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Quantum Monte Carlo calculation of the electronic binding energy in a Gy molecule
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Electronic energies are calculated for a Hubbard model on ggenGlecule using projector quantum Monte
Carlo (QMC) methods. The calculations are performed to an accuracy high enough to determine the pair-
binding energy for two electrons added to neutrgh. @he method itself is checked against a variety of other
guantum Monte Carlo methods as well as the exact diagonalization for smaller molecules. The conclusion is
that the ground state with two extra electrons on oggniblecule is a triplet, and, over the range of parameters
where QMC is reliable, it has a slightly higher energy than the state with electrons on two separate molecules,
so that the pair is unbound.
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l. INTRODUCTION QMC for both real and imaginary chemical potentt&fd
The discovery of superconductivity in the alkali-metal- 2nd stochastic series expansi@SB at a finite temperature
doped bulk fullerenes 4Cso and RRCq, (Refs. 1,2 sparked | @nd projector QMQPQMC) at T=0, on a series of Hub-
intense interest in fullerene-based materials, leading to eX2ard molecules, with the number of sites ranging from 4 to
tensive experimental and theoretical studfes a review see 00 In addition, a comparison is made to the results of exact
Ref. 3. The theoretical calculations to explain the insulatingdi2gonalizationED) for systems of up to 12 sites. Our main

and superconducting properties of bulk fullerene material€eSult showbn Iin F]ig' l,disf'a_c':oerarisonlof the pa(ijr(—jbigding
fall into two major categories: molecular-level calculations €N€rgY(see below for a definitigrfor two electrons added to

which determine the effective interactions of intramolecular® "€utral Go molecule to the perturbation calculations of

electroné 1! and lattice-level calculations based on an effec—CK' All energies are measured in units of the hopping pa-

tive Hamiltonian in which the intramolecular degrees of free_rametert. In contrast to perturbation theory, which finds that
) 14 9 the ground state is a singlet faf/t>3, we find, in agree-
dom have been integrated ddt:

ment with Hund’s rule, that the ground state remains a triplet
AEhO.L'gh ][nuch of the ;vortk .r:as_ fot(r:]usecljkon the phonc’nstate over the entire range Ofstudied. In particular, there is
mechanism for superconductivity in the al alids, SOME 1o indication of the attractive singlet ground state which per-
auth_ors hqve proposed a purely electromg mechanism. Ierbation theory finds fotJ/t greater than about 3.3. Our
particular, it was argued by Chakravarty, Kivelson, and co

. : o ) ‘QMC studies find small positive binding energies fdrt
workers(CK) that electronic Interactions V.V'th'n a singleL =4.5, indicating that two separate molecules, each with one
molecule can lead to an effective attraction between charg

Extra electron, have lower energy than one molecule with
carriers>15-1"This argument was supported by perturbative : 9y

calculations of the electronic binding energies of the conventWO extra electrons. The largest value @fwe are able to
. study is 4.5, since the sign problem discussed below be-
tional one-band Hubbard model on thgyGtructure. The y gnh p

its of the CK calculati t that elect h comes unmanageable for larger valuedJofDue to this re-
results of the caicuiation suggest that €lectrons Nave gyqion we cannot exclude a singlet-triplet energy crossing
tendency to form paired states in a single fullerene molecul

rather than remaining separate. This tendency could be tﬁgpr téle Go molectle with two electron dopings fou/t

origin of the attractive interaction which is an essential in-

gredient of the BCS theory of superconductivity. 0.06 T T T T :
However, one might doubt the applicability of perturba- 0.04 | 45_
tion theory to this problem. First, the Hubbard repulsidim 0.02 |- R N
the CK calculation is approximately 75% of the bandwidth, -~ 0 gl
so it is hardly a small parameter. Also, the binding energy is = -0.02 F -
typically a small quantity, calculated from the difference of i’a -0.04 | -
the large internal energies of the;{Omolecule at different -0.06 | .
electron dopings. Low-order perturbation theory estimates of -0.08 [ L=1,8= .
such subtle energy differences may be unreliable. Thus it is 0.1 | -
interesting to repeat the calculation using different methods, 0.12 L L
which might lend support to or cast doubt upon the pertur- 0 1 2 U 3 4 5
bation theory results. t
In this paper we use quantum Monte Cai@MC) calcu- FIG. 1. Comparison of electronic pair binding energies

