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Spin and phase coherence in quasi-1D InSb wires under strong
spin–orbit interaction
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a b s t r a c t

We investigate the low temperature spin and phase coherence lengths in quasi-one dimensional wires

fabricated from a high mobility InSb/InAlSb two dimensional electron system. Spin and phase

coherence lengths as a function of wire width and temperature are obtained by fitting the

magnetoconductance to an antilocalization theory modified to account for ballistic transport through

the wires. Extracted spin coherence lengths are found to be inversely proportional to wire width

and display a weak dependence on temperature. Results for the phase coherence length suggest

that mechanisms originating in the two dimensional electron system are responsible for phase

decoherence.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Theoretical [1–3] and experimental [4] investigations have
shown that spin decoherence can be suppressed in narrow wires
fabricated from two-dimensional electron systems (2DES). These
studies offer the possibility of controlling the spin coherence
length LS through geometric design of devices. In this paper, we
experimentally study LS and the phase coherence length Lf in
quasi-one dimensional (Q1D) wires fabricated from a high
mobility InSb/InAlSb 2DES. Values for LS and Lf at temperatures
Tr15 K are obtained by analyzing the magnetoconductance in
antilocalization (AL) theory [3,5,6]. Extensive experimental and
theoretical research on AL phenomena in various semiconducting
systems [4,6–8] demonstrate that AL is a valuable experimental
tool for investigating spin and phase coherence.

2. Experiment

We fabricated four sets of narrow wires from a molecular-
beam epitaxy grown InSb=In0:85Al0:15Sb=InSb ðquantum wellÞ=
In0:85A0:15Sb=GaAs (0 0 1) (substrate) 2DES heterostructure
(Fig. 1) using electron beam lithography and reactive ion
etching. Electrons are provided to the 25 nm wide InSb quantum

well by two Si d�doped layers which are located 40 nm above and
40 nm below the well. A third Si d�doped layer, 23 nm below the
surface, compensates surface states [9]. AL measurements
performed on the unpatterned InSb/InAlSb heterostructure
indicate that the spin–orbit interactions (SOI) in the 2DES are
characterized by the Rashba parameter jaj � 0:03 eV̊A and the
Dresselhaus coefficient g� 490 eV

˚
A3 [9]. Each set of wires

contains 10 identical wires oriented in the ½1 1 0� direction with
length L¼ 24mm, the nominal design width wlitho of the individual
wires being the only difference between sets. Magnetotransport
across the different wire sets ð0:475mmowlithoo0:875mmÞ was
measured for 0:4 KoTo15 K in a perpendicularly applied
magnetic field B. Data presented in this paper are scaled to
conductance per wire, G.

Resistivity and Hall effect measurements performed on an
unpatterned region of the sample indicate a carrier density
n2D � 5:2� 1015 m�2 and a mobility m2D � 9:7 m2=Vs at low T.
These values for carrier concentration and mobility also pertain to
the narrow wires. Measurements of Shubnikov-de Haas oscilla-
tions up to 4 T at 0.4 K show, within � 5%, a constant carrier
density n¼ n2D as a function of wlitho. Therefore, for all wire sets
we take n¼ n2D as determined via Hall measurements at each T.
Fig. 1 displays the zero field conductance Gð0Þ as a function of
wlitho at T � 34 K where phase coherent effects, such as AL, are
expected to be minimal. If the mobility m and n are not affected by
the reduced dimensions in narrow wires, Gð0Þ should decrease
linearly with the conducting width of the wire w according to the
relation—Gð0Þ ¼ ðwlitho�wdepÞ=Lr2D ¼ ðw=Lr2DÞ [10,11]; where
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r2D ¼ ð1=n2Dem2DÞ is the resistivity of the parent 2DES and wdep is
the average depletion width in the wires. From Fig. 1, we find that
Gð0Þ is well described by a line of slope 1=Lr2D. Therefore, we
conclude that m is not affected by the confined geometry of the
narrow wires. The mean free path le in the wires can hence be
calculated, as le ¼ 3:3mm. We also determine that scattering from
the boundaries is specular, since diffusive boundary scattering
leads to lower m in narrow wires [10]. From the Gð0Þ ¼ 0 intercept
we find wdep ¼ 0:33mm allowing w to be determined through
w¼wlitho�wdep. It should be emphasized, however, that wdep may
not be entirely electrical in nature, as it may also include effects
from the fabrication process.

