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Weyl semimetals are predicted to realize the three-dimensional axial anomaly first discussed in particle
physics. The anomaly leads to unusual transport phenomena such as the chiral magnetic effect in which an
applied magnetic field induces a current parallel to the field. Here we investigate diagnostics of the axial
anomaly based on the fundamental equations of axion electrodynamics. We find that materials with Weyl
nodes of opposite chirality and finite energy separation immersed in a uniform magnetic field exhibit an
anomaly-induced oscillatory magnetic field with a period set by the chemical potential difference of the
nodes. In the case where a chemical potential imbalance is created by applying parallel electric and
magnetic fields, we find a suppression of the magnetic-field component parallel to the electric field inside
the material for rectangular samples, suggesting that the chiral magnetic current opposes this imbalance.
For cylindrical geometries, we instead find an enhancement of this magnetic-field component along with
an anomaly-induced azimuthal component. We propose experiments to detect such magnetic signatures
of the axial anomaly.
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Dirac or Weyl semimetals are topological states of matter
in which the 3D bulk contains Dirac or Weyl points
protected by crystalline symmetries and near which the
low-energy quasiparticles are linearly dispersing massless
Dirac or Weyl fermions [1–6]. While Dirac semimetals
were theorized early on [1,2], Weyl semimetals were
predicted only recently, with pyrochlore iridates such as
Y2Ir2O7 as examples [3]. The prediction that Weyl semi-
metals host exotic topological surface states distinct from
those in other materials spurred extensive experimental
efforts to confirm the existence of both Dirac and Weyl
semimetal phases, leading to Dirac semimetal discoveries
such as Na3Bi and Cd3As2 [7–11], and recent Weyl
semimetal discoveries such as TaAs and NbAs [12–17].
Theoretical works have shown that Dirac semimetals lie

at the intersection of several types of topological states
reachable by breaking symmetries including inversion,
time-reversal, or crystal symmetries [3–7,12,13]. For exam-
ple, breaking crystal symmetries can cause Weyl nodes in
the bulk to couple and open a band gap, which can produce
a topological insulator [7]. The breaking of either time-
reversal or inversion symmetry can result in a stable Weyl
semimetal state which hosts topological Fermi arc states on
the material’s surface [3,4,7,12,13,16,18].
Weyl semimetals are also expected to show unusual

phenomena associated with the three-dimensional axial
anomaly [19–22]. Notable among these is the chiral
magnetic effect (CME) in which the application of an
external magnetic field ~B produces a current ~j∥~B [23–25].
This effect has also been studied in the contexts of quark-
gluon plasmas [26,27] and topological insulators [28–33].
Transport measurements in Weyl semimetals revealed a
negative longitudinal magnetoresistance as a diagnostic for

the CME [34–37]. Debate exists whether this transport
signature necessarily implies the CME [38], motivating
efforts to identify alternative diagnostics [39]. In this Letter,
we thus develop a diagnostic based on magnetic properties
which finds a parallel in the development of the London
penetration depth in superconductors.
The approach is based on self-consistent solutions to

Maxwell’s equations in the presence of anomalous chiral
currents. Even for currents derived in the limit of linear
response, the electromagnetic fields should be obtained
self-consistently, as becomes clear when starting with the
fundamental equations of axion electrodynamics—the
relevant effective field theoretic description when the axial
anomaly is present. We obtain such solutions for systems in
which the chiral chemical potential is either intrinsic or
induced by parallel electric and magnetic fields. In both
cases, we find that the solutions exhibit detectable signa-
tures due to the presence of the axial anomaly.
The defining characteristic of axion electrodynamics is

captured by the axionic term in the action [40] [in addition
to the canonical 1

4

R
d3xdtð~E2 − ~B2Þ term],

Sθ ¼
α

4π2

Z
d3xdtθ~E · ~B; ð1Þ

where ~E is the electric field and α ¼ e2=ℏc is the fine
structure constant. The parameter θ, when dependent on
space and time, is called the axion field in the particle
physics context. The relevant equations of axion electro-
dynamics are well known [22,40–43],
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∇ · ~E ¼ ρ − κ∇θ · ~B; ∇ × ~E ¼ −
∂ ~B
∂t ; ð2Þ

together with

∇ · ~B ¼ 0; ∇ × ~B ¼ ∂ ~E
∂t þ ~jþ κ

�∂θ
∂t ~Bþ∇θ × ~E

�
:

