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Recent ultracold atomic gas experiments implementing synthetic spin-orbit coupling allow access to
flatbands that emphasize interactions. We model spin-orbit coupled fermions in a one-dimensional flatband
optical lattice. We introduce an effective Luttinger-liquid theory to show that interactions generate
collective excitations with emergent kinetics and fractionalized charge, analogous to properties found in the
two-dimensional fractional quantum Hall regime. Observation of these excitations would provide an
important platform for exploring exotic quantum states derived solely from interactions.

DOI: 10.1103/PhysRevLett.112.110404 PACS numbers: 67.85.−d, 03.65.Vf, 03.75.Ss, 05.30.Fk

Introduction.—Emergent quantum states derived from
interactions can exhibit rich structure because they are, by
definition, not adiabatically connected to the underlying
single-particle states. Two-dimensional (2D) electron gases
placed in a strong magnetic field offer seminal examples. In
the absence of a magnetic field, 2D electrons typically
demonstrate Fermi-liquid behavior, but a strong magnetic
field, the fractional quantum Hall (FQH) limit [1], would
seem to prevent the formation of a Fermi liquid. This
regime is defined by an absence of single-particle kinetic
energy that leaves interparticle interactions to generate
many-body quantum states in a flatband (the lowest Landau
level). However, it is now well known that interesting
properties, such as fractional charge from screening and
other kinetic effects [2–4], emerge from interactions in the
FQH regime. The remarkable fact that application of an
external field first suppresses single-particle properties to
leave interactions to generate similar emergent properties
leads to a natural question: Can these emergent mecha-
nisms manifest in other contexts? Flatbands in one dimen-
sion offer a logical analogue [5–8].
The Luttinger-liquid paradigm [9–12] captures the phys-

ics of many one-dimensional (1D) models. It predicts
excitations with, e.g., fractionalized charge arising from
competition between interactions and kinetic energy.
External fields could, in analogy to 2D magnetic fields,
be constructed to quench kinetics in one dimension, but the
absence of kinetics in 1D flatbands would appear to rule out
Luttinger-liquid behavior.
In this Letter, we show that kinetics, fractionalized

charge excitations, and other Luttinger-liquid–like proper-
ties emerge solely from interactions in experimentally
feasible 1D flatband models. Our proposal relies on recent
experimental progress [13–18] in engineering synthetic
spin-orbit coupling (SOC) for ultracold atomic gases [19].
These experiments show that Raman beams can be used to
dress atoms with spin-dependent momentums. Rashba

(and/or Dresselhaus) SOCs governing these dressed states
[20,21] are tunable to extremes not possible in solids.
Recent work shows that Rashba coupling in a 1D optical
lattice [22] or gas [23,24] can be tuned to yield flatbands, a
new limit that could play a role analogous to the lowest
Landau level [25], but interaction effects in a 1D flat
Rashba SOC band remain unexplored.
We study the impact of interactions between two-

component fermions in a flat SOC band in 1D optical
lattices. We find that the SOC elongates single-particle
basis states to generate highly nontrivial nearest neighbor
(NN) interactions [26]. The extended interactions lead to
Wigner crystals of spinors with dispersive collective
modes. These excitations are unexpected because they
imply kinetics that emerge purely from interactions.
We predict that these excitations also exhibit fraction-

alized charge even in the flatband limit. To show this, we
must contend with the fact that the absence of single-
particle kinetic energy prevents direct application of the
Luttinger-liquid theory. We find, instead, that emergent
kinetics allows us to introduce an effective Luttinger-liquid
theory. We compute the emergent velocities and fraction-
alized charge of excitations as experimentally verifiable
observables. We also estimate the experimental parameters
for observing these excitations. Detection of kinetics and
fractionalized charge derived solely from interactions in
one dimension would have important consequences for the
study of emergent Luttinger-liquid behavior, in analogy to
emergent fractional charge found in the 2D FQH regime.
Model.—We consider an equal population of N two-

component fermions in a 1D optical lattice. We start with a
noninteracting Hamiltonian that adds Rashba SOC to the
optical lattice potential [22]:

