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Electronic energies are calculated for a Hubbard model on the C60 molecule using projector quantum Monte
Carlo sQMCd methods. The calculations are performed to an accuracy high enough to determine the pair-
binding energy for two electrons added to neutral C60. The method itself is checked against a variety of other
quantum Monte Carlo methods as well as the exact diagonalization for smaller molecules. The conclusion is
that the ground state with two extra electrons on one C60 molecule is a triplet, and, over the range of parameters
where QMC is reliable, it has a slightly higher energy than the state with electrons on two separate molecules,
so that the pair is unbound.
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I. INTRODUCTION

The discovery of superconductivity in the alkali-metal-
doped bulk fullerenes K3C60 and Rb3C60 sRefs. 1,2d sparked
intense interest in fullerene-based materials, leading to ex-
tensive experimental and theoretical studiessfor a review see
Ref. 3d. The theoretical calculations to explain the insulating
and superconducting properties of bulk fullerene materials
fall into two major categories: molecular-level calculations
which determine the effective interactions of intramolecular
electrons4–11 and lattice-level calculations based on an effec-
tive Hamiltonian in which the intramolecular degrees of free-
dom have been integrated out.12–14

Although much of the work has focused on the phonon
mechanism for superconductivity in the alkali-C60’s, some
authors have proposed a purely electronic mechanism. In
particular, it was argued by Chakravarty, Kivelson, and co-
workerssCKd that electronic interactions within a single C60
molecule can lead to an effective attraction between charge
carriers.4,5,15–17This argument was supported by perturbative
calculations of the electronic binding energies of the conven-
tional one-band Hubbard model on the C60 structure. The
results of the CK calculation suggest that electrons have a
tendency to form paired states in a single fullerene molecule,
rather than remaining separate. This tendency could be the
origin of the attractive interaction which is an essential in-
gredient of the BCS theory of superconductivity.

However, one might doubt the applicability of perturba-
tion theory to this problem. First, the Hubbard repulsionU in
the CK calculation is approximately 75% of the bandwidth,
so it is hardly a small parameter. Also, the binding energy is
typically a small quantity, calculated from the difference of
the large internal energies of the C60 molecule at different
electron dopings. Low-order perturbation theory estimates of
such subtle energy differences may be unreliable. Thus it is
interesting to repeat the calculation using different methods,
which might lend support to or cast doubt upon the pertur-
bation theory results.

In this paper we use quantum Monte CarlosQMCd calcu-
lations to estimate the binding energy of pairs of electrons on
a single C60 Hubbard molecule. In order to establish a high
level of confidence in our results, we use a number of
complementary QMC methods, including auxiliary field

QMC for both real and imaginary chemical potentials18,19

and stochastic series expansionsSSEd at a finite temperature
T and projector QMCsPQMCd at T=0, on a series of Hub-
bard molecules, with the number of sites ranging from 4 to
60. In addition, a comparison is made to the results of exact
diagonalizationsEDd for systems of up to 12 sites. Our main
result, shown in Fig. 1, is a comparison of the pair-binding
energyssee below for a definitiond for two electrons added to
a neutral C60 molecule to the perturbation calculations of
CK. All energies are measured in units of the hopping pa-
rametert. In contrast to perturbation theory, which finds that
the ground state is a singlet forU / t.3, we find, in agree-
ment with Hund’s rule, that the ground state remains a triplet
state over the entire range ofU studied. In particular, there is
no indication of the attractive singlet ground state which per-
turbation theory finds forU / t greater than about 3.3. Our
QMC studies find small positive binding energies forU / t
ø4.5, indicating that two separate molecules, each with one
extra electron, have lower energy than one molecule with
two extra electrons. The largest value ofU we are able to
study is 4.5t, since the sign problem discussed below be-
comes unmanageable for larger values ofU. Due to this re-
striction, we cannot exclude a singlet-triplet energy crossing
for the C60 molecule with two electron dopings forU / t
.4.5.

FIG. 1. Comparison of electronic pair binding energies
Dbs61d / t, defined in Eq.s2d, obtained from perturbation theory in
different spin sectorsssolid and dash-dot linesd4,5,20and PQMC cal-
culations on a C60 molecule. PQMC findsS=1 for ground states
with 62 electrons.
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The paper is organized as follows. In the next section we
introduce the model and the QMC methods used in our simu-
lations. We then proceed to present the tests of QMC codes
on smaller moleculesstruncated tetrahedron, etc.d, where ex-
act analytical or exact diagonalization results are available.
Then the results for the C60 molecule are presented and ana-
lyzed. Finally, a conclusion based on our numerical results is
drawn and the reliability of the method is discussed.