ð3Þ

Note that when the axion profile is linear in time, θ ∼ t, one

obtains for stationary fields that ∇ × ~B ¼ ζ ~B with constant
ζ; this result is known as the Beltrami equation and is well
known [44] in the context of plasma physics [21,45–47].
We proceed with a brief review of the CME as a physical

consequence of the Uð1Þ chiral anomaly [26]. Consider the
minimal coupling of the carriers of ~j such as chiral fermions
to an external Uð1Þ gauge field. First, we rewrite the axion
term in a covariant way, θðx; tÞ~E · ~B≡ θðx; tÞFμν ~Fμν.
Then, we perform a Uð1Þ rotation in the minimal coupling
of fermions to the gauge field in order to obtain ∂μθψγ

μγ5ψ .
In particular, if we concentrate on the 0th (temporal)
component we get μ5ψγ0γ5ψ , where the chiral chemical
potential μ5 is given as μ5 ≡ ∂0θ. The energy spectrum of
the free Dirac equation in the presence of a chiral chemical
potential is for the massless modes (assuming 1D) ER� ¼
�p3 − μ5 and EL� ¼ �p3 þ μ5, where � represents the
spin in the z direction and R, L stand for the right and left
chirality. If the chiral chemical potential μ5 is positive, a net
chirality is created, thus lifting the degeneracy between the
R and L modes. ~B lifts the degeneracy in spin, depending
on the charge of the particle. Therefore, particles with the
right-handed helicity will move opposite to the antiparticles
(holes) with the right-handed helicity, thus creating ~j∥~B.
This is the CME [26]. The physics underlying this
reasoning harks back to the original papers on chiral
anomalies [48,49]. The total current is given as the volume
integral, Jμ ¼ R

d3xjμðxÞ, where the current density is
given as the expectation value, jμ ¼ ehψðxÞγμψðxÞi,
and where the fermion field can be written in terms of
the left- and right-handed components ψ ¼ ðφL;φRÞT ,
so that jμ ¼ ehφ†

RðxÞσμφRðxÞi þ ehφ†
LðxÞσμφLðxÞi. Here

σμ ≡ ð1; σiÞ and σμ ¼ ð1;−σiÞ, where σi are the canonical
Pauli matrices.
As pointed out in [26], one path to the CME in the

context of quark-gluon plasmas uses the argument based on
energy balance as presented originally in [27]. One con-
siders a situation with ~E and ~B in the presence of a chiral
chemical potential μ5 and relates the work performed
by ~j in ~E to the energy penalty related to the chirality
change (given essentially by the volume integral over
~E · ~B), i.e.,

R
d3x~j · ~E¼−ðe2μ5=2π2Þ

R
d3x~E · ~B. Therefore

~j is proportional to ~B (even in the ~E → 0 limit),

~j ¼ −ðe2μ5=2π2Þ~B, which is the defining expression for
the CME.
The final equation (in SI units, with constants recovered

to facilitate evaluation), ~j ¼ −ðe2=ℏ2Þðμ5=2π2Þ~B, does not
depend on covariance and, thus, it can be realized in many-
body systems, such as Weyl semimetals. In this context, μ5
should be interpreted as the energy separation of bulk Weyl
nodes, Δε [19,20]. In the case of Weyl semimetals, one
must take care to show that nonlinearities in the dispersion
do not remove the anomaly by solving a quantum kinetic
equation. This approach has been used to show that the
chiral magnetic current is not an equilibrium current, but
~j ∼ ~B still holds at arbitrarily low frequencies [20,22,50].
A second important difference in the Weyl semimetal
context is that the axion field also depends on the Weyl
node momentum separation, θ ∼ Δ~p · ~x, so that the last
term in Eq. (3) gives rise to an anomalous Hall effect [19].
We thus have the well-known result [19,20,22,50] (in SI
units, with μ0 ¼ 4π × 10−7 kgm=C2)

~∇ × ~B ¼ μ0~j ¼ −
μ0e2

2π2ℏ2
Δε~Bþ μ0e2

2π2ℏ2
Δ~p × ~E: ð4Þ

While our main focus here is on Weyl semimetals, future
work may include generalization of our results to other
quasirelativistic materials and to high-energy systems such
as quark-gluon plasmas.
As a first example of the consequences of Eq. (4), we

consider a semi-infinite slab of Weyl semimetal occupying
z ≥ 0. Suppose that ~B⊥ðz ¼ 0Þ ¼ 0 and ~B∥ð0Þ ¼ B0ŷ is

constant, and that ~E ¼ 0; the solution to Eq. (4) is ~B ¼
B0½ŷ cosðz=λÞ − x̂ sinðz=λÞ� with λ ¼ 2π2ℏ2=μ0Δεe2.
Incidentally, this solution is a special case of the more
general solution in plasma physics known as the Arnold-
Beltrami-Childress flow [51]. In the context of Weyl
semimetals, we see that a consequence of the chiral
anomaly is that inside the slab, ~B forms a standing wave
with wavelength λ ∼ 1=Δε.
In the case of time-dependent fields where ~E ∼ eiωt and