HSOC ¼ p2
x

2m
− sERcos2ðkLxÞ þ

�
ℏkR
m

�
pxσz þΩσx; (1)
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where px is the momentum of particles of mass m, s is the
optical lattice strength, kL is the optical lattice wave vector,
ER ¼ ℏ2k2L=2m is the recoil energy, ℏkR=m is the SOC
strength, σ are Pauli matrices, and Ω is the Zeeman field
strength. We work in units of the lattice spacing, π=kL.
Figure 1 plots the eigenvalues of HSOC, ωðkÞ to show

that Eq. (1) yields flatbands. We project into the lowest
flatband. Projection, achieved by considering only χ
particles, is warranted in the presence of an energy gap
between the χ and ζ bands at low densities [27].
We can derive a low-energy Hubbard model of inter-

actions operating in such a flat Rashba band in the tight
binding limit. In the Wannier basis, the interatom inter-
actions (e.g., s-wave contact interactions between alkali
atoms) become purely on site. After projection to the lowest
flatband, the on-site Hubbard interaction defines the
Hamiltonian of the entire system and is therefore the focus
of our study [27]:

H ¼ U
X
fkg

ffkgχ
†
k1
χ†k2χk3χk4 ; (2)

where U is the on-site Hubbard repulsion that defines the
only energy scale, χ†k creates a fermion at wave vector k
in the lowest band, and ffkg ≡ L−1δk1þk2;k3þk4 sinðαk1Þ×
cosðαk2Þ cosðαk3Þ sinðαk4Þ. Here the Kronecker delta
implies momentum conservation up to a reciprocal lattice
vector, and L is the number of lattice sites.
Equation (2) is written in terms of lowest flatband-

projected particles using a unitary transformation between
the original fermions and flatband fermions so that

χ particles are defined as spinors of the original atoms
[27]. We define the unitary transformation in terms of
optical lattice parameters: tanðαkÞ¼ ½ω1ðkÞ−hðkÞ�=Ω with
hðkÞ≡ −2t cosðkþ kRÞ and ω1ðkÞ≡ −2t cos k cos kR−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t2sin2ksin2kR þ Ω2

p
. Here t is the NN hopping [27].

Projection to χ particles generates nontrivial delocalized
single-particle basis states. To see this, we Fourier trans-
form χk to real space. The on-site interaction between the
original atoms becomes a longer range interaction between
χ particles. The leading diagonal interaction, Vd ~ni ~niþd, is
between NN. Here ~ni ≡ χ†i χi.
The inset of Fig. 1 shows the interaction strength, Vd,

between χ particles. Different optical lattice depths lead to
the same interaction, where Vd falls off quickly with the
dominant interaction given by V1, provided that the band
remains flat [27]. The inset shows two key results: (1)
The interaction is longer range, and (2) the form of the
interaction is robust over a wide range of s. In the
following, we can therefore focus on s ¼ 10 without loss
of generality.
Equation (2) contains a large number of terms, but by

considering a few of the largest terms (with strengths V1, t�1,
and t�2), we argue for intriguing low-energy states. Leading
off-diagonal terms in Eq. (2) are given by conditional
next nearest neighbor (NNN) hoppings of χ particles, i.e.,
−jt�1jχ†iþ2 ~niþ1χi and jt�2j ~niχ†iþ3χiþ1, where jt�1j=U ¼ 0.0257
and jt�2j=U ¼ 0.0015. We note that conditional hopping
originates entirely from interactions. The V1 term is the
strongest and should generate crystal states of spinor χ
particles, but conditional hoppings can give rise to emer-
gent kinetics in excitations. We verify this picture below by
combining diagonalization with an effective model.
Numerical results.—To more rigorously study Eq. (2),

we use numerics to explore the low-energy Hilbert space
and confine our study to half filling, N=L ¼ 1=2. We note
that the absence of kinetic energy excludes the direct use of
Luttinger-liquid theory.
We numerically diagonalize Eq. (2) using the Lanczos

algorithm. Translational symmetry allows us to work
within a fixed total momentum sector, K. The left panel
of Fig. 2 shows the four lowest total energies, EðKÞ, as a
function of the total momentum for several system sizes.
We find data collapse for L ≥ 16. Our numerics therefore
apply to the thermodynamic limit.
The ground state of H is a spinor Wigner crystal shown

schematically in the left panel of Fig. 2, set to
Eð�π=2Þ ¼ 0. Two Wigner crystals (both with particles
at every other site) are defined in momentum space by a
linear combination of wave functions at K ¼ �π=2. We
verify the crystalline nature of the ground state by breaking
the degeneracy with a small, staggered chemical potential,
μ
P