Examples of the low field magnetoconductance DG� GðBÞ�

GðB¼ 0Þ are shown in Figs. 1 and 2. In order to account for Hall
effect contributions to the data, the component antisymmetric in
B has been subtracted from the data by averaging GðþBÞ and
Gð�BÞ for each data set, and hence DG is plotted in terms of the
magnitude of the applied field, jBj. The observed negative
magnetoconductance around B¼ 0 which crosses over to positive
magnetoconductance at higher B is characteristic of AL. We note
that the large broadening of DG as a function of decreasing w

depicted in Fig. 1 is a consequence of the flux cancelation effect
[8,10]. Qualitatively, the magnitude of the negative magnetocon-
ductance around B¼ 0 decreases with w. In analogy with the Lf
and LS dependence of AL in 2 dimensions [6], this indicates a
lowering of the ratio Lf=LS as w narrows.

3. Analysis of magnetoconductance

Under AL, the magnetic field dependence of G in a narrow wire
of length L is described by [3,8,10,12]:

GðBÞ ¼ G0�
e2

hL

X
m ¼ 71;0

~L1;m�
~L0;0

 !
: ð1Þ

~L1m represents contributions corresponding to triplet modes
which depend on Lf and LS, whereas the singlet contribution ~L00

is only sensitive to Lf [3,6,12]. For diffusive Q1D wires fabricated
from a 2DES, Kettemann has determined the different contribu-
tions to be determined by [3]: ~L

�2

s;m ¼ L�2
f þns;mL�2

S þL�2
B ; with

n1;71 ¼ 0:5, n1;0 ¼ 1, n0;0 ¼ 0.
Kettemann’s model was developed for diffusive wires where

leow. We implement the following two modifications in order to
account for ballistic transport in the wires presented here, where
lebw. First, we use a magnetic length LB appropriate for ballistic
Q1D wires [10]:

LB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1l4mlew�3þC2l2ml2e w�2

q
; ð2Þ

where lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
‘ =eB

p
. For predominately specular (diffusive) bound-

ary scattering, C1 ¼ 4:75 ð2pÞ and C2 ¼ 2:4 ð1:5Þ [10]. We
also implement the ballistic wire correction first introduced
by Beenakker [10] in regards to weak localization theory. The
triplet and singlet contributions in the ballistic Q1D wires become
[10]:

~Ls;m ¼ ðL
�2
f þns;mL�2

S þL�2
B Þ
�1=2
�ðL�2

f þns;mL�2
S þL�2

B þ2l�2
e Þ
�1=2: ð3Þ

In order to extract both LS and Lf the low T magnetoconduc-
tance curves were fit to Eq. (1) using Eq. (3) to describe ~Ls;m and
adopting specular values for C1 and C2 when evaluating LB in
Eq. (2). The resulting fits are shown along with the experimental
data in Fig. 2. Fits are restricted to T where AL is experimentally
observed. Thus for w¼ 0:15mm and w¼ 0:25mm, values for LS and
Lf are only reported in the range 0:4 KoTo5 K; whereas for
w¼ 0:35mm and w¼ 0:55mm values for LS and Lf are given for
0:4 KoTo15 K. The w and T dependence of the extracted LS and
Lf are presented below.

Fig. 1. (a) GðB¼ 0Þ as function of wire design width wlitho . (b) DG at 0.4 K for wires

of width w¼ 0:55mm, 0:35mm, 0:25mm, and 0:15mm. (c) Schematic illustration of

measurement geometry. (d) Schematic of the InSb/InAlSb 2DES heterostructure.

The d�doped layers are located at the following positions: 40 nm below, 40 nm

above, and 140 nm above the quantum well (QW).

Fig. 2. Change in conductance DG as a function of magnitude of the applied

magnetic field jBj at various T for wires of width w¼ ðaÞ 0:55mm, (b) 0:35mm,

(c) 0:25mm, and (d) 0:15mm. Solid lines indicate fits to antilocalization theory.
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4. Results and discussion

4.1. Spin coherence time

Values of LS extracted from the fits to DG are found to be
inversely proportional to w, with � 3mmoLSo � 5mm. We note
that the large magnitude of LS is not indicative of exceptionally
long spin coherence times, but is, rather, a consequence of the
high electron m in the 2DES. The large m leads to a long le ¼ 3:3mm,
a large diffusion constant, and consequently significant LS in the
wires. Taking into account both Rashba and Dresselhaus SOI [13],
the spin precession length LO � vF=O� 0:35mm is calculated from
the Fermi velocity vF � 8:85� 105 m=s and average SOI induced
spin precession frequency O� 2:5� 1012 s�1 in the 2DES. Fig. 3
shows the linear dependence of LS on w�1 for T ¼ 0:4 and 1.3 K.
Within experimental errors, we find LSp2:65ðL2