lations to estimate the binding energy of pairs of electrons o (61)/t, defined in Eq.(2), obtained from perturbation theory in
a single Go Hubbard molecule. In order to establish a high different spin sectorésolid and dash-dot ling&>2°and PQMC cal-

level of confidence in our results, we use a number ofculations on a g, molecule. PQMC findsS=1 for ground states
complementary QMC methods, including auxiliary field with 62 electrons.
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TABLE |. Comparison of exact diagonalization and PQMC cal-
culations on the truncated tetrahedrd? sites at U=2t. PQMC
simulation parametergd=10/t, A7=0.05%, N,,=10". E,(S, is the
energy of a system with electrons and @ component of total spin
S, Apm is the energy differencE;;.n(S) —Ej2.m(S)) with (S),S))
given in the second column. For binding energlgsn) the second
column showg S, 51,9)) the S, values for the three states in-
volved in its calculation, in the order of appearance in &j.
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TABLE Il. Comparison of the density, total internal energ§
and average sigis between exact analytical resulf§=0), SSE
(U=4t) and AFQMC on a @, molecule. Simulation parameters:
B=0.5/t, A7=0.05k, N,,=1C°. In the SSE run 10measurements,
separated by a full diagonal and directed loop updBR&fs. 34,35
were performed. At lower temperatures SSE is unreliable due to the
severe sign problem.

U=0
S, ED PQMC sign m -1 0 1
Eio 0 -14.506219  -14.393) 047 ., 0.7959095 1.0001765 1.2043146
Eio 1 -14.506219  -14.503) 1.00 E__, -44.2672020 -46.3708440 -44.3478000
Eu 1/2 -13.623187  -13.620) 081  nucoyc 0.7959095 1.0001765 1.2043146
Eu 3/2 -12.876242  -12.888) 057  Exoqc -44.2672020 -46.3708440 -44.3478000
= 0 -12.607340  -12.698) 100  Soc 1.0 1.0 1.0
= 1 -11.874844  -11.8%8) 0.52
Eis 1/2 -10.701320  -10.698)  0.58 U=4t
Eis 3/2 -9.982385 -9.968) 046 “ -1 0 L
Eis 0 -8.725294 -8.688) 030 ngge 0.8731) 1.000%2) 1.1261)
= 1 -8.645244 -8.643) 054 Egge -16.52) -4.002) 13.91)
Asg (1/2,0 0.996021 1.00@) Ssse 0.955 0.957 0.960
Aro (32,0 1714956 1.720) NAFQMC 0.87342) 1.0000781) 1.12662)
Ao (1/2,0 0.074154 0.078®) Earque -16.612) ~4.134) 13.746)
Agg (3/2,0 0.821099 0.81@) SarQue L0 L0 Lo
Ay(13)  (0,0,1/2 -0.019995 0.01@)
A,(1D  (0,1,1/2 0.042813 0.038) diagonal term, added to make the model particle-hole sym-

metric aroundu=0 on bipartite lattices. Clearly, this addi-

) ) ) tional term does not affect the value of the electronic binding
The paper is organized as follows. In the next section W&nergy, which we choose to define as

introduce the model and the QMC methods used in our simu-
lations. We then proceed to present the tests of QMC codes
on smaller molecule@runcated tetrahedron, etcwhere ex-

act analytical or exact diagonalization results are available.

