,2] = T>.

This is a U(1) gauge theory, with ¢, charge +1, p,, charge —2.
The LG point has superpotential

W = Z AY(p)¢p;  — mass matrix for ¢ fields.
Y

Away from zeroes of eigenvalues of AY,

Decomposition = Double cover of P!, branched over {detA = 0} = {4 points)}

Another T?!

geometry
realized
nonperturbatively
via decomposition




Application: elliptic genera of pure susy gauge theories (R Eager, ES "20)

We can use decomposition to predict elliptic genera of pure (2,2) susy gauge theories,
using knowledge of IR susy breaking for various discrete theta angles.

Example: for SU(k)/ Z,, susy unbroken only for discrete theta @ = — (1/2)k(k — 1) mod k

(as derived from 2d nonabelian mirrors)

EG(G/K,0) = 0 ifsusybrokenin IR
Decomposition = EG(G) = Z EG(G/K, 0)
0

Can then algebraically recover elliptic genera.

k—1
Example: EG(SU(k)/Z,.0) = (1/k)EG(SUK)) ) (—)"** Vexp(imd)

m=0
For kK = 2, matches (Kim, Kim, Park "17).
Numerous other low-rank exs checked with susy localization.



Application: anomalies

Consider a finite G-gauge theory, [ X/G], with a gauge anomaly
(so that the theory does not actually exist).

Two methods to resolve the anomaly:

1) Make G bigger. (Wang-Wen-Witten "17, Tachikawa '17)

ReplaceGbyl, 1| — K —-T -5 G — 1

where 7*a trivial for a € H>(G, U(1)) the anomaly,
and replace original orbifold with [ X/I']; for suitable phases B € H NG, H\ (K, U(1))).

2) Make G smaller.
Replace original orbifold with [X/ker f ] for some hom’ f: G — H s.t. af, s 0

Decomposition: | X/1'] B = (copies of) [ X/ker B] (Robbins, ES, Vandermeulen ’21)

So the two possibilities are equivalent.



Application: moduli spaces

Gerbe structures are common on moduli spaces of SCFTs.

Moduli stack of susy sigma models = Z, gerbe over moduli stack of CYs

Bagger-Witten line bundle = "fractional’ bundle over that gerbe

(a bundle on the gerbe that is not a pullback

from the underlying moduli space) (Donagi et al 17, '19)

Example: moduli space of elliptic curves

A = [H/SL(2,Z)] for § the upper half plane

However, the Bagger-Witten line bundle lives on ./ = [§/Mp(2,2)]
where | — Z, — Mp(2,7) — SL2,7) —> 1 (Gu, ES "16)

which reflects a subtle Z, extending T-duality in susy theories.

(Pantev, ES "16)
(Debray, Dierigl, Heckman, Montero, Torres '22-'23)



Summary

Decomposition: sometimes one QFT secretly = Z QFTs = Huniverses

Restrictions on instantons arise from such sums as
interference effect between universes

Examples include gauge theories w/ trivially-acting subgroups

Applications include Gromov-Witten theory, GLSMs, elliptic genera, anomalies.

Thank you for your time!



Details of another 2d example, involving orbifolds



Let’s first construct a family of examples in d = 2 spacetime dimensions.

We'll gauge a noneffectively-acting (d — 2) = O-form symmetry,
to get a global 1-form symmetry (& hence a decomposition).

Specifically, consider the orbifold [ X/I ], where
] - K—T — G — 1 ~ w € H*(G,K)

is a central extension, and K, I, G are finite, K abelian, and K acts trivially.
(Decomposition exists more generally, but today I'll stick w/ easy cases.)

The orbifold [X/T"] has a global BK = K symmetry, & should decompose.

I’'m going to outline one way to see that

QFT (x/T]) = [[QFT (1X/Gly )

peK

where  H%G,K) — H*G, U(1)) gives the discrete torsion
@ = p(w) on universe p



Claim:  QFT([X/T]) = HQFT<[X/G],)(@))

peK

Let’s establish this in partition functions on 7.

Universally, for any I" orbifold on 772,

1
Zr([X/IT]) = 1T Z Zy, p(X) where Zy), = (g . - X)
h

Y1V2="21"

(“twisted sectors”)

(Think of Z, , as sigma model to X with branch cuts g, .)

We need to count commuting pairs of elementsinI ....



Claim:  QFT([X/T]) = HQFT<[X/G]p(w))

peK

Let’s establish this in partition functions on 7.