O=wÞ for
0:4 KoTo5 K, the range of T where AL was observed for all w.
For pure Rashba SOI in diffusive wires, Kettemann has predicted
an LSp

ffiffiffiffiffiffi
12
p
ðL2

O=wÞ dependence [3]. Thus, we find agreement,
within �

ffiffiffi
2
p

, with this prediction, even in the presence of the
strong cubic Dresselhaus SOI in InSb.

Extracted LS are found to gradually decrease as T increases
from 0.4 K, Fig. 3. Together with the observation that the
enhancement of LS with w is not affected by T, the similar
T dependence of LS for all w indicate that a common mechanism
limits LS and the spin coherence length in the 2DES, L2D

S . Thus, the
observed T dependence of LS suggests a changing L2D

S with T. For
2DESs where LOo le it is common to estimate the spin coherence
time t2D

s � tp, where tp is the momentum scattering time [2,14].
In contrast to the motional narrowing regime ðLO4 leÞ, this
implies that increased scattering leads to shorter L2D

S . Although

no significant changes in le are observed in this range of T, it has
been shown that scattering mechanisms can have a much larger
impact on spin relaxation as compared to momentum relaxation
[15]. Increasing phonon and electron-electron scattering with T

offer mechanisms for decreasing L2D
S and LS.

4.2. Phase coherence time

Extracted Lf for the separate w are displayed as a function of
T in Fig. 4. Qualitatively we find increasing Lf with decreasing w.
A similar T dependence of Lf for all w is observed with Lf
gradually increasing as T-0. The logarithmic plot of L�2

f vs T, with
Lf normalized to its value at 0.4 K, shown in Fig. 4 highlights the
similar T dependence of Lf in the different wires. After
normalizing to Lfð0:4 KÞ, we find that Lf for different w are all
described by ðLfð0:4 KÞ=LfÞ

2
¼ 0:95þ0:12T � 1þ0:12T . Thus for all

w, Lf saturates to a constant value as T-0 and at higher T,
L2
fpT�1.

In studies of phase coherence, it is often found that the phase
coherence time tf, where tfpL2

f, approaches a constant value as
T-0 [16]. Mechanisms proposed to explain the saturation of tf at
low T include magnetic scattering from trace amounts of
magnetic impurities [16] and zero-point fluctuations of the
electromagnetic environment [17]. At slightly higher T, tf is
expected to follow a power law tfpT�n with the exponent n
depending on the mechanism responsible for phase decoherence
[16]. From Fig. 4, we find n¼ 1 which is characteristic of the
Nyquist dephasing mechanism in 2DESs. The experimental
observations of an increasing Lf with decreasing w and a
T dependence typical of 2DESs may suggest that Lf in the narrow

Fig. 3. (a) Extracted spin coherence length LS as function of T for wires of width

w¼ 0:55mm, 0:35mm, 0:25mm, and 0:15mm. Dashed lines are guides to the eye.

(b) Dependence of LS on w at 0.4 and 1.3 K.

Fig. 4. (a) T dependence of phase coherence length Lf in wires with four different

widths w¼ 0:55mm, 0:35mm, 0:25mm, and 0:15mm. Dashed lines are guides to the

eye. (b) Logarithmic plot of the T dependence of L-2
f , normalized by its value at

0.4 K, for all w.
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wires is determined by phase decoherence mechanisms in the
parent 2DES that they are in electrical contact with.

5. Conclusions

We have measured the low T magnetotransport across
narrow wires fabricated from a high mobility InSb/InAlSb 2DES.
Both n and m are found to be independent of w as scattering
from the wire boundaries is predominately specular. The w

and T dependence of LS and Lf in the wires are examined by
modeling DG with a modified low-dimensional AL theory.
Even though there is strong cubic Dresselhaus SOI in the
ballistic InSb wires, the observed LSp2:65ðL2

O=wÞ agrees within a
factor �

ffiffiffi
2
p

with predictions for the enhancement of LS

in diffusive wires under Rashba SOI. We find that the extracted
Lf increase with decreasing w and display a T dependence typical
of phase decoherence via the Nyquist mechanism in two
dimensions.
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