ið−1Þi ~ni, added to Eq. (2). In the μ → 0� limit, the
density shows that the system spontaneously picks one of
the two degenerate Wigner crystal ground states [27].
We have also calculated the charge structure factor
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FIG. 1 (color online). (Main panels) Single-particle energy
ωðkÞ of several lowest Bloch bands due to SOC for s ¼ 4 (left)
and s ¼ 10 (right). The ratio of the lowest energy gap to the
bandwidth is tuned to ≈8 [27] in both panels by setting
kR ¼ kL=2, Ω ¼ 0.22ER for s ¼ 4, and Ω ¼ 0.05ER for
s ¼ 10. (Inset) Diagonal interaction between χ particles as a
function of intersite distance, d, for s ¼ 4ER and s ¼ 10ER
yielding V1=U ≈ 0.0529.
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SðkÞ ¼ L−2P
i;je

ikðri−rjÞh ~ni ~nji. We find that SðkÞ has well-
defined peaks at k ¼ π, indicating Wigner crystals.
We, for comparison, numerically solve a diagonal

(classical) Hamiltonian known [28] to yield Wigner
crystals:

HD ¼ V1

X
i

~ni ~niþ1. (3)

The right panel of Fig. 2 shows the many-body energy
spectrum. The ground states of HD coincide with those of
Eq. (2), i.e., at K ¼ �π=2, further showing that the ground
states of Eq. (2) are classical Wigner crystals of spinor χ
particles. The first excited state of HD, however, is non-
dispersive and lies at an energy V1. This is the energy cost
of moving one particle in the Wigner crystal to a NN site
(see the schematic of this classical excitation in Fig. 2, right
panel). A comparison of the left and right panels shows that
while the ground states are essentially the same, the excited
states of Eq. (2) are fundamentally different from those
of Eq. (3).
The excited states of Eq. (2), the left panel of Fig. 2,

exhibit a gap ∼0.016U above the ground state. The
conditional hopping terms cause the otherwise degenerate
excited band to form a dispersive collective mode. The off-
diagonal conditional hopping terms superpose the classical
configurations of χ particles (see the schematic, left panel
of Fig. 2). To better understand the nature of the excited
states, we construct an effective model.
Effective Luttinger-liquid theory.—We construct an

effective model of Eq. (2) by adding hopping terms to
Eq. (3). The effective hopping terms are emergent because

they represent kinetics not present in the original model
[Eq. (2)]. We verify the accuracy of the effective model by
comparing energetics and by taking wave-function over-
laps. The effective model is then studied using Luttinger-
liquid theory on the emergent degrees of freedom.
We capture the effects of conditional hopping with

ordinary single-particle hopping terms in an effective
extended Hubbard model:

Heff ¼ −
X
i

½t1 þ t2ð−1Þi�ðχ†i χiþ2 þ H:c:Þ þHD; (4)

where t1 and t2 are fitting parameters quantifying emergent
NNN hopping. Figure 3 illustrates t1 and t2 in real
space. Note that t1 and t2 scale with U because we added
these parameters to capture the properties of excited states
generated entirely by interactions in the original hopping-
free model [Eq. (2)].
We vary t1 and t2 and numerically solve Eq. (4) to get the

best fit of EðKÞ while maximizing overlap of the corre-
sponding wave functions. Table I shows representative
(L ¼ 20) fits for the lowest eigenstates. The energy
differences between Heff and H are all within 5%, and
the wave-function overlaps for the lowest states are all
above 50% with almost 100% overlaps at K ¼ 0 and �π.
The overlap between the ground states (K ¼ �π=2) is
above 99.9%. We plot the first excited state of Eq. (4) from
the best fit parameters as the black curve in the left panel of
Fig. 2 for comparison. The overlap and energetic com-
parison show that Eq. (4) captures the essential properties
of Eq. (2) at low energies. We can therefore use Eq. (4) as
an effective theory to make predictions for experiments.
We now show that Eq. (4) exhibits excitations with

fractionalized charge quantified by Luttinger-liquid theory.
We first diagonalize the hopping terms in Eq. (4) [27].
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The emergent “single-particle” energy dispersion has two
energy bands (b ¼ 1, 2):