Universally, for any I orbifold on 772, Z ([XIT]) = “1‘ Z Z, . (X)

. . . Y1Y2="2"
We need to count commuting pairs of elementsinI ...
] —— K —1 — G — 1 ~ w € HY G, K)
Writey €T as y = (g € G,k € K) where 7172 = (8182 kikyo(8y, 8))

Then, Y17/> = V71 < 8182 = 828> and a)(gb g2) — O)(gz, gl)

commuting pairs in G such that w(g;, g,) = @(g,, &)

Restriction on nonperturbative sectors

(In an orbifold, nonperturbative sectors = twisted sectors)



Claim:  QFT([X/T]) = HQFT<[X/G]p(w))

peK

Let’s establish this in partition functions on 7.

Universally, for any I orbifold on T2, Z ([XIT]) = Z L (X
VY2=r2r
We need to count commuting pairs of elementsinl .... 1 12—2> K—T — G — 1

These are commuting pairs in G such that w(g;, g&,) = w(g,, &)

2
K|

1 K ,
o ([ XIT)) = T Z Z?’la}’z(X) — T Z 0 (a)(gl 2 1) Zglagz

Q)
7172=V2"1 218=8-8 (g29 gl)

where we have used Z,., =2, , sinceKacts trivially.



Claim:  QFT([X/T]) = HQFT<[X/G],)(@))

peK

Let’s establish this in partition functions on 7.

2
| K|

] K ,
ZT2 ([X/F]) — ‘F‘ Z ZVl,}/Q(X) — ‘F‘ Z 0 (a)(gl gz) 1) Zglagz

Q)
Y172=V2"1 218,=8-8 (g 2, 8 1)

So far:

Next, write

5 (w(glagz) 1) _ 1 Z po (g, &) where p o w € Hz(G, U(1))

a)(g,g) I% Apoa)(gag) . >
2> 81 Kl ek 2ol (discrete torsion!)

so that, after rearrangement,

G||K|° . .
7 ((X/T]) = |G A\ ZZT2([X/G],0°60) _ ZZT2<[X/G]poa)> consistent with
ITHKT 2% ek decomposition !

Adding the universes projects out some sectors — interference effect.



So far we have demonstrated that for 77 partition functions,

QFT (/1)) = [JQFT (1X/Gl,q,)

peK

which is the statement of decomposition in this case (K C I central).

Similar computations can be done at any genus,
and for local operators, etc.

Next, we'll walk through details in a simple example....



To make this more concrete, let’s walk through an example,
where everything can be made completely explicit.

Example: Orbifold [X/D4| in which the Z, center acts trivially.

T Pantev, ES’
— has BZ, (1-form) symmetry (T Pantev, ES o5)

Dy/Zy = Zy X Zo so this is closely related to a Z, x Z, orbifold

Decomposition predicts

QFT (/1) = [JQFT (1X/Gl,qo))

peK
which here means

QFT (IX/D,]) = QFT (IX/ZyX Zylyo40) | | QFT (X/Z, % Z,14,.)

Let’s check this explicitly....



Example, contd
QFT ([X/D,]) = QFT (IX/ZyX Zy)yyoa.) | | QFT (1X/2, % 2,4, )

At the level of operators, one reason for this is that the theory admits projection operators:

Let Z denote the (dim 0) twist field associated to the trivially-acting Z,:
Z obeys 2% = 1.

Using that relation, we form projection operators:

I[I, = —(1 X2 (= specialization of general formula)

)

13 =11, [I.IT_=0 I, +11_=1

-+

Note: untwisted sector lies in both universes; universes = lin’ comb’s of twisted & untwisted.

Next: compare partition functions....



Example, contd

o o o X D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Take the (1+1)-dim’l spacetime to be 72.

The partition function of any orbifold [X/T"] on T7 is

1
o ([X/T]) = T Z Lo where Z,, = (g . —> X)
h

gh=hg

(“twisted sectors”)

(Think of Z, ; as sigma model to X with branch cuts g, .)

We're going to see that

Zr (IXID,)) = Zp (IXI1Z, X Z,)) + Zpa ([X1Z, X Z5)4, )



Example, contd

" - X/D
Compute the partition function of [X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
Zr (IXID,]) = Y Zu where Z, = (¢ B — X
| D, | 5>
g,heD,, gh=hg ,

Since z acts trivially,

Z 4.1 is symmetric under multiplication by z

2=/l ~ -l - M -~
Z h

‘I hz ‘I hz

<

This is the BZ5 1-form symmetry.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Dy = {1,z,a,b,az,bz,ab,ba = abz}
where z generates the Z, center.