Then the results for the g molecule are presented and ana- oo e E, is the internal energy of a molecule withelec-

lyzed. Finally, a conclusion based on our numerical results I3 ons. Note that this definition has the o ite si
drawn and the reliability of the method is discussed. . pposite sign, com-
pared to that of CK. In our case the tendency of the electrons
to bind into pairs is indicated by a negative value of the
binding energyA.
The determinant or auxiliary field QMCAFQMC) has
Following CK, we consider a one-band Hubbard modelbeen widely used in model Hamiltonian simulations since its
with the HamiltonianH=H,+H, defined on a g molecule  introduction by Blankenbecleet al?!2?and its further de-
by velopment by Hirsck?* and Whiteet al?® The application
of this technique to the one-band Hubbard model starts with
the Suzuki-Trotter discretization of the imaginary time in the
grand canonical partition functici,

Ab(n) = En+1 + En—l - 2EI"I' (2)

Il. METHODOLOGY

Ho=~- > tij(CiTa—Cj(f+ H.c)- ME Ny,

(ij)o io

(1) -
Zoe=TrePH=TrePHoH) = [[ e27HotH) | (3)
i=1

U
H1: UE niTnu - EE N
I lo

Here Hy contains the standard kinetic energy and chemical

potential term. The summation in the kinetic energy term is

performed over all nearest-neighbor pairs onggi@olecule.  where 8=1/(kgT) is the inverse temperature, discretized in
The hopping constantsg are chosen to be equal tdor the  such a way thatg=A7L. After the application of the
single bonds connecting a pentagon and a hexagon, and KHubbard-Stratonovich transformatfdif® the fermionic de-
t'=1.2 for the double bonds between two hexagdigis a  grees of freedom in Eq3) may be traced out, and we arrive
sum of the on-site Coulomb repulsiéHubbard term and a  at
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1.14 T r . r
005 Z L@ ' ' ' f_.:;m 112 | © | _...—d’
-0.65 | Cgg grand canonical S 1:1 1 Ceo grand canonical .
-0.7 | U=4t, p=10, AT=0.11t - 1.08 1= y=at, p=10/t, Ar=0.11t P ) '
075 A 1.06 . FIG. 2. Grand canonical simu-
< .08 1] S 104 - lation of a Gy molecule at various
« 085 ..__.---E' 4 1.02 . chemical potentials. Simulation
-0.9 + P 4 1 geag-ag-T . parameters:U=4t, =10/, A~
-095 .ET‘E-E‘ - 0.98 - _Ja"E . =0.1/, N;=1C°, N,,=1CP. We are
-1 -‘j.-'"' . 096 | - interested only in the qualitative
-1.05 L ! L ! 0.94 B— . ' ! behavior of the system around
o 06 02 " 02 06 A B N 02 08 1 half filling, so the statistical errors
are not estimateda Energy per
! T [T T ) & T T T site vs chemical potential(b)
09 () ,.-ET' T 09 (d) 'I' 7 Electron density vs chemical po-
0.8 - g T 08T g % ] tential. (c) Average sign as a func-
07 F ; - 07 7oy - ) . ,
o L ] 061 \ | tion of ch_emlcal potentlaI(d? Av-
c o] c erage sign as a function of
5 05 |- g 1 sosf o . .
® 54l 1 % oal | _electron de_nsny. Curvz_es connect-
03F / Cepgrandcanonical w4  03F  / el - ing the points are guides to the
02+ P U=4t, B=10/ At=0.1/t {1 o02F *  Cgograndcanonical . eye.
o1 b & 4 01 . & U=4t, B=10t, A1=0.1/t -
0 = | | | L 0 E 1 1 1 1
-1 06 02 0.2 0.6 1 084 098 102 1.06 1.1 114
n n
Zoe= 2 H de{1 +B,(a)B__1(@) -+ By(a)] Since we are_intergsted in nonbipartite molecules such as
(o} a Cs0 the MC weights in general are not always positive. In
the case of the negative weiglRf we associate a probability
=2, detO({o},u); detO{a}, ). (4)  value|P| with it and include a sigr6=P/|P| in the average:
{o} (E)=(ES/(S). Now the averagé --) is with respect to the
The B, matrices are defined as probability distribution|P|.
. Finally, we note that in estimating the statistical error for
By(a) = e 47K/2eV Ng a2, (5)  a composite quantitK=X;+X,+---+X,, we use the stan-
dard formuladX=(8X2+ X5+ -+ +6X3)12, where 6X;’s are
K, = —t;; fori,j nearest neighbours, . estimated by the Jackknife meth#d.
"o otherwise, ©
I1l. APPLICATION
Vi(h) = &i[haoi(l) + nAT], (7) A. Comparison to other methods