II. METHODOLOGY

Following CK, we consider a one-band Hubbard model
with the HamiltonianH=H0+H1, defined on a C60 molecule
by

H0 = − o
ki j ls

tijscis
† cjs + H.c.d − mo

is

nis,

H1 = Uo
i

ni↑ni↓ −
U

2 o
is

nis. s1d

Here H0 contains the standard kinetic energy and chemical
potential term. The summation in the kinetic energy term is
performed over all nearest-neighbor pairs on a C60 molecule.
The hopping constantstij are chosen to be equal tot for the
single bonds connecting a pentagon and a hexagon, and to
t8=1.2t for the double bonds between two hexagons.H1 is a
sum of the on-site Coulomb repulsionsHubbardd term and a

diagonal term, added to make the model particle-hole sym-
metric aroundm=0 on bipartite lattices. Clearly, this addi-
tional term does not affect the value of the electronic binding
energy, which we choose to define as

Dbsnd = En+1 + En−1 − 2En, s2d

whereEn is the internal energy of a molecule withn elec-
trons. Note that this definition has the opposite sign, com-
pared to that of CK. In our case the tendency of the electrons
to bind into pairs is indicated by a negative value of the
binding energyDb.

The determinant or auxiliary field QMCsAFQMCd has
been widely used in model Hamiltonian simulations since its
introduction by Blankenbecleret al.21,22 and its further de-
velopment by Hirsch23,24 and Whiteet al.25 The application
of this technique to the one-band Hubbard model starts with
the Suzuki-Trotter discretization of the imaginary time in the
grand canonical partition function,26

ZGC = Tr e−bH = Tr e−bsH0+H1d = Tr p
i=1

L

e−DtsH0+H1d, s3d

whereb=1/skBTd is the inverse temperature, discretized in
such a way thatb=DtL. After the application of the
Hubbard-Stratonovich transformation27,28 the fermionic de-
grees of freedom in Eq.s3d may be traced out, and we arrive
at

TABLE I. Comparison of exact diagonalization and PQMC cal-
culations on the truncated tetrahedrons12 sitesd at U=2t. PQMC
simulation parameters:b=10/t, Dt=0.05/t, Nm=107. EnsSzd is the
energy of a system withn electrons and az component of total spin
Sz. Dn,m is the energy differenceE12+nsSz

nd−E12+msSz
md with sSz

n,Sz
md

given in the second column. For binding energiesDbsnd the second
column showssSz

n+1,Sz
n−1,Sz

nd the Sz values for the three states in-
volved in its calculation, in the order of appearance in Eq.s2d.

Sz ED PQMC sign

E10 0 −14.506219 −14.397s3d 0.47

E10 1 −14.506219 −14.504s2d 1.00

E11 1/2 −13.623187 −13.620s3d 0.81

E11 3/2 −12.876242 −12.880s4d 0.57

E12 0 −12.697340 −12.698s2d 1.00

E12 1 −11.874844 −11.856s3d 0.52

E13 1/2 −10.701320 −10.698s3d 0.58

E13 3/2 −9.982385 −9.969s3d 0.46

E14 0 −8.725294 −8.681s4d 0.30

E14 1 −8.645244 −8.643s4d 0.54

D1,0 s1/2,0d 0.996021 1.000s3d
D1,0 s3/2,0d 1.714956 1.729s3d
D−1,0 s1/2,0d 0.074154 0.078s3d
D−1,0 s3/2,0d 0.821099 0.818s4d
Dbs13d s0,0,1/2d −0.019995 0.017s4d
Dbs11d s0,1,1/2d 0.042813 0.038s3d

TABLE II. Comparison of the densityn, total internal energyE
and average signS between exact analytical resultssU=0d, SSE
sU=4td and AFQMC on a C60 molecule. Simulation parameters:
b=0.5/t, Dt=0.05/t, Nm=105. In the SSE run 107 measurements,
separated by a full diagonal and directed loop updatesRefs. 34,35d
were performed. At lower temperatures SSE is unreliable due to the
severe sign problem.

