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ABSTRACT

The quantification of quantum phase coherence can reveal several properties of charge carriers
in systems of given dimensionality, illuminating mechanisms leading to quantum decoherence
due to inelastic scattering events, to decoherence mechanisms due to device geometry, and to
dephasing due to geometrical phases from applied fields. Examples of several effects are pre-
sented. Quantum phase coherence lengths were measured in mesoscopic geometries by quantum
transport methods including universal conductance fluctuations, weak-localization, and quan-
tum interferometry. The geometries were fabricated from two-dimensional starting materials. In
wires of materials with strong spin-orbit interaction, we show that spin decoherence due to spin-
orbit interaction and dephasing due to applied magnetic fields show an electromagnetic duality.
We show that dephasing due to applied magnetic fields can be expressed in terms of a magnetic
length quantifying time-reversal symmetry breaking. In wires, the main orbital quantum deco-
herence mechanism related to the wire length appears as environmental coupling decoherence,
with longer wires showing asymptotically longer phase coherence lengths. For mesoscopic stadia,
the geometry plays an additional role, inducing stadium-wire coupling decoherence.
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1. INTRODUCTION

The rise of quantum information processing and quantum technologies lend new importance to the
understanding of quantum phase decoherence. Important parameters in this respect are the electrons’
quantum phase coherence length Lφ (defined as the length scale over which quantum coherence is
maintained when the system is considered spinless), and the spin coherence length LS . In mesoscopic
systems, the quantum phases of carrier states can be randomized by inelastic or quasi-elastic processes
dependent on temperature T , such as electron-phonon and electron-electron scattering1–3 and energy
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level broadening exceeding the Thouless energy.4 Decoherence can also be caused by mechanisms
without T -dependence, such as environmental coupling decoherence5,6 due to connecting quantum
systems to classical environments. Environmental coupling decoherence is often expressed using an
escape rate 1/τd, where the dwell time τd is proportional to system size and limits the quantum phase
coherence time τφ at low T .7 Here Lφ =

√
Dτφ, where D denotes the carrier diffusion coefficient. In

this work we describe how in addition to decoherence mechanisms, dephasing by geometrical quantum
phases can also reduce apparent quantum coherence (decoherence is irreversible, while dephasing is
reversible8). The two contributions blend in actual experiments. Dephasing by geometrical quantum
phases contains information about fundamental physics phenomena. To extract this information how-
ever, it is necessary to quantify sources of decoherence. In this work, mesoscopic wires were studied,
fabricated on InGaAs/InAlAs and InSb/InAlSb heterostructures harboring two-dimensional electron
systems (2DESs). Also studied were wires fabricated on thin film Bi and mesoscopic stadia with side-
wires fabricated on InGaAs/InAlAs heterostructures. Few previous investigations studied the effects of
device-device coupling on decoherence between devices of different geometries, and here we describe a
notable influence of stadium-wire coupling in the stadia with side-wires. The experiments use quantum
interference effects in electronic transport, namely weak-antilocalization (WAL)9–13 and universal con-
ductance fluctuations (UCFs),1,14–16 to measure Lφ. Since in the wires WAL dominates over UCFs, and
vv for stadia, WAL is used to extract Lφ in the wires and UCFs are used in the stadia. Measurements
were obtained by four-contact techniques under low constant-current excitation in a 3He cryostat, over
variable T from 0.38 K to 5.0 K. The low T leads to sufficiently long Lφ to study quantum interference
phenomena,4,17 and brings out decoherence mechanisms weakly dependent on T .

2. EXPERIMENTAL ASPECTS

The mesoscopic geometries studied in this work consisted of wires and stadia (wide 2D quantum dots).
Parent materials to fabricate the mesoscopic devices were Bi(111) thin films (rhombohedral nota-
tion),16,18 an InSb/In0.85Al0.15Sb heterostructure,19 a high-mobility In0.64Ga0.36As/In0.45Al0.55As het-
erostructure,4,17 and an In0.53Ga0.47As/In0.52Al0.48As lattice-matched bottom-doped heterostructure.20