whereo;(l)=+1 is the auxiliary Ising spin coupled with the  In this section, we check our QMC programs against the
electrons at lattice sité and timelAr, and @=+1 corre- ED and SSE result§~3°Table | lists the energies and bind-
sponds to the or | in Eq. (4). In Eq. (5) we have used a ing energies from both ED and PQMC for a truncated tetra-
symmetric decomposition of the partition function, which hedron, which has 12 lattice sites and 3 nearest neighbors for
produces a much smaller Trotter e compared to the each site. For energies at different dopings, good agreement
nonsymmetric decompositidh-2325The Monte CarlgMC) is obtained between the two methods. The largest deviation
weight P is then given by the product of two determinants in of PQMC from ED is found fom=10 (S,=0) (about 0.7%
Eq. (4), which is always positive for bipartite lattices at half deviatior), which might be due to the relatively low value of
filling.24 At low temperatures we use QR factorization to the average sign and the incomplete projection of a nearby
stabilize the matrix multiplications and inversiofi?A ver-  singlet excitation. The energy differences between two dif-
sion (projector QMC or PQMGC of the above procedure can ferent dopingge.g.,A; o) are in good agreement for the two
be used to directly project the ground state properties fronmnethods. However, the inaccuracies are magnified when
an initial trial wave function(see Ref. 25 for details pair-binding energies are extracted from two already small
Unless indicated otherwise, PQMC and AFQMC calcula-energy differences, although some of these energies are still
tions were performed at the projection factor or temperaturé good agreement for the two methods within error bounds,
fixed by B=10/t, with an imaginary time discretization of €.g., Ap(11). The difficulty of extractingA,(13) from the
A7=0.054. The system was first brought to thermal equilib- PQMC is possibly because the ground state with 14 electrons
rium by performingN; thermalization sweepS2, followed lies in the spin singlet sectgas confirmed by ED and it is
by N, measurements with a single swesp (Ref. 39 per-  difficult for the PQMC to completely project out the nearby
formed between them. spin triplet state(the first excited staje There is no such

165436-3



LIN et al. PHYSICAL REVIEW B 71, 165436(2005

TABLE lll. PQMC calculations on a g molecule. PariA of the table shows the total internal enefgyS,) of a Gso molecule withn
electrons and @ component of total spils,. The parameters used in the simulations trel.22 8=10/t, A7=0.0625% (for U=4t), At
=0.054 (for otherU values, N,=10". N, data were divided into ten bins for error estimation. Ret60,61,62, we have collected more
data(between 4< 10" and 8x 10’ measurementgor a more accurate comparison between PQMC and the perturbative resul® sRavts
the electron{hole) binding energies\,(n). As before, theS, column in this case lists th8, values of the three states involved in the
calculation of the binding energy, in the order of appearance inBqFor exampleA,(58) with S,=(1/2,3/2,1 denotesEsy(S,=1/2)
+E57(3/2)-2Esg(1). The data points marked with * were calculated using a nonsymmetric decomposition (8) EQnly limited results
were obtained fotJ=4.5 because of the long averaging times required.