U=0

m −1 0 1

nexact 0.7959095 1.0001765 1.2043146

Eexact −44.2672020 −46.3708440 −44.3478000

nAFQMC 0.7959095 1.0001765 1.2043146

EAFQMC −44.2672020 −46.3708440 −44.3478000

SAFQMC 1.0 1.0 1.0

U=4t

m −1 0 1

nSSE 0.873s1d 1.0005s2d 1.126s1d
ESSE −16.5s2d −4.0s2d 13.9s1d
SSSE 0.955 0.957 0.960

nAFQMC 0.8734s2d 1.000078s1d 1.1266s2d
EAFQMC −16.61s2d −4.13s4d 13.74s6d
SAFQMC 1.0 1.0 1.0
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ZGC = o
hsj

p
a

detf1 + BLsadBL−1sad ¯ B1sadg

= o
hsj

detOshsj,md↑ detOshsj,md↓. s4d

The Bl matrices are defined as

Blsad = e−DtK/2eVaslde−DtK/2, s5d

sKdi j = H− tij for i, j nearest neighbours,

0 otherwise,
J s6d

Vij
asld = di jflasisld + mDtg, s7d

wheresisld= ±1 is the auxiliary Ising spin coupled with the
electrons at lattice sitei and time lDt, and a= ±1 corre-
sponds to the↑ or ↓ in Eq. s4d. In Eq. s5d we have used a
symmetric decomposition of the partition function, which
produces a much smaller Trotter error29,30 compared to the
nonsymmetric decomposition.21–23,25The Monte CarlosMCd
weightP is then given by the product of two determinants in
Eq. s4d, which is always positive for bipartite lattices at half
filling.24 At low temperatures we use QR factorization to
stabilize the matrix multiplications and inversions.25,32A ver-
sion sprojector QMC or PQMCd of the above procedure can
be used to directly project the ground state properties from
an initial trial wave functionssee Ref. 25 for detailsd.

Unless indicated otherwise, PQMC and AFQMC calcula-
tions were performed at the projection factor or temperature
fixed by b=10/t, with an imaginary time discretization of
Dt=0.05/t. The system was first brought to thermal equilib-
rium by performingNt thermalization sweepsS2, followed
by Nm measurements with a single sweepS1 sRef. 36d per-
formed between them.

Since we are interested in nonbipartite molecules such as
C60, the MC weights in general are not always positive. In
the case of the negative weightP, we associate a probability
value uPu with it and include a signS=P/ uPu in the average:
kEl=kESl / kSl. Now the averagek¯l is with respect to the
probability distributionuPu.

Finally, we note that in estimating the statistical error for
a composite quantityX=X1+X2+¯ +Xn, we use the stan-
dard formuladX=sdX1

2+dX2
2+¯ +dXn

2d1/2, wheredXi’s are
estimated by the Jackknife method.31

III. APPLICATION

A. Comparison to other methods

In this section, we check our QMC programs against the
ED and SSE results.33–35Table I lists the energies and bind-
ing energies from both ED and PQMC for a truncated tetra-
hedron, which has 12 lattice sites and 3 nearest neighbors for
each site. For energies at different dopings, good agreement
is obtained between the two methods. The largest deviation
of PQMC from ED is found forn=10 sSz=0d sabout 0.7%
deviationd, which might be due to the relatively low value of
the average sign and the incomplete projection of a nearby
singlet excitation. The energy differences between two dif-
ferent dopingsse.g.,D1,0d are in good agreement for the two
methods. However, the inaccuracies are magnified when
pair-binding energies are extracted from two already small
energy differences, although some of these energies are still
in good agreement for the two methods within error bounds,
e.g., Dbs11d. The difficulty of extractingDbs13d from the
PQMC is possibly because the ground state with 14 electrons
lies in the spin singlet sectorsas confirmed by EDd, and it is
difficult for the PQMC to completely project out the nearby
spin triplet statesthe first excited stated. There is no such

FIG. 2. Grand canonical simu-
lation of a C60 molecule at various
chemical potentials. Simulation
parameters:U=4t, b=10/t, Dt
=0.1/t, Nt=103, Nm=105. We are
interested only in the qualitative
behavior of the system around
half filling, so the statistical errors
are not estimated.sad Energy per
site vs chemical potential.sbd
Electron density vs chemical po-
tential.scd Average sign as a func-
tion of chemical potential.sdd Av-
erage sign as a function of
electron density. Curves connect-
ing the points are guides to the
eye.