The devices were defined by electron-beam lithography and wet and reactive ion etching. Figure 1 de-
picts scanning electron micrographs of example geometries defined on the In0.53Ga0.47As/In0.52Al0.48As
heterostructure, and conveys the dimensions of the devices as discussed below. Bi(111) thin films were
thermally evaporated from 99.999% Bi sources on a SiO2 (oxidized Si(001)) substrate,16,18 to a thick-
ness of 75 nm. The films show an orientation with the trigonal axis perpendicular to the substrate
with grains of size 200-500 nm randomly oriented. The film surface is hence the trigonal face (Bi(111)
in rhombohedral notation). The surface carriers on Bi(111)21 dominate the transport properties with
particularly a central electron pocket (along the trigonal axis) with effective mass ∼ 0.5 me with me the
free electron mass) determining the quantum transport measurements. As expected for high-quality
semimetallic Bi, multicarrier fits to the magnetotransport data show compensated electron and hole
densities∼ 2x1024 m−3 and show mobilities∼ 0.1 m2/Vs. Wires on Bi had a length L= 16 µm and vary-
ing widths W . The In0.85Al0.15Sb/InSb/In0.85Al0.15Sb heterostructure, grown by molecular beam epi-
taxy (MBE) on (001) GaAs substrate, housed an InSb quantum well of thickness 25 nm19 in which the
2DES is located. At T = 0.39 K the unpatterned 2DES had areal electron density NS = 5.2x1015 m−2

with mobility µ = 9.7 m2/Vs, yielding a mean-free-path `e ≈ 3.3 µm. Here `e = vF τe where τe is the
momentum scattering time and vF the Fermi velocity. Wires on the InSb 2DES had L = 24 µm and
varying W . The high-mobility In0.64Ga0.36As/In0.45Al0.55As heterostructure4,17 was obtained by MBE
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Figure 1: Micrographs of two example mesoscopic geometries. Right panel: an example stadium
sample with side-wires with W = 1 µm and L = 1 µm. Etched trenches, which form barriers
confining the electrons, appear as lighter regions. Left panel: two U-shaped trenches define a
wire between them, here with length L = 11 µm

on (001) GaAs substrate, and housed an In0.64Ga0.36As quantum well of thickness 10 nm, with at T =
0.39 K unpatterned 2DES density NS = 1.1x1016 m−2 with µ = 4.7 m2/Vs and `e ≈ 1.5 µm. Wires on
the InSb 2DES had L = 24 µm and varying W . The In0.53Ga0.47As/In0.52Al0.48As heterostructure20

was bottom-doped to obtain asymmetry in the quantum well confinement potential and hence strong
spin-orbit interaction (SOI). The heterostructure was grown by MBE on InP(001) substrate, with a 10
nm wide In0.53Ga0.47As quantum well. The 2DES showed NS = 2.02×1016 m−2 and µ = 1.49 m2/(Vs)
at T = 0.38 K, with `e = 0.77 µm. Wires with L= 2.0 µm, 4.0 µm, 6.0 µm and 11.0 µm and with
lithographic width 0.75 µm, as well as stadia with constant inner diameter 4.0 µm, and with varying
wire-like necks (for dimensions, cfr Fig. 1) were patterned on this heterostructure. For all materials,
transport properties stayed appreciably constant over the range of T in the measurements. Starting
from the 2D parent materials, the wires on the heterostructures operate in the quasi-one-dimensional
(Q1D) regime, meaning that the Fermi wavelengths λF � W such that quantization in transverse
subbands can be neglected, and that both Lφ > W and `e > W .

3. MODELS FOR QUANTUM TRANSPORT

The data used to extract values for Lφ consists of device conductance G as function of magnetic
field B applied normally to the 2D material. The data display the characteristic shape of WAL,
where the magnetoconductance G(B) drops sharply as |B| is increased from zero, and UCFs16 are also
prominent. An example of measured G(B) vs B with strong UCFs and the characteristic WAL negative
magnetoconductance at low B, is contained in Fig. 2 for a stadium with side-wires of dimensions W
= 1.4 µm and L = 1.0 µm (Fig. 1). We describe the models fitted to the measured G(B) to extract
values of LS (by WAL analysis) and Lφ (by WAL or UCF analysis). The parent materials possess
substantial SOI and are non-magnetic, and hence LS is here limited by spin decoherence originating
in SOI. WAL results from quantum interference of time-reversed trajectories of a diffusing electron
returning to its starting point. Under SOI, singlet and triplet contributions arise from the pairs of time-
reversed trajectories. In 1D, the quantum correction to conductance δG(B) due to each contribution
scales as an effective coherence length and the combination of the lengths amounts to the 1D WAL
correction9,10,22,23