PartA u=2t u=3t U=4t U=4.5
n S E(S) sign E (S) sign E(S) sign E(S) sign
57 1/2 -74.536) 0.69 -64.772) 0.15 -56.66)" 0.02
57 3/2 -74.5744) 0.81 -64.792) 0.25 -57.11)" 0.04
58 0 -74.2908) 0.75 -64.062) 0.25 -55.828)" 0.04
58 1 -74.3294) 0.82 -64.0989) 0.32 -55.965)" 0.07
59 1/2 -74.0804) 0.89 -63.3663) 0.51 -54.742) 0.22
59 3/2 -73.1044) 0.83 -62.4757) 0.31 -54.064)" 0.06
60 0 -73.81(B) 1.00 -62.63%) 1.00 -53.0912) 0.98 -48.96) 0.94
60 1 -72.8864)" 0.92 -61.881) 0.44 -52.302)" 0.29
61 1/2 ~72.44Q) 0.98 -60.70M) 0.82 -50.5485) 0.47 -46.08(6) 0.32
61 3/2 -71.5473)" 0.89 -59.9577)" 0.46 -50.213) 0.13
62 0 -71.0484) 0.95 -58.7286) 0.63 -47.971) 0.22 -43.1%4) 0.10
62 1 -71.072) 0.98 -58.7563) 0.77 —47.9686) 0.35 -43.17%) 0.18
63 1/2 -69.64(8) 0.96 -56.76(6) 0.60 —45.342) 0.17
63 3/2 -69.6884) 1.00 -56.8023) 0.88 -45.36(8) 0.40
64 0 -68.2273) 0.95 -54.738) 0.54 -42.675) 0.12
64 1 -68.2524) 0.98 -54.74%) 0.71 -42.692) 0.20
65 1/2 -66.80(3) 0.98 -52.7197) 0.70 -39.963) 0.17
65 3/2 -66.5875) 0.96 -52.5083) 0.61 -39.852) 0.15
66 0 -65.3374) 1.00 -50.638) 0.81 -37.262) 0.21
66 1 -65.1163) 0.95 -50.4199) 0.58 -37.074) 0.13

PartB

Ap(n) Ap(n) Ap(n) Ap(n)

58 (1/2,3/2,1 -0.01098) 0.0403) 0.12)"
59 (0,1,1/2 0.0288) 0.001) -0.065)"
60 (1/2,1/2,0 1.0926) 1.201) 1.422)"
61 (1,0,1/2 0.0145) 0.0196) 0.0289) 0.021)
62 (3/2,1/2,1 0.0085) 0.0066) 0.031)
63 (1,1,3/2 0.0527) 0.1057) 0.072)
64 (1/2,3/2,1 0.0158) -0.041) 0.054)
65 (0,1,1/2 0.0137) 0.061) -0.035)

problem if the ground state for two-electron doping is a spindensityn and energyE calculations among these methods.
triplet, which, as we will see below, is exactly the case forFor U=0, the AFQMC results are exactly the same as the
Ceo- From the good agreement between ED and the PQMGCgxact diagonalization results. This is becausé)ab, there

we conclude that the discretization error caused 2% s no coupling between the electrons and the auxiliary Ising
=0.05+4 is sufficiently small. We also find that the projection field; the Ising field is wiped out completely and the elec-

factor 5=10/ is large enough to project out the ground Staleons cannot feel the existence of the Ising spins. The simu-
from an initial trial state. We will use these values/of and

- . . lation atU=0 also shows that the discretization error is ab-
in our AFQMC and PQMC simulations of thegCmol- .
gcule Q Q 66 sent in AFQMC. In bothU=0 andU=4t, we have set the