εbðkÞ ¼ −2½t1 − ð−1Þbt2� cosð2kÞ; (5)

with Fermi velocities vbF ≡ j∂εb=∂kjkF ¼ j4½t1−
ð−1Þbt2� sinð2kFÞj. For N=L ¼ 1=2, each dispersion
crosses the Fermi level at two Fermi points kF ¼ �π=4
(Fig. 3). Low-energy excitations near the Fermi points
therefore consist of two left movers and two right movers.
We bosonize Eq. (4) to study interaction effects. We

linearize the dispersion at the Fermi points [9,11,12], as
depicted in Fig. 3. The elementary excitations near�kF are
bosonic and, in the absence of the interacting term in
Eq. (4), have the charge of the original flatband particles.
We includeHD and find the normal modes of the bosonized
Hamiltonian using a unitary transformation and rescaling of
the bosonic fields [29]. The emergent normal mode
Luttinger parameters, i.e., velocity, ul, and the charge
fractionalization ratio, gl, are given by [27]

ul ¼ ðv1Fv2F ~λlÞð1=2Þ; (6)

gl ¼ ðλl ~λlÞ−ð1=2Þ; (7)

where l ¼ 1, 2 denotes the two normal
modes, λ1 ≡ v1F=v2F, λ2 ≡ λ−11 , and ~λl≡ ½λ1þλ2−
ð−1Þl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλ1−λ2Þ2þ4V2

1=ðπ2v1Fv2F
p

Þ�=2. For V1 > 0, we
have g1 < 1 indicating that the charge has fractionalized
for this normal mode. To see this, we write the effective
charge, q�, in terms of the original charge, q, as q� ¼ gq
where q� can be inferred from particle number conductance
[10]. g1 found here can be continuously tuned below unity.
This should be contrasted with fractionally charged exci-
tations in the FQH regime, where the fractions are only
rational [2–4].
The Luttinger-liquid analysis therefore shows that low-

energy collective modes of Eq. (4) can be thought of as
fractionalized quasiparticles moving along a spinor Wigner

crystal. This result, while known in standard Luttinger-
liquid theories [9–12], is surprising here since the single-
particle eigenstates of the physical atoms are inert
(flatband) particles that derive emergent kinetics from
interactions. The close connection between Eqs. (4) and
(2) also indicates that these modes should be experimen-
tally observable.
Experimental requirements and observables.—Low

temperatures and low atomic losses are, in general, difficult
requirements for proposals to engineer strongly correlated
quantum states with atomic gases. Most proposals require
maximizing U by tuning a Feshbach resonance to enter
strongly correlated regimes. However, Feshbach resonan-
ces contribute to unwanted heating and losses [30],
particularly in SOC atomic gases [18,31]. The flatband
regime studied here circumvents the need for strongU (and
therefore a Feshbach resonance) because the system is
automatically strongly correlated in the absence of kinetic
energy.
We can estimate realistic parameters to show that the

flatband regime is attainable. 40K is one of the best
candidates for strong SOC with low losses [18,31]. For
40K in a 1D optical lattice with s ¼ 10, kR ¼ kL=2,
Ω ¼ 0.05ER, and a perpendicular confinement of lattice
depth 60ER, we find ΔSO ≈ 0.10ER, V1 ≈ 0.014ER and
W ≈ 0.013ER, whereW ¼ 4t is the bandwidth. This shows
that even bare s-wave scattering implies a strongly inter-
acting flatband problem withΔSO ≫ V1 ≳W. Note that the
last inequality is a very stringent flatband requirement. An
accurate (but weaker) requirement assumes the many-body
energy gap ≈V1=3 (left panel, Fig. 2) to be larger than the
single-particle hopping V1=3≳W=4. This implies that
partial filling of the lowest band allows us to treat
Eq. (1) as an irrelevant constant for realistic system
parameters.
Parabolic confinement will compete with the many-body

energy gap to diminish the size of the Wigner crystal near
the trap center. The central crystal will give way to edge
states when the parabolic trapping potential energy reaches
the gap, i.e., V1=3 ≈mω2

trx2max=2. The crystal will then be
as large as ≈2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2V1=3mω2

tr

p
sites. Trapping potentials

therefore place a lower bound on the size of the energy
gap (and thereforeU). For 40K we find that even the bare s-
wave scattering length allows significant crystal sizes,
∼86 − 150 sites for realistic trapping strengths,
ωtr ¼ 40–70 Hz. Larger interaction strengths will increase
the size of the crystal.
Observations of the states proposed here are in principle

possible with currently available methods. The spinor
Wigner crystal state manifests as a peak in the static
structure factor of the original fermions, observable with
demonstrated probes: noise correlations [32] or atomic
matter wave scattering [33]. Luttinger-liquid parameters
have also been observed by interfering Bose-Einstein
condensates [34]. Detecting fractionalized charge is more

TABLE I. Fitting parameters (t1 and t2), the resulting energy
differences (ΔE ¼ EHeff

− EH), and the wave-function overlaps
between Heff and H for an L ¼ 20 system for the ground state at
each total momentum sector,K, with μ=U ¼ 10−5. Here the small
energy differences and high wave-function overlaps indicate the
quality of the effective model in capturing the essential physics of
the original model.