~B ∼ eiωt and for constant _θ, solutions to Eqs. (2) and (3)
can be obtained by requiring that both ~E and ~B satisfy

Beltrami equations: ~∇ × ~E ¼ ζ ~E and ~∇ × ~B ¼ ζ ~B with
2ζ ¼ 1=λ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=λ2 þ 4ω2

p
. Note that here we have chosen

the minus sign in front of the square root to ensure that in
the ω → 0 limit, the wave vector of the magnetic field goes
to zero faster than the frequency, q ∼ ζ → −λω2 ≪ ω, as is
necessary to ensure the existence of the CME as a non-
equilibrium transport phenomenon [20,52–54]. Such
Beltrami-type solutions describing the pure CME are only
valid if Δ~p · ~B ¼ 0 and if the last term in Eq. (4) can be
neglected. Since for such solutions ~E ¼ −iζ−1ω~B, the latter
condition requires ζ2 ≫ ωΔp=λΔε, which can be satisfied
if we take ω ≫ Δp=λΔε. We must also ensure that ω is
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below the threshold for optical absorption, ω < Δε=ℏ
[52–54], which in turn gives a constraint on the Weyl
node momentum and energy separations,Δp=Δε ≪ 2π2ℏ=
μ0e2 ≈ 1350. We can then obtain Beltrami-type solutions
within this frequency window by starting from static
solutions such as the above semi-infinite slab solution
and taking λ → ζ−1. (The time-dependent solutions of
axion electrodynamics have been considered in [55].)
Detectable signatures of axion electrodynamics can be

obtained by solving the Beltrami equation in systems with
finite dimensions. Consider a long cylinder of Weyl
semimetal with radius R and axis along ẑ immersed in a
constant magnetic field, B0ẑ. We work in cylindrical

coordinates (r, ϕ, z) and require ~B to be independent of
ϕ and z. The Beltrami equation reduces to

1

r
d
dr

�
r
dBz

dr

�
þ ζ2Bz ¼ 0; Bϕ ¼ −

1

ζ

dBz

dr
; ð5Þ

and Br ¼ 0. These equations are easily solved to yield the
field inside the cylinder, Bin

z ∼J0ðζrÞ, Bin
ϕ ∼ J1ðζrÞ. Outside

the cylinder, ~B satisfies the ordinary Maxwell equations

with a current source ~j ∼ ~Bin. Using that ~Bðr ≫ RÞ ¼ B0ẑ
and employing Stokes’s theorem, we obtain the full
solution inside and outside,

Bϕ ¼ B0

�
J1ðζrÞ
J0ðζRÞ

ΘðR − rÞ þ RJ1ðζRÞ
rJ0ðζRÞ

Θðr − RÞ
�
;

Bz ¼ B0

�
J0ðζrÞ
J0ðζRÞ

ΘðR − rÞ þ Θðr − RÞ
�
: ð6Þ

This solution is shown in Fig. 1. The maximal value of Bz
occurs at the center of the cylinder, where jBzð0Þj > jB0j.
Outside the cylinder, the chiral anomaly gives rise to a Bϕ

which depends on Δε and which varies quasiperiodically
with the cylinder size R at fixed r.

Although the CME has not yet been observed in
Weyl semimetals where the energy separation between
Weyl nodes persists in the absence of externally applied
fields, experimental observations in a Dirac semimetal in
which the degeneracy of Dirac nodes is lifted through the
application of nonorthogonal ~E and ~B have been reported
[36,37,56–59] following theoretical predictions [47].

In this case, an anomalous current parallel to ~B is still

generated [24,25], with a magnitude depending on ~E · ~B, ~j ¼
σað~E · ~BÞ~B. Unlike the pure CME relation, ~j ∼ ~B, the above
relation is not captured by axion electrodynamics and does
not require time-dependent fields [54]. However, combining
this relation with Ampere’s law, we still obtain a self-

consistent equation for the local ~B in the material (SI units),

∇ × ~B ¼ μ0~j ¼ μ0σað~E · ~BÞ~B: ð7Þ

To illustrate consequences of Eq. (7), consider the case with

constant ~E and ~B applied along the y direction, ~E ¼ E0ŷ,
~Bext ¼ B0ŷ, with the semimetal occupying the semi-infinite
space z ≥ 0, and with boundary conditions Bxðz ¼ 0Þ ¼ 0,
Byðz ¼ 0Þ ¼ B0, and Bzðz ¼ 0Þ ¼ 0. We look for solutions

of the form ~B ¼ BxðzÞx̂þ ByðzÞŷ, in which case Eq. (7)
reduces to

B0
x ¼ μ0σaE0B2

y; B0
y ¼ −μ0σaE0BxBy: ð8Þ

These two equations together imply B2
xþB2

y ¼B2
0 ¼ const.