In Table I, we check our grand canonical simulation pro-t€Mperaturd =2t to avoid a severe sign problem in the SSE

gram(AFQMC), against EDatU=0) and SSHatU=4t) on simulation. Because the SSE does not suffer from the dis-
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FIG. 3. Huckel energy-level diagram for the neutrgl,@ol-
ecule. The lowest 30 levels are doubly occupied. The energy level 15 L L L L L
scale is drawn according to the exact diagonalization of the nonin- 56 58 60 62 64 66
teracting on-site Hubbard Hamiltonian, i.el=0. The energy level
labels are from those of the icosahedral group, which is the sym-
metry group of a G molecule. The LUMO band is labelled iy, molecule at various dopings with Hund’s ruteE is defined as the
and HOMO byh,. We will consider the doping of LUMO and  gnergy difference between two total sgicomponent sectors, e.g.,
HOMO for a discussion of Hund's rule. AE(60)=Eg(S,=1)~Ego(S,=0) for the neutral molecule and

AE(61)=E4(S,=3/2)-Eg(S,=1/2) for one-electron doping. A
AFQMC is sufficiently small to avoid any systematic dis- positive AE at fillings n=59, 60, 61 can be understood in the non-
crepancy. interacting picture in Fig. 3, and a negati&€& at fillingsn=57, 58,

The results in Table | for the simulations on a truncated62, 63, 64 is in agreement with Hund’s rufe=65, 66 can again be
tetrahedron molecule show that the PQMC results are igxplained with Fig. 3. See the text for discussions. The dotted lines
good agreement with ED. The systematic discretization errogonnecting the MC points are only guides to the eye.
caused byAr is reasonably small; thus the extrapolation to
A7=0 is unnecessary.

FIG. 4. Comparison of the PQMC spin configuration of g C

than electron dopings. As expected, the compressibility
=(1/n®)(dn/dw) ~0 aroundu=0.
Table Il lists the PQMC results for2U/t=<4.5 for the
Cgo molecule. It can be seen that hole doping causes a more
In this section, we discuss the QMC results for g C severe sign problem than the electron doping, which is con-
molecule. Figure 2 shows the results of an AFQMC simula-sistent with the behavior in Fig. 2. In paktof the table we
tion of the Hubbard model on agg molecule at various see that reasonably accurate results can be obtained for
chemical potentialsu. At half filling, unlike the bipartite =2t, 3t, and 4. The sign problem quickly becomes severe for
two-dimensional(2D) square lattice, the QMC simulation U>4t, as is evident in the data presented tbr 4.5, where
has a slight sign problem due to the pentagon frustration itthe average sign is only 0.18 for 62 electrons. Ber5t and
the Gso geometry; see figs.(2) and 2d). From Figs. 2c) and 62 electrons, the average sign is 0.08, and it is not possible to
2(d) we also see that hole dopings have a worse sign problemxtract a reliable binding energy.