QUANTUM MONTE CARLO CALCULATION OF THE… PHYSICAL REVIEW B 71, 165436s2005d

165436-3



problem if the ground state for two-electron doping is a spin
triplet, which, as we will see below, is exactly the case for
C60. From the good agreement between ED and the PQMC,
we conclude that the discretization error caused byDt
=0.05/t is sufficiently small. We also find that the projection
factorb=10/t is large enough to project out the ground state
from an initial trial state. We will use these values ofDt and
b in our AFQMC and PQMC simulations of the C60 mol-
ecule.

In Table II, we check our grand canonical simulation pro-
gramsAFQMCd, against EDsat U=0d and SSEsat U=4td on
a C60 molecule. Again we see good agreement in both the

densityn and energyE calculations among these methods.
For U=0, the AFQMC results are exactly the same as the
exact diagonalization results. This is because atU=0, there
is no coupling between the electrons and the auxiliary Ising
field; the Ising field is wiped out completely and the elec-
trons cannot feel the existence of the Ising spins. The simu-
lation atU=0 also shows that the discretization error is ab-
sent in AFQMC. In bothU=0 andU=4t, we have set the
temperatureT=2t to avoid a severe sign problem in the SSE
simulation. Because the SSE does not suffer from the dis-
cretization error, we again confirm thatDt=0.05/t in the

TABLE III. PQMC calculations on a C60 molecule. PartA of the table shows the total internal energyEnsSzd of a C60 molecule withn
electrons and az component of total spinSz. The parameters used in the simulations aret8=1.2t b=10/t, Dt=0.0625/t sfor U=4td, Dt
=0.05/t sfor otherU valuesd, Nm=107. Nm data were divided into ten bins for error estimation. Forn=60,61,62, we have collected more
datasbetween 43107 and 83107 measurementsd for a more accurate comparison between PQMC and the perturbative results. PartB shows
the electron-shole-d binding energiesDbsnd. As before, theSz column in this case lists theSz values of the three states involved in the
calculation of the binding energy, in the order of appearance in Eq.s2d. For example,Dbs58d with Sz=s1/2,3/2,1d denotesE59sSz=1/2d
+E57s3/2d−2E58s1d. The data points marked with * were calculated using a nonsymmetric decomposition in Eq.s5d. Only limited results
were obtained forU=4.5t because of the long averaging times required.