We can then parameterize the two components in terms
of a new function, φðzÞ ¼ arctanðBy=BxÞ, for which Eq. (8)
implies φ0 cscφ ¼ −μ0σaE0B0 ≡ −Λ−1. This equation is
readily solved: φ ¼ 2 arctanðe−z=ΛÞ, with the constant of

integration chosen to respect Byð0Þ ¼ B0. We obtain for ~B
inside the material

~B ¼ B0 tanhðz=ΛÞx̂þ B0sechðz=ΛÞŷ: ð9Þ

Thus, By decays exponentially over a characteristic length Λ
into the bulk, while Bx grows from 0 to B0 over a similar

distance. In the bulk ~B thus becomes orthogonal to ~E, in turn

implying that ~j exists only near the surface. Maxwell’s
equations would thus seem to oppose the separation of
Weyl nodes due to the chiral anomaly.
A similar effect persists even in the presence of

an additional Ohmic current (conductivity σ0), ~j ¼
μ0σað~E · ~BÞ~Bþ σ0 ~E. With ~E ¼ E0ŷ, Eq. (8) becomes

B0
x ¼ μ0σaE0B2

y þ μ0σ0E0; B0
y ¼ −μ0σaE0BxBy:

ð10Þ

Writing Bx ¼ j~Bj cosφ, By ¼ j~Bj sinφ, Eqs. (10) become

Bφ /B0, ζR=2

Bz /B0, ζR=2

Bφ /B0, ζR=5

Bz /B0, ζR=5

0 2 4 6 8 10
−6

−4

−2

0

2

4

ζr

FIG. 1. Components of ~B inside and outside a long cylinder of
radius R for ζR ¼ 2, 5 subject to an applied field B0ẑ.
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dj~Bj
dz

¼ μ0σ0E0 cosφ;

φ0 cscφ ¼ −
μ0σ0E0

j~Bj

�
σa
σ0

j~Bj2 þ 1

�
: ð11Þ

Unlike the previous case lacking the Ohmic term, here
we note that not only the direction but also the magnitude
of ~B varies with z. The second equation in (11) can be
integrated to yield cosφ ¼ tanh ½μ0E0

R
z
0 dz

0ðσaj~Bðz0Þjþ
σ0=j~Bðz0ÞjÞ�. Combining this with the first equation
in (11) and writing j~BðzÞj ¼ B0

ffiffiffiffiffiffiffiffiffi
hðξÞp

, with ξ ≡
μ0E0ðσ0=B0 þ σaB0Þz, yields

h00ðξÞ þ β

2
½h0ðξÞ�2 − 2β

ð1þ βÞ2 hðξÞ ¼
2

ð1þ βÞ2 ; ð12Þ

where β≡ σaB2
0=σ0. We want to find solutions to (12) that

obey the boundary conditions hð0Þ ¼ 1 [since j~Bð0Þj ¼ B0]
and h0ð0Þ ¼ 2 cosφ0=ð1þ βÞ, where φ0 is the angle of
the ~B relative to the x axis at z ¼ 0. Given a solution to
Eq. (12) for the magnitude of ~B, its orientation follows from
cosφ ¼ ð1þ βÞd ffiffiffiffiffiffiffiffiffi

hðξÞp
=dξ. Before looking for solutions to

Eq. (12) in the presence of both the Ohmic and anomalous
currents, it is instructive to first consider the solution that
arises in the absence of the anomalous current. Setting
σa ¼ 0 in Eq. (10), we obtain Bx ¼ μ0σ0E0zþ B0 cosφ0

andBy ¼ B0 sinφ0. We see that the Ohmic current produces
a nonzero Bx that grows linearly with distance into the bulk,
while By remains constant.
We have found that both the Ohmic and anomalous

currents generate a component of ~B perpendicular to ~E
which grows with distance into the bulk of the material. In
the case of the anomalous current, however, this growth
saturates and the component of ~B parallel to ~E is simulta-
neously suppressed over the length scale Λ. When both
currents are nonzero, it is necessary to solve Eq. (12)
numerically; the results are shown in Fig. 2 for various
values of β. It is evident from the figure that By always
decays when the anomalous current is present, albeit over
longer and longer distances as σ0 is increased.
We also present a solution to Eq. (7) for the case of a long