B. Application to the Cgy molecule
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From Table IIl, partA we can calculate the energy differ- energy cost of 0.26@3or the noninteracting Hamiltonian.
ence between different total spin sectors at the same dopinthis is consistent with Fig. 4 fon=65 and 66.
to compare the ground state-spin configuration with Hund’s In Table Ill, partB, we calculate the pair-binding energy
rule. Let us first discuss the noninteracting single electrom\,(n) at various dopings. In these calculation, we have used
energy levels of a gz molecule. At half filling, 60 electrons the lowest energy of the different total spinstates for a
move independently in4” molecular orbitals formed from givenn. Figure 1 shows a comparison between the perturba-
the 60p, atomic orbitals of the 60 carbon atoms. An exacttion calculations of Refs. 4 and 5 and the PQMC calcula-
diagonalization of the noninteracting Hamiltonian gives 60tions. There is no indication from the PQMC calculations of
energy levels, of which the lowest 30 levels are occupied ah bound singlet state fdy > 3.3, as suggested by perturba-
half filling. The lowest unoccupied molecular orbitals tion theory and represented by the solid line in Fig. 1. In-
(LUMO) are threefold degenerate. The highest occupied mostead, the ground state for 62 electrons is a triplet over the
lecular orbitals(HOMO) are fivefold degenerate. The de- entire range of parameters studied, in agreement with Hund’s
tailed energy levels of the neutraf@nolecule are shown in rule. Furthermore, we find that this triplet state is unbound
Fig. 3. The energy gap between HOMO and LUMO is 1.04 for U/t<4.5. Unfortunately, the sign problem precludes us
from this exact diagonalization for the noninteracting neutrafrom studying larger values df using the PQMC. We have
Cso- also checked the energy difference obtained from the PQMC
We calculate the energy differenad of different totalS,  with the results from imaginary chemical potential simula-
values at the same filling as shown in Fig. 4.#t59, 60, tions, which shows good agreement and is presented
and 61,AE is positive, which can be explained by the non- elsewherée?
interacting energy levels in Fig. 3. For example, f6r59
and total spir5,=1/2, weneed to flip one electron from spin V. CONCLUSIONS
down to spin up in order to ge%,=3/2, which means we We have performed extensive QMC simulations on a
need to excite one spin-down electron from the HOMO bangingle Gy molecule. The PQMC simulation calculates inter-
to the LUMO band, with an energy cost of 1t0Zhe same nal energies at various flIIIngS and shows that Hund’s rule is
explanation applies to=60 and 61. An=57, 58, 62, 63, 64, Well obeyed. In contradiction to the perturbation theory
AE is close to zero, which means that the two different val-result’>*°we find no singlet pair bindingi.e., no negative
ues ofS, are part of the same multiplet. For these cases, ifdo(n)] for the parameter ranges exploredU=2t,
agreement with Hund's rule, the electrons tend to occupy thet,3.5,4t,4.8, t'=1.2). Therefore, a purely electronic at-
degenerate HOMO or LUMO in a way that maximizes thetractive interaction, originating from the one-band Hubbard
total spin. model with the on-site Coulomb interaction, seems unlikely.
Note that the small differences in energy for fixecand ~ This main result is presented in Fig. 1. However, due to the
differentS, within a multiplet must result from small admix- sign problem, we cannot exclude a singlet-triplet energy
tures of excited states. For example, if the ground state is @rossing for the g molecule with two-electron doping at
triplet, as forn=62, and if the first excited state is a singlet, largerU/t (U/t>4.5) than those studied.
then theS,=0 state may contain a small admixture of the
excited singlet state, while tg=1 state will not. This will ACKNOWLEDGMENTS
result in theS,=0 state having a slightly higher energy than = We gratefully acknowledge the support of this project by
the S,=1 state, providing a measure of the effectiveness ofthe Natural Sciences and Engineering Research Council
the projection within this multiplet. (Canady The Canadian Institute for Advanced Research
At n=65, 66, the positive\E can again be explained by (CIAR), CFl, and SHARCNET. All the calculations were
the single electron picture. A spin-down electron in the carried out at the SHARCNET supercomputing facilities at
band must flip its spin and be excited to thgband, with an  McMaster University.

1A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. B 49, 4279(1994.
H. Glarum, T. T. M. Palstra, A. P. Ramirez, and A. R. Kortan, 2J. M. Dong, J. Jiang, Z. D. Wang, and D. Y. Xing, Phys. Rev. B
Nature(London 350 600 (1991). 51, 1977(1995.

2M. J. Rosseinsky, A. P. Ramirez, S. H. Glarum, D. W. Murphy, R.1%J. M. Dong, Z. D. Wang, D. Y. Xing, Z. Domanski, P. Erdés, and
C. Haddon, A. F. Hebard, T. T. M. Palstra, A. R. Kortan, S. M. P. Santini, Phys. Rev. B4, 13611(1996.
Zahurak, and A. V. Makhija, Phys. Rev. Le®6, 2830(1991). 11V, Ya. Krivnov, I. L. Shamovsky, E. E. Tornau, and A. Rosen-

30. Gunnarsson, Rev. Mod. Phy89, 575 (1997. gren, Phys. Rev. B50, 12144(1994).

4S. Chakravarty, M. P. Gelfand, and S. Kivelson, Scie@d, 970  12M. Granath and S. Ostlund, Phys. Rev.6B, 180501R) (2002;
(1991). 68, 205107(2003.