PartA U=2t U=3t U=4t U=4.5t

n Sz EnsSzd sign EnsSzd sign EnsSzd sign EnsSzd sign

57 1/2 −74.535s5d 0.69 −64.72s2d 0.15 −56.6s6d* 0.02

57 3/2 −74.574s4d 0.81 −64.79s2d 0.25 −57.1s1d* 0.04

58 0 −74.290s3d 0.75 −64.06s2d 0.25 −55.82s8d* 0.04

58 1 −74.322s4d 0.82 −64.098s9d 0.32 −55.95s5d* 0.07

59 1/2 −74.080s4d 0.89 −63.366s8d 0.51 −54.74s2d* 0.22

59 3/2 −73.104s4d 0.83 −62.475s7d 0.31 −54.06s4d* 0.06

60 0 −73.810s3d 1.00 −62.633s3d 1.00 −53.091s2d 0.98 −48.969s3d 0.94

60 1 −72.885s4d* 0.92 −61.83s1d* 0.44 −52.30s2d* 0.29

61 1/2 −72.448s2d 0.98 −60.704s3d 0.82 −50.542s5d 0.47 −46.080s5d 0.32

61 3/2 −71.547s3d* 0.89 −59.957s7d* 0.46 −50.21s3d* 0.13

62 0 −71.043s4d 0.95 −58.728s6d 0.63 −47.92s1d 0.22 −43.15s4d 0.10

62 1 −71.072s2d 0.98 −58.756s3d 0.77 −47.965s6d 0.35 −43.175s9d 0.18

63 1/2 −69.649s3d 0.96 −56.760s5d 0.60 −45.34s2d 0.17

63 3/2 −69.688s4d 1.00 −56.802s3d 0.88 −45.360s8d 0.40

64 0 −68.227s3d 0.95 −54.735s8d 0.54 −42.67s5d 0.12

64 1 −68.252s4d 0.98 −54.743s5d 0.71 −42.69s2d 0.20

65 1/2 −66.801s3d 0.98 −52.719s7d 0.70 −39.96s3d 0.17

65 3/2 −66.587s5d 0.96 −52.505s8d 0.61 −39.85s2d 0.15

66 0 −65.337s4d 1.00 −50.638s4d 0.81 −37.26s2d 0.21

66 1 −65.115s3d 0.95 −50.419s9d 0.58 −37.07s4d 0.13

PartB

Dbsnd Dbsnd Dbsnd Dbsnd

58 s1/2,3/2,1d −0.010s8d 0.04s3d 0.1s2d*

59 s0,1,1/2d 0.028s8d 0.00s1d −0.06s5d*

60 s1/2,1/2,0d 1.092s6d 1.20s1d 1.42s2d*

61 s1,0,1/2d 0.014s5d 0.019s6d 0.028s9d 0.02s1d
62 s3/2,1/2,1d 0.008s5d 0.006s6d 0.03s1d
63 s1,1,3/2d 0.052s7d 0.105s7d 0.07s2d
64 s1/2,3/2,1d 0.015s8d −0.04s1d 0.05s4d
65 s0,1,1/2d 0.013s7d 0.06s1d −0.03s5d
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AFQMC is sufficiently small to avoid any systematic dis-
crepancy.

The results in Table I for the simulations on a truncated
tetrahedron molecule show that the PQMC results are in
good agreement with ED. The systematic discretization error
caused byDt is reasonably small; thus the extrapolation to
Dt=0 is unnecessary.

B. Application to the C60 molecule

In this section, we discuss the QMC results for a C60
molecule. Figure 2 shows the results of an AFQMC simula-
tion of the Hubbard model on a C60 molecule at various
chemical potentialsm. At half filling, unlike the bipartite
two-dimensionals2Dd square lattice, the QMC simulation
has a slight sign problem due to the pentagon frustration in
the C60 geometry; see figs. 2scd and 2sdd. From Figs. 2scd and
2sdd we also see that hole dopings have a worse sign problem

than electron dopings. As expected, the compressibility37 k
;s1/n2dsdn/dmd,0 aroundm=0.

Table III lists the PQMC results for 2øU / tø4.5 for the
C60 molecule. It can be seen that hole doping causes a more
severe sign problem than the electron doping, which is con-
sistent with the behavior in Fig. 2. In partA of the table we
see that reasonably accurate results can be obtained forU
=2t, 3t, and 4t. The sign problem quickly becomes severe for
U.4t, as is evident in the data presented forU=4.5t, where
the average sign is only 0.18 for 62 electrons. ForU=5t and
62 electrons, the average sign is 0.08, and it is not possible to
extract a reliable binding energy.

FIG. 3. Huckel energy-level diagram for the neutral C60 mol-
ecule. The lowest 30 levels are doubly occupied. The energy level
scale is drawn according to the exact diagonalization of the nonin-
teracting on-site Hubbard Hamiltonian, i.e.,U=0. The energy level
labels are from those of the icosahedral group, which is the sym-
metry group of a C60 molecule. The LUMO band is labelled byt1u,
and HOMO by hu. We will consider the doping of LUMO and
HOMO for a discussion of Hund’s rule.

FIG. 4. Comparison of the PQMC spin configuration of a C60

molecule at various dopings with Hund’s rule.DE is defined as the
energy difference between two total spinz component sectors, e.g.,
DEs60d=E60sSz=1d−E60sSz=0d for the neutral molecule and
DEs61d=E61sSz=3/2d−E61sSz=1/2d for one-electron doping. A
positiveDE at fillings n=59, 60, 61 can be understood in the non-
interacting picture in Fig. 3, and a negativeDE at fillings n=57, 58,
62, 63, 64 is in agreement with Hund’s rule.n=65, 66 can again be
explained with Fig. 3. See the text for discussions. The dotted lines
connecting the MC points are only guides to the eye.
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From Table III, partA we can calculate the energy differ-
ence between different total spin sectors at the same doping
to compare the ground state-spin configuration with Hund’s
rule. Let us first discuss the noninteracting single electron
energy levels of a C60 molecule. At half filling, 60 electrons
move independently in “p” molecular orbitals formed from
the 60pz atomic orbitals of the 60 carbon atoms. An exact
diagonalization of the noninteracting Hamiltonian gives 60
energy levels, of which the lowest 30 levels are occupied at
half filling. The lowest unoccupied molecular orbitals
sLUMOd are threefold degenerate. The highest occupied mo-
lecular orbitalssHOMOd are fivefold degenerate. The de-
tailed energy levels of the neutral C60 molecule are shown in
Fig. 3. The energy gap between HOMO and LUMO is 1.04t
from this exact diagonalization for the noninteracting neutral
C60.