cylinder (radius R) in applied fields B0ẑ and E0ẑ. Writing
Bin
z ¼ B0Λ=½rfðrÞ�, where again Λ ¼ ðμ0σaE0B0Þ−1, this

equation reduces to

r2ff00 þ rff0 − r2ðf0Þ2 − 1 ¼ 0; ð13Þ
and Bin

ϕ ¼ B0Λð1=rþ f0=fÞ, Br ¼ 0. Equation (13) can be
solved exactly: f ¼ 1

2
ðk=rþ r=kÞ, where k is one integra-

tion constant, while the other has been chosen to ensure
that Bz and Bϕ are nonsingular at r ¼ 0. Since Bz ¼ B0

everywhere outside the cylinder, continuity of ~B requires
fðRÞ ¼ Λ=R, implying k ¼ Λþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − R2

p
. The magnetic

field inside and outside is then

Bϕ ¼ 2B0Λr
r2 þ k2

ΘðR − rÞ þ B0ð2Λ − kÞ
r

Θðr − RÞ;

Bz ¼
2B0Λk
r2 þ k2

ΘðR − rÞ þ B0Θðr − RÞ: ð14Þ

This solution is valid for R < Λ and assumes that R is
sufficiently small that screening of the electric field is
negligible. As for the pure CME [Eq. (6)], the axial
anomaly produces a maximal Bz at r ¼ 0 and a nonzero
Bϕ outside the cylinder with a Λ-dependent magnitude.
The characteristic length Λ can be evaluated using

[24,25,36,37,56,57]

σa ¼ l
e4τa

4π4ℏ4gðEFÞ
ð15Þ

where l ¼ 1; 2;… is the number of Weyl node pairs, gðEFÞ
is the density of states at the Fermi level EF, and τa is
the relaxation time for charge pumping between Weyl
node pairs. Characteristic values for the Weyl semimetal
TaAs [36] are τa≈5.96×10−11 s and gðEFÞ≈1041 J−1m−1,
yielding (for l ¼ 1) σa ≈ 8.25 × 106 Ω−1 m−1 T−2.
These values yield Λ ¼ ðμ0σaE0B0Þ−1 ≈ 9.6 cm, for
E0 ¼ 1 V=m and B0 ¼ 1 T as typical experimental values
of applied ~E and ~B. A Λ of this magnitude would lead to
detectable effects in magnetometry measurements per-
formed in systems with planar gradiometer geometries to
access spatial variations of ~B. As an additional diagnostic,
the magnetometer results can be compared on samples of
different sizes, above and below Λ. An increase in E0 and
B0 would result in a proportional decrease in the

Ohmic

Anomalous

0

1

2

3

4

5

B
x/

B
0

Ohmic

Anomalous

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

B
y
/B

0

FIG. 2. Components of ~B inside the material for β ¼ 0 (Ohmic
current only), 0.01, 0.05, 0.2, 0.5, 1, 2, 3.5, 7, and∞ (anomalous
current only) and with φ0 ¼ π=2.
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characteristic length Λ, allowing a measure of tuning Λ to
sample size and yet a further diagnostic. Magnetometry
hence functions for Weyl fermion materials as an alter-
native to magnetoresistance measurements, in parallel to
the case of superconducting materials. Λ can vary widely
for the different materials hosting Weyl fermions currently
described in the literature, due to differences in gðEFÞ and
τa. In Dirac materials, gðEFÞ ¼ gsgvE2

F=½ð2π2ÞðℏvFÞ3�,
where gs and gv are the spin and valley degeneracies,
respectively, and vF is the velocity constant characterizing
the Dirac dispersion. Equation (15) then shows that a low
EF (hence low carrier density), high vF and long τa lead
to shorter Λ and more readily observable effects in
magnetometry. A longer τa is expected to arise from
higher carrier mobility [56–58]. Currently TaAs forms a
promising candidate, while estimates of Λ can be much
longer and would not be conducive to ready observations,
at least currently, in Cd3As2 microwires [56], or in Zr Te5
[37]. However, strides are being made to lower carrier
densities and further increase mobilities in many Weyl
fermion materials [35,57,59,60], which will lead to much
reduced Λ.
In conclusion, we have presented a diagnostic procedure

for the chiral magnetic effect, additional to negative
magnetoresistance and motivated by the fundamental
equations of axion electrodynamics. The procedure is based
on the penetration of magnetic fields over characteristic
length scales in Weyl semimetals.
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