5S. Chakravarty and S. Kivelson, Europhys. Lett6, 751 (1991). 130. Gunnarsson, E. Koch, and R. M. Martin, Phys. Rev58

6p. Joyes and R. J. Tarento, Phys. Rev4R 12077(1992. R11026(1996.

7J. P. Lu, Phys. Rev. B19, 5687(1994. 14M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, Science

8D. N. Sheng, Z. Y. Weng, C. S. Ting, and J. M. Dong, Phys. Rev. 296, 2364(2002.

165436-6



QUANTUM MONTE CARLO CALCULATION OF THE... PHYSICAL REVIEW B 71, 165436(2005

153, Chakravarty, S. Kivelson, M. I. Salkola, and S. Tewari, Science?®R. L. Stratonovich, Dokl. Akad. Nauk SSSR15 1097 (1957

256, 1306(1992. [Sov. Phys. Dokl.2, 416 (1958].
165, R. White, S. Chakravarty, M. P. Gelfand, and S. A. Kivelson,?°F. F. Assaad, irQuantum Simulations of Complex Many-Body
Phys. Rev. B45, 5062(1992. Systems: From Theory to Algorithmsdited by J. Grotendorst,
173, Chakravarty and S. A. Kivelson, Phys. Rev.@, 064511 D. Marx, and A. Muramatsu, NIC series Vol. 10ohn von Neu-
(2002. mann Institute for Computing, Julich, 2002
18E. Dagotto, A. Moreo, R. L. Sugar, and D. Toussaint, Phys. Rev°R. M. Fye, Phys. Rev. B33, 6271(1986.
B 41, R811(1990. 31IM. E. J. Newman and G. T. Barkemilonte Carlo Methods in
I9F, Lin, J. Smakov, E. S. Sgrensen, C. Kallin, and A. J. Berlinsky  Statistical Physics(Oxford University Press Inc., New York,
(to appear in Phys. Rev.)E 1999.
20s. Ostlund(private communication 32G. H. Golub and C. F. Van Loarylatrix Computations (The
21R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D Johns Hopkins University Press, Baltimore and London, 1989
24, 2278(1981). 33A. W. Sandvik and J. Kurkijarvi, Phys. Rev. B3, 5950(1991).
22D, J. Scalapino and R. L. Sugar, Phys. Rev2B 4295(1981). 34A. W. Sandvik, Phys. Rev. B56, 11678(1997; 59, R14157
23], E. Hirsch, Phys. Rev. B28, R4059 (1983; 29, 4159EF) (1999.
(1984; Phys. Rev. Lett.51, 1900(1983. 350. F. Syljuasen and A. W. Sandvik, Phys. Rev.66, 046701
24]. E. Hirsch, Phys. Rev. B1, 4403(1985. (2002.
25S. R. White, D. J. Scalapino, R. L. Sugar, E. Y. Loh, J. E. Gu-3® To describe our computational procedure, we define an AFQMC
bernatis, and R. T. Scalettar, Phys. Rev4B 506 (1989. or PQMC sweefl as an attempt to flip the auxiliary spins on
26M. Suzuki, inQuantum Monte Carlo Methogdedited by M. Su- the N spatial sites, belonging to a single time slice, &das an
zuki, Springer Series in Solid-State Sciences Vol.(3gringer, attempt to flip all the spins on all time slices.
Berlin, 1989. STA. Moreo, D. J. Scalapino, R. L. Sugar, S. R. White, and N. E.
27J. Hubbard, Phys. Rev. Let8, 77 (1959. Bickers, Phys. Rev. B41, 2313(1990.

165436-7