δG(B) = −1

2

e2

π~
1

L
(L1,1 + L1,−1 + L1,0 − L0,0) (1)

where L0,0 =
(
L−2
φ + L−2

B

)− 1
2

is the effective length for the singlet, and L1,±1 =
(
L−2
φ + L−2

S + L−2
B

)− 1
2

and L1,0 =
(
L−2
φ + 2L−2

S + L−2
B

)− 1
2

are effective lengths for the triplets. In laterally unconfined 2D
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Figure 2: Magnetoconductance data G(B) vs B for a stadium with side-wires with W = 1.4 µm
and L = 1.0 µm, plotted over variable T . The amplitude of the UCFs decreases with increasing
T due to the expected decrease in Lφ with increasing T . The dominant UCF signature was used
in the stadia samples to obtain Lφ.

or 3D systems, the magnetic length LB = lm ≡
√
~/eB. In narrow wires in the ballistic transport

regime with `e & 0.6W and at low B limited by lm >
√
W`e, an expression accounting for flux

cancellation17,24 is used, LB = lm
√
C1l2m`e/W

3. In the ballistic regime and at intermediate B such
that W < lm <

√
W`e, the crossover expression9,10,17,24 is used, LB = lm

√
C1l2m`e/W

3 + C2`2e/W
2.

Here C1 = 4.75 and C2 = 2.4 for specular boundary scattering adopted in the samples here due to the
existence of depletion layers at edges.9,10,24

UCFs in G(B) are analyzed using a correlation function to bring out quantum coherence effects
dependent on Lφ. The correlation function is defined8 as δG(B)δG(B + ∆B) = 〈[G(B)−〈G(B)〉][G(B+
∆B)−〈G(B)〉]〉, where angled brackets denote an average over a range of B. Taking Bφ = ~/(4eL2

φ) as

the B under which one flux quantum h/e threads the area 8πL2
φ, if B >> Bφ the following expression

allows determination of Lφ:

δG(B)δG(B + ∆B) = δG2(B)
1

b
Ψ′(

1

2
+

1

b
) (2)

with Ψ(x) the digamma function and b = ∆B/2Bφ.

4. ANALYSIS OF GEOMETRICAL PHASE EFFECTS

Figure 3 shows values of LS obtained using WAL analysis at T = 0.39 K on InSb and Bi wires, vs wire
width W .9,16 It is apparent that LS increases with decreasing W , and in fact LS ∼ 1/W . In unconfined
2D systems, we have LS = LΩ for Rashba SOI,25 assuming the D’yakanov-Perel motional narrowing
spin decoherence is dominant. Here the spin precession length LΩ = vF /Ω with Ω the spin precession
frequency from the effective magnetic field arising from SOI. The unconfined spin decoherence rate
is then expressed as 1/τS = Ω2τe/2.26 With LS =

√
DτS , where D is the diffusion coefficient, we
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Figure 3: Values for LS obtained by WAL analysis vs wire width (W ). For InSb wires navy-
colored filled symbols are used (left vertical axis) and for Bi wires brown open symbols are used
(right vertical axis). Solid lines represent fits to a relation LS ∝ 1/W .

indeed have LS = LΩ. Yet, in wires it is predicted26 that LS =
√

12L2
Ω/W , consistent with Fig. 3.

This expression maps onto the behavior of LB in wires,17,24 where the expressions above for LB
denote a dependence on W such that LB increases when W narrows. In fact in the non-ballistic case,
boundary conditions for a wire yield LB =

√
3 l2m/W , emphasizing the similar function of LΩ under

SOI and the magnetic lm under B. The data in Fig. 3 are hence consistent with an electromagnetic
mapping between phenomena under SOI and under applied B. The role played by LB in decoherence

phenomena is illustrated by the singlet length L0,0 =
(
L−2
φ + L−2

B

)− 1
2
, where LB and Lφ have identical

influence in limiting quantum coherence effects in Eq. (1). The triplet lengths illustrate that LS likewise
assumes this influence in limiting quantum coherence, albeit in a more complicated way due to the
specific nature of spin. We now investigate why B, via LB, contributes to an effective decoherence.
Quantum interference between partial waves in B experience an Aharonov-Bohm (AB) geometrical
quantum phase3,4, 17,27 dependent on their path in real space. Time-reversed paths will accumulate
opposite AB phases, the mechanism whereby B breaks time-reversal symmetry. The magnetic length lm
(unconfined) or LB (confined) serves as the characteristic length over which time-reversed partial waves
dephase in B due to their relative accumulated AB phases. A unity quantum AB phase is accumulated
in an unconfined system over a closed loop if the loop encloses a magnetic flux ~/e. Denoting the area
enclosed by the loop as L2