KL=2π t1=U t2=U jΔE=EHj hΨHeff
jΨHi

0 0.0117 0.0130 0.035 0.99
1 0.0119 0.0135 0.010 0.97
2 0.0119 0.0135 0.010 0.88
3 0.0119 0.0135 0.015 0.74
4 0.0119 0.0135 0.005 0.53
5 0.0119 0.0135 0 0.99
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challenging. In the current context, it could be measured by,
e.g., detection of partial backscattering from an impurity
[10,35], optical methods [36,37], or charge pump-
ing [38,39].
Summary.—We predict a set of intriguing collective

states of matter in experiments with atomic Fermi gases
confined to 1D optical lattices and in the presence of
synthetic SOC. We constructed and studied a model where
the atomic interactions operate in a flatband. We found that
the single-particle basis states are delocalized spinors. Our
analysis predicts that flatband spinor particles have sur-
prising properties generated by on-site interactions among
the original atoms: NN interactions and effective NNN
hopping. The many-body ground state was found to be a
Wigner crystal of spinors. We find that an effective
Luttinger-liquid theory parametrizes emergent kinetics
and fractionalized charge [Eq. (7)] in the low-energy
collective modes, in direct analogy to the mechanism of
emergence found in the FQH regime.
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FLAT BAND PROJECTED MODEL

In this section we derive the flat band projected Hamil-
tonian, Eq. (2), by adding interactions to Eq. (1). We
first use the tight-binding limit to show that flat bands
arise from spin-orbit coupled fermions in optical lattices
in the absence of interactions. Using the tight-binding
limit we transform the interaction to an on-site Hubbard
interaction. We then project the interaction into the flat
band to derive Eq. (2). We conclude by showing the lim-
its in which the flat band approximation is accurate.

We start by noting that Eq. (1) yields Bloch bands
that can be accurately fit with a tight-binding model (for
s > 2):

HTB = −2t
∑
k

C†k cos(k + kRσz)Ck + Ω
∑
k

C†kσxCk,

(S1)
where the NN hopping t is tuned to fit the exact band
width of the first Bloch band of Eq. (1) with kR = 0
and Ω = 0. t is therefore a single-particle hopping
derived entirely from optical lattice parameters. Here
C†k = (c†k↑, c

†
k↓) creates a fermion spinor.

We use Eq. (S1) to derive the flat band projected
Hamiltonian. Eq. (S1) can be solved exactly. The two
lowest eigenvalues are given by:

ω1,2(k) = −2t cos k cos kR ±
√

4t2 sin2 k sin2 kR + Ω2.
(S2)

Fig. 1 plots the lowest bands. We have tuned the spin-
orbit coupling strength kR and the Zeeman field strength
Ω to generate flat bands. For both lattice depths we chose
the same band flatness ratio [1], F ≡ ∆SO/W ≈ 8, where
W = 4t is the band width and ∆SO is the separation
between the two lowest bands.

The unitary matrix that diagonalizes Eq. (S1) is:

M =

[
cos(αk) − sin(αk)
sin(αk) cos(αk)

]
, (S3)

where

sin(αk) =
ω1(k)− h(k)√

Ω2 + (ω1(k)− h(k))2
, (S4)

cos(αk) =
Ω√

Ω2 + (ω1(k)− h(k))2
. (S5)

and h(k) ≡ −2t cos(k + kR). The eigenstates of Eq. (S1)
can then be written in terms of the original fermi opera-
tors: [

ζk
χk

]
= M†

[
ck,↑
ck,↓

]
, (S6)

where χk and ζk denote operators for lower and upper
Bloch bands, respectively (Fig. 1).