We calculate the energy differenceDE of different totalSz
values at the same filling as shown in Fig. 4. Atn=59, 60,
and 61,DE is positive, which can be explained by the non-
interacting energy levels in Fig. 3. For example, forn=59
and total spinSz=1/2, weneed to flip one electron from spin
down to spin up in order to getSz=3/2, which means we
need to excite one spin-down electron from the HOMO band
to the LUMO band, with an energy cost of 1.04t. The same
explanation applies ton=60 and 61. Atn=57, 58, 62, 63, 64,
DE is close to zero, which means that the two different val-
ues ofSz are part of the same multiplet. For these cases, in
agreement with Hund’s rule, the electrons tend to occupy the
degenerate HOMO or LUMO in a way that maximizes the
total spin.

Note that the small differences in energy for fixedn and
differentSz within a multiplet must result from small admix-
tures of excited states. For example, if the ground state is a
triplet, as forn=62, and if the first excited state is a singlet,
then theSz=0 state may contain a small admixture of the
excited singlet state, while theSz=1 state will not. This will
result in theSz=0 state having a slightly higher energy than
the Sz=1 state, providing a measure of the effectiveness of
the projection within this multiplet.

At n=65, 66, the positiveDE can again be explained by
the single electron picture. A spin-down electron in thet1u
band must flip its spin and be excited to thet1g band, with an

energy cost of 0.2603t for the noninteracting Hamiltonian.
This is consistent with Fig. 4 forn=65 and 66.

In Table III, partB, we calculate the pair-binding energy
Dbsnd at various dopings. In these calculation, we have used
the lowest energy of the different total spinz states for a
givenn. Figure 1 shows a comparison between the perturba-
tion calculations of Refs. 4 and 5 and the PQMC calcula-
tions. There is no indication from the PQMC calculations of
a bound singlet state forU.3.3t, as suggested by perturba-
tion theory and represented by the solid line in Fig. 1. In-
stead, the ground state for 62 electrons is a triplet over the
entire range of parameters studied, in agreement with Hund’s
rule. Furthermore, we find that this triplet state is unbound
for U / tø4.5. Unfortunately, the sign problem precludes us
from studying larger values ofU using the PQMC. We have
also checked the energy difference obtained from the PQMC
with the results from imaginary chemical potential simula-
tions, which shows good agreement and is presented
elsewhere.19

IV. CONCLUSIONS

We have performed extensive QMC simulations on a
single C60 molecule. The PQMC simulation calculates inter-
nal energies at various fillings and shows that Hund’s rule is
well obeyed. In contradiction to the perturbation theory
result,4,5,20 we find no singlet pair bindingfi.e., no negative
Dbsndg for the parameter ranges exploredsU=2t,
3t ,3.5t ,4t ,4.5t, t8=1.2td. Therefore, a purely electronic at-
tractive interaction, originating from the one-band Hubbard
model with the on-site Coulomb interaction, seems unlikely.
This main result is presented in Fig. 1. However, due to the
sign problem, we cannot exclude a singlet-triplet energy
crossing for the C60 molecule with two-electron doping at
largerU / t sU / t.4.5d than those studied.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of this project by
the Natural Sciences and Engineering Research Council
sCanadad, The Canadian Institute for Advanced Research
sCIARd, CFI, and SHARCNET. All the calculations were
carried out at the SHARCNET supercomputing facilities at
McMaster University.

1A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S.
H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan,
NaturesLondond 350, 600 s1991d.

2M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R.
C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M.
Zahurak, and A. V. Makhija, Phys. Rev. Lett.66, 2830s1991d.