B, it is found that LB = lm ≡
√
~/(eB). As noted above, LB =

√
~/(eB) only

applies to unconfined systems, while the above other expressions for LB have been specifically derived
to apply to confined and ballistic systems. Yet in general the characteristic length for breaking of time-
reversal symmetry by dephasing, is LB and for this reason LB has a role equivalent to Lφ in expressions
of decoherence. It is not surprising that the accumulation of an AB phase can be expressed in terms of
a length scale LB, because the AB quantum phase is an example of a geometrical phase. This fact also
delivers insight in the expression LB =

√
3 l2m/W . If the closed loop is constrained to have dimension

W < lm in one direction, the electron can acquire the same AB phase by traveling a length ∝ l2m/W
along the wire direction to enclose the same geometrical area. The AB phase arises from a magnetic
vector potential ~A. A mapping exists from Rashba SOI to the physics arising from an effective vector
potential28 involving ~E, the actual or effective electric field at the origin of SOI by breaking inversion
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Figure 4: Experimental values for LB plotted vs 1/B2 to emphasize the expected dependence
of LB on B (blue symbols). The upper navy-colored solid line represents the expression for LB
mentioned in the text. The lower red solid line represents LB =

√
3 l2m/W , which does not fit

the data. The respective fits show that despite scatter in the data, the experiment17 succeeds
in differentiating between models for LB.

symmetry (in duality to B breaking time-reversal symmetry). This so-called Aharonov-Casher vector
potential29,30 is ~Aac = (1/c∗2)~µ × ~E, where ~µ is the particle’s magnetic moment and c∗ the effective
velocity of light (a bandstructure parameter31). It can be shown that under SOI LΩ takes the role
assumed in B by lm, providing an equivalent geometrical phase relation. Within prefactors of order
unity dependent on boundary conditions, the geometrical phase argument that yielded LB ∝ l2m/w
now yields LS ∝ L2

Ω/W . We note that if SOI is weak, then LS → ∞ and the only length scale

entering Eq. (1) is
(
L−2
φ + L−2

B

)− 1
2
. The role of LB in this expression was confirmed experimentally

in previous work17 performed using the high-mobility In0.64Ga0.36As/In0.45Al0.55As heterostructure.
The sample geometry was a 5x5 interferometric ring array operating in a Sagnac-like mode, which
emphasizes the contribution of time-reversed paths. The measurement geometry was thus sensitive to
time-reversal symmetry breaking, and indeed confirmed the phase-breaking role of LB. Quantitative
results (Fig. 4) showed that the expression LB = lm

√
C1l2m`e/W

3 + C2`2e/W
2 fit the data obtained for

LB(B) best, as expected for a ballistic confined system over a wider range of B. It is hence concluded
that geometrical quantum phases, illustrated here by the AB phase and its electromagnetic dual,
the Aharonov-Casher phase, lead to quantifiable dephasing effects in quantum transport via effective
lengths, LB and LS resp. The quantifiable aspect further leads us to conclude that other geometrical
phases, e.g. Berry’s phases32 arising from the kinematics of a system, can likewise be accessed using
this mesoscopic quantum transport approach.

5. ANALYSIS OF EFFECTS DUE TO DEVICE GEOMETRY

Values for Lφ in wires (Fig. 1) fabricated on the In0.53Ga0.47As/In0.52Al0.48As heterostructure show
a positive correlation with the wire length L. Figure 5 depicts Lφ (obtained at T = 0.38 K) vs a
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Figure 5: Lφ vs L/Lφ∞, in wires of length L at T = 0.38 K. Open circles represent data, and
the dashed line represents a fit to the expression mentioned in the text, with Lφ∞ = 5.3 µm.

normalized value for L in wires with L= 2.0 µm, 4.0 µm, 6.0 µm and 11.0 µm. An increase in L yields
an increase in Lφ, with Lφ tending asymptotically to a value Lφ∞ for long L. The result of Fig. 5
can be explained by decoherence via interaction of electrons at the wire endpoints with the wider
classical environment, named environmental coupling decoherence.5–7 In longer wires the interaction
at the endpoints is relatively less important wires due to averaging of the measured Lφ over the wire.
Hence longer wires show longer Lφ tending towards an asymptotic value Lφ∞ as observed. In Fig.
5 we find Lφ∞ = 5.3 µm. Lφ∞ was obtained using a fit (depicted in Fig. 5) to the expression8,33

Lφ = Lφ∞(coth
(

L
Lφ∞

)
− Lφ∞

L ), derived for the amplitude of quantum-coherent backscattering for a

diffusing electron assuming perfectly transparent contacts at the wire endpoints.