We can now use the unitary transformation to study
the addition of interactions to the non-interacting model
within the lowest flat band. Occupancy of just the low-
est flat band implies that Eq. (S1) acts as an irrelevant
constant, to a first approximation. The relevant term in
the model derives from interactions between atoms. In
the tight-binding limit, s-wave contact interactions thus
yield an on-site projected Hubbard interaction:

H = const. + U
∑
i

Pc†i↑c
†
i↓ci↓ci↑P, (S7)

where U is the on-site repulsion, P projects particles into
the lowest flat band, c†i↑ creates a fermion at lattice site
i in the ↑ spin state, and the constant is the zero-point
energy of the flat band. By using Eq. (S6) in combination
with a Fourier transform, Eq. (S7) becomes:

H = U
∑
{k}

f{k}χ
†
k1
χ†k2χk3χk4 , (S8)

where f is defined in the main text. This shows that
Eq. (2), follows from the on-site interactions operating
in a flat spin-orbit band.

We now argue that all fermions occupy the lowest band
in realistic parameter regimes. This is a valid assumption
provided the system only partially fills the lowest band
and ∆SO is greater than inter-band interaction matrix
elements. The s-wave interaction can be tuned far from
a Feshbach resonance to ensure that ∆SO is larger than
characteristic interaction energies. This maintains the
flat band condition provided U �W . We note that, in a
perfectly flat band W → 0, the problem remains strongly
correlated even for small U because the interaction be-
comes the only term in the Hamiltonian. The main text
shows that ∆SO � V1 &W is satisfied for 40K.
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DETECTING SPONTANEOUS SYMMETRY
BREAKING

In this section we show that application of a small stag-
gered chemical potential spontaneously selects one of the
degenerate Wigner crystal states. The lowest energies
from our exact diagonalization study of H [Eq. (2)] are
2-fold degenerate at total momentum K = ±π/2. Each
state is uniform in the absence of symmetry breaking.
If the ground state is truly uniform, a small perturba-
tion (much smaller than the gap) should leave the ground
state density intact. If, however, the ground state prefers
to spontaneously select an inhomogeneous configuration,
a small non-uniform perturbation should drive the sys-
tem into one of the crystal configurations. In our case
(Eqs. 2 or 3) a logical choice for degenerate crystal con-
figurations has one particle at every other site in real
space. The crystals are defined as linear combinations of
the two lowest energy states at K = ±π/2.

To identify crystalline order we perturb the ground
state with a small staggered chemical potential term
µ
∑
i(−1)iñi to check if the ground state tends to sponta-

neously choose one of the two degenerate Wigner crystal
states. (This is similar to methods employed in the nu-
merical determination of staggered magnetization in the
antiferromagnetic Ising model, where a small staggered
magnetic field is also applied to pick one of the two stag-
gered magnetization directions.)

Care needs to be taken in the limiting procedure. For
a fixed small positive µ, one needs to extrapolate first the
lattice size, i.e., L → ∞. The ground state selected as
µ → 0+ then denotes one of the two broken-symmetry
Wigner crystal states. The other Wigner crystal state
can be detected in the limit µ → 0−. This shows that
spontaneous breaking of the discrete sublattice symme-
try inherent in Wigner crystals can be detected with the
application of a small staggered chemical potential.

DERIVATION OF EMERGENT LUTTINGER
PARAMETERS

In this section we prove the formulas for the emergent
Luttinger parameters ul and gl in the main text, Eqs. (6)
and (7). To do this we apply Luttinger liquid theory to
the effective model in the main text. We first bosonize
the non-interacting part of the model and then the inter-
acting part.

The effective model [Eq. (4)] is:

Heff = H0 +HD (S9)

where the non-interacting part can be rewritten in terms

of two-component vectors in k-space:

H0 = −2(t1 + t2)

′∑
k

cos(2k)ξ†k(I + σx)ξk. (S10)

Here the prime indicates summation over [−π/2, π/2), I
is the identity matrix, σx is the x-component of the Pauli
matrix, and ξ†k = (χ†k, χ

†
k−π).

We diagonalize H0 with a unitary transformation, de-
fined on a restricted momentum range [−π/2, π/2):

χk = (χ1k − χ2k)/
√

2,

χk−π = (χ1k + χ2k)/
√

2. (S11)

Here 1 and 2 label the two bands established by the sub-
lattice dependent hopping in the effective model. The
non-interacting Hamiltonian then becomes:

H0 =
∑
b=1,2

′∑
k

εb(k)χ†bkχbk, (S12)

where εb is defined in the main text [Eq. (5)].