Dy/Zo = 7o X Zy = {1,a,b,ab}  where a = {a,az} etc

1
o) = 5 7 e 7= (o[l —
| Dy | a.heD,, gh=hg | )

Each D, twisted sector (Z, ) that appears is the same asa D,/ Z, = Z, X Z, twisted sector,

appearing with multiplicity | Z, |* = 4,
except for the sectors @ . a . b . which do not appear.
b ab ab

Restriction on nonperturbative sectors



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr: ([XID,]) = ‘Z‘Z;‘Zz‘ \Zz\z(ZTz([X/szzz]) — (some twisted sectors))

=2 (ZT2 ([X/Z,% Z,]) — (some twisted sectors))

Different theory than Z, X Z, orbifold

Physics knows when we gauge even a trivially-acting group!



Example, contd

o - X/D
Compute the partition function of | X/Dy (T Pantev, ES '05)

Zr: ([XID,]) = ‘Z‘Z;‘Zz‘ \ZZ\Z(ZTQ([X/szZZ]) — (some twisted sectors))

=2 (ZTQ ([X/Z,%x Z,]) — (some twisted sectors))

1
Fact: given any one partition function  Zp ([X/G]) = Yel Z Lo h
gh=hg

we can multiply in SL(2,Z)-invariant phases €(g, h)

to get another consistent partition function (for a different theory)

|
7 = Yl D e(g.h)Z,,

gh=hg

There is a universal choice of such phases, determined by elements of H*(G, U(1))

This is called “discrete torsion.”



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr: ([XID,]) = ‘Z‘Z;‘Zz‘ \Zz\z(ZTz([X/szzz]) — (some twisted sectors))

=2 (ZT2 ([X/Z,% Z,]) — (some twisted sectors))

Ina Z, X Z, orbifold, discrete torsion € H*(Z, X Z,, U(1)) =

and the nontrivial element acts as a sign on the twisted sectors

. . . the same sectors which

were omitted above.

ZT2 ([X/D4]) — T2 ([X/Zz X ZZ]W/O d.t.) + ZT2 <[X/Z2 X Zz]d.t.>

Adding the universes projects out some sectors — interference effect.



Example, contd

" - X/D
Compute the partition function of | X/Dy (T Pantev, ES 05)

Zr: ([XID,]) = ‘Z‘Z;‘Zz‘ \Zz\z(ZTz([X/szzz]) — (some twisted sectors))

=2 (ZT2 ([X/Z,% Z,]) — (some twisted sectors))

Discrete torsion is H=(Zo x Zo,U(1)) = Zs,

and acts as a sign on the twisted sectors

- . = . A . which were omitted above.
b ab ab

ZT2 ([X/D4]> — T2 ([X/Zz X ZZ]W/O d.t.) + ZT2 <[X/Z2 X Zz]d.t.>

Matches prediction of decomposition
QFT (IX/D,]) = QFT ([X/ZyX Zylyoq0) | | QFT (X/Z, % Z,14,.)



Example, contd
Zr (IXIDy)) = Zp ([XIZy X Zy)poar) + Zp2 ([X1Zy X Z5)4,)

Matches prediction of decomposition
QFT ([X/D,]) = QFT ([X/Z,x Z,l\s0ar) | | QFT (IX/2,% Z,),,)

The computation above demonstrated that the partition function on 72
has the form predicted by decomposition.
The same is also true of partition functions at higher genus
— just more combinatorics.
(see hep-th/0606034, section 5.2 for details)

Only slightly novel aspect: in gen’l, one finds dilaton shifts,
which mostly I'll suppress in this talk.



Example, contd

Massless states of [ X/D,] for X = T0 (T Panteyv, ES "03)

Massless states of [T°/D,]  If we didn’t know about decomposition,

5 2 5 the 2’s in the corners would be a problem...
O 54 O A big problem!
2 54 54 2 . o
O 54 O They signal a violation of
O O cluster decomposition,
2 . .
the same axiom that’s violated
/ by restricting instantons.

Signals mult’ components / C . i -N
) " Ordinarily, I'd assume that the computation F st

cluster decomp’ violation was wrong.

However, decomposition saves the day....



Example, contd

Massless states of [ X/D,] for X = T0 (T Panteyv, ES "03)

Massless states of [T°/D,]

2 1 1
O O O O O O
O 54 O O 5§51 O O 3 O
2 54 54 2 = 1 3 3 1 + 1 5§51 51 1
O 54 O O 51 O O 3 O
O O O O O O
2 1 1
/ spectrum of Zy x Zy orb’ spectrum of Zy x Zy orb’
Signals mult’ components / w/o d.t w/ d.t

cluster decomp’ violation
matching the prediction of decomposition

CFT ([X/D4]) = CFT ([X/Zs X Zslw/oas.) || CFT ([X/Zs x Zs]as.)