3O. Gunnarsson, Rev. Mod. Phys.69, 575 s1997d.
4S. Chakravarty, M. P. Gelfand, and S. Kivelson, Science254, 970

s1991d.
5S. Chakravarty and S. Kivelson, Europhys. Lett.16, 751 s1991d.
6P. Joyes and R. J. Tarento, Phys. Rev. B45, 12077s1992d.
7J. P. Lu, Phys. Rev. B49, 5687s1994d.
8D. N. Sheng, Z. Y. Weng, C. S. Ting, and J. M. Dong, Phys. Rev.

B 49, 4279s1994d.
9J. M. Dong, J. Jiang, Z. D. Wang, and D. Y. Xing, Phys. Rev. B

51, 1977s1995d.
10J. M. Dong, Z. D. Wang, D. Y. Xing, Z. Domanski, P. Erdös, and

P. Santini, Phys. Rev. B54, 13611s1996d.
11V. Ya. Krivnov, I. L. Shamovsky, E. E. Tornau, and A. Rosen-

gren, Phys. Rev. B50, 12144s1994d.
12M. Granath and S. Östlund, Phys. Rev. B66, 180501sRd s2002d;

68, 205107s2003d.
13O. Gunnarsson, E. Koch, and R. M. Martin, Phys. Rev. B54,

R11026s1996d.
14M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Science

296, 2364s2002d.

LIN et al. PHYSICAL REVIEW B 71, 165436s2005d

165436-6



15S. Chakravarty, S. Kivelson, M. I. Salkola, and S. Tewari, Science
256, 1306s1992d.

16S. R. White, S. Chakravarty, M. P. Gelfand, and S. A. Kivelson,
Phys. Rev. B45, 5062s1992d.

17S. Chakravarty and S. A. Kivelson, Phys. Rev. B64, 064511
s2001d.

18E. Dagotto, A. Moreo, R. L. Sugar, and D. Toussaint, Phys. Rev.
B 41, R811s1990d.

19F. Lin, J. Šmakov, E. S. Sørensen, C. Kallin, and A. J. Berlinsky
sto appear in Phys. Rev. Ed.

20S. Ostlundsprivate communicationd.
21R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D

24, 2278s1981d.
22D. J. Scalapino and R. L. Sugar, Phys. Rev. B24, 4295s1981d.
23J. E. Hirsch, Phys. Rev. B28, R4059 s1983d; 29, 4159sEd

s1984d; Phys. Rev. Lett.51, 1900s1983d.
24J. E. Hirsch, Phys. Rev. B31, 4403s1985d.
25S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gu-

bernatis, and R. T. Scalettar, Phys. Rev. B40, 506 s1989d.
26M. Suzuki, inQuantum Monte Carlo Methods, edited by M. Su-

zuki, Springer Series in Solid-State Sciences Vol. 74sSpringer,
Berlin, 1986d.

27J. Hubbard, Phys. Rev. Lett.3, 77 s1959d.

28R. L. Stratonovich, Dokl. Akad. Nauk SSSR115, 1097 s1957d
fSov. Phys. Dokl.2, 416 s1958dg.

29F. F. Assaad, inQuantum Simulations of Complex Many-Body
Systems: From Theory to Algorithms, edited by J. Grotendorst,
D. Marx, and A. Muramatsu, NIC series Vol. 10sJohn von Neu-
mann Institute for Computing, Jülich, 2002d.

30R. M. Fye, Phys. Rev. B33, 6271s1986d.
31M. E. J. Newman and G. T. Barkema,Monte Carlo Methods in

Statistical Physics, sOxford University Press Inc., New York,
1999d.

32G. H. Golub and C. F. Van Loan,Matrix Computations, sThe
Johns Hopkins University Press, Baltimore and London, 1989d.

33A. W. Sandvik and J. Kurkijärvi, Phys. Rev. B43, 5950s1991d.
34A. W. Sandvik, Phys. Rev. B56, 11678 s1997d; 59, R14157

s1999d.
35O. F. Syljuäsen and A. W. Sandvik, Phys. Rev. E66, 046701

s2002d.
36 To describe our computational procedure, we define an AFQMC

or PQMC sweepS1 as an attempt to flip the auxiliary spins on
theN spatial sites, belonging to a single time slice, andS2 as an
attempt to flip all the spins on all time slices.

37A. Moreo, D. J. Scalapino, R. L. Sugar, S. R. White, and N. E.
Bickers, Phys. Rev. B41, 2313s1990d.

QUANTUM MONTE CARLO CALCULATION OF THE… PHYSICAL REVIEW B 71, 165436s2005d

165436-7