To begin the bosonization process, we pass to the con-
tinuum limit and expand the field operators into left and
right moving fermion fields around the two Fermi points:

χ1i → eikF xψ1R + e−ikF xψ1L, (S13)

χ2i → e−ikF xψ2R + eikF xψ2L, (S14)

where we have taken into account the opposite slopes
in linearizing the effective single-particle energy disper-
sions of two bands (see Fig. 3). We can use the left/right
(L/R) decomposition to bosonize Eq. (S12) using the
usual bosonization methods. We define four bosonic
fields, φbr(x) with b = 1, 2 and r = R,L, such that:

ψbr(x) ∼ 1√
2πε

e−i
√

2πφbr(x), (S15)

: ψ†br(x)ψbr(x) : = ∓ 1√
2π
∂xφbr(x), (S16)

where “: :” indicates normal ordering, ε→ 0+, and +(−)
corresponds to r = L(r = R).

With these transformations, Eq. (S10) becomes:

H0 ≈
∑
b,r

vbF
2

∫ L/2

−L/2
dx(∂xφbr)

2. (S17)

This form for H0 explicitly reveals the four-component
nature of the excitations near the Fermi points: two
bands (b = 1, 2) and two directions of motion (r = L,R).

We now apply the bosonization procedure to the inter-
acting term in Eq. (S9), HD. We first Fourier transform
the interaction, apply the unitary transformation using
Eq. (S11), and we finally substitute the Fourier trans-
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form for χ†i into HD. This gives rise to 256 terms. Most
of these terms cancel to yield:

HD = V1

even∑
i

χ†1,iχ1,iχ
†
2,i+1χ2,i+1

+ V1

odd∑
i

χ†2,iχ2,iχ
†
1,i+1χ1,i+1, (S18)

where we have made use of the fact that even and odd
sites correspond to bands 1 and 2, respectively.

We are now able to bosonize the interaction term
using the same transformations as those used above.
We first note that, since we are working at half filling
(kF = ±π/4), Umklapp terms will vanish. We further
define two conjugate fields for the two bands:

φb = (φbL − φbR)/
√

2,

θb = (φbL + φbR)/
√

2. (S19)

The total bosonized Hamiltonian can then be written in
terms of the conjugate fields:

Heff ≈
√
v1F v2F

2

∫ L/2

−L/2
dx
[
ΦTMφΦ + ΘTMθΘ

]
(S20)

where ΦT ≡ (∂xφ1, ∂xφ2) and ΘT ≡ (∂xθ1, ∂xθ2). The
two matrices Mφ and Mθ are given by:

Mφ =

 √
v1F
v2F

V1

π
√
v1F v2F

V1

π
√
v1F v2F

√
v2F
v1F

 ,
Mθ =

√v1F
v2F

0

0
√

v2F
v1F

 . (S21)

To find the emergent Luttinger parameters we diago-
nalize the matrices defining the above Hamiltonian with
the following transformation [2]:

Φ = TφΦ̃ and Θ = TθΘ̃, (S22)

where the transformation matrices satisfy [Tφ]T = [Tθ]
−1.

This guarantees that the new conjugate fields that hy-
bridize the bands into normal modes, Φ̃ and Θ̃, satisfy
the canonical commutation relations.

It can be checked that the above condition is fulfilled
by the following choice of transformation matrices:

Tφ = Λ−1QΛ̃−1 and Tθ = ΛQΛ̃, (S23)

where the unitary matrix Q diagonalizes the rescaled ma-
trix M

′

φ = Λ−1MφΛ−1, i.e.,

QTM
′

φQ =

[
λ̃1 0

0 λ̃2

]
, (S24)

and the diagonal rescaling matrices Λ and Λ̃ are given
by:

Λ =

[
(λ1)−

1
4 0

0 (λ2)−
1
4

]
, (S25)

Λ̃ =

[
(λ̃1)

1
4 0

0 (λ̃2)
1
4

]
. (S26)

Here λ1,2 and λ̃1,2 are defined in the main text.

The total Hamiltonian defining the effective Luttinger
liquid theory can then be written in terms of the di-
agonalized Hamiltonian for each of the normal modes
(l = 1, 2):

Heff ≈
∑
l

ul
2

∫ L/2

−L/2
dx

[
gl(∂xθ̃l)

2 +
1

gl
(∂xφ̃l)

2

]
, (S27)

where the emergent Luttinger parameters ul and gl are
given in the main text, Eqs. (6) and (7).
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