In contrast to simple wires, values for Lφ in stadia with side-wires (Fig. 1) fabricated on the
In0.53Ga0.47As/In0.52Al0.48As heterostructure show a more intricate dependence on the side-wire W
and L. The samples featured stadia with a common inner diameter 4.0 µm, but with varying side-wire
dimensions: W = 1.4 µm and L = 1.0 µm (W/L = 1.4); W = 1.0 µm and L = 1.0 µm (W/L = 1.0); W =
1.0 µm and L = 3.0 µm (W/L = 0.33); W = 0.6 µm and L = 1.0 µm (W/L = 0.6). Figure 6 depicts Lφ
(obtained at T = 0.38 K) vs W/L in the stadia. Environmental coupling decoherence predicts that the
wider or shorter the side wire is, the shorter Lφ is, and hence cannot explain the observed dependence of
Lφ on W/L. The results can be explained by the composite nature of the samples, namely by stadium-
wire coupling decoherence. Device-device (here stadium-wire) coupling decoherence finds its origin in
low wavefunction hybridization between different geometries. We express the total decoherence rate as
1

τφ
=

1

τφ0
+

1

τd
+ 2γα where γα denotes the stadium-wire coupling decoherence rate with the factor 2

originating in 2 connection points. The second term denotes environmental interaction decoherence via
τd.

7,34 Between identical quantum dots in arrays,5,35 a low dot-dot coupling decoherence rate γα was
deduced due to the identical geometries of the interacting quantum dots. In stadium-wire coupling, γα
is similarly dependent on any geometrical similarity between the circular stadia and the side-wires. In
the data of Fig. 6, the effects of γα are sufficiently large to be observed, dominating over 1/τd due to
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Figure 6: Lφ vs W/L, in stadia of with side-wires of width W and length L, at T = 0.38 K.
Symbols represent data, and the solid line function as guide only. The datapoint represented by
a red star is explained in the text.

the difference in geometry between stadia and side-wires. W and L of side-wires are comparable to the
2 µm radius of the stadia and hence stronger geometrical similarity with the stadia and the side-wires
can be quantified by W/L with a lower W/L denoting stronger geometrical similarity. For the samples
with W/L > 0.33, increasing W/L by either wider W or shorter L, increases wavefunction hybridization
and hence increases Lφ, as shown in Fig. 6. For the sample with W/L = 0.33 the side-wire with long
L = 3 µm dominates the results, and environmental interaction decoherence partially masks the effect
of stadium-wire coupling decoherence.

Apart from the effects of geometrical phases, the above examples show that sample geometry,
including internal layout of the device and its interaction with a classical wider environment, plays an
important role in determining measured values for Lφ.

6. CONCLUSIONS

The dependence of the quantum phase coherence length Lφ on geometrical phases and on device
geometry is described, starting from experimental observations. An analysis of the dependence of Lφ
on the phase space allowed for geometrical phases to develop yields insight in and a quantification
of geometrical phases, which play an important role in quantum physics. Interaction with a classical
environment is shown to limit quantum coherence in short wires, leading to a decreasing Lφ in shorter
wires. For stadia, experiments show that internal stadium-wire coupling decoherence can dominate
over environmental coupling decoherence effects.
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List of Figures

1 Micrographs of two example mesoscopic geometries. Right panel: an example stadium
sample with side-wires with W = 1 µm and L = 1 µm. Etched trenches, which form
barriers confining the electrons, appear as lighter regions. Left panel: two U-shaped
trenches define a wire between them, here with length L = 11 µm

2 Magnetoconductance data G(B) vs B for a stadium with side-wires with W = 1.4 µm
and L = 1.0 µm, plotted over variable T . The amplitude of the UCFs decreases with
increasing T due to the expected decrease in Lφ with increasing T . The dominant UCF
signature was used in the stadia samples to obtain Lφ.

3 Values for LS obtained by WAL analysis vs wire width (W ). For InSb wires navy-
colored filled symbols are used (left vertical axis) and for Bi wires brown open symbols
are used (right vertical axis). Solid lines represent fits to a relation LS ∝ 1/W .

4 Experimental values for LB plotted vs 1/B2 to emphasize the expected dependence of
LB on B (blue symbols). The upper navy-colored solid line represents the expression
for LB mentioned in the text. The lower red solid line represents LB =

√
3 l2m/W ,

which does not fit the data. The respective fits show that despite scatter in the data,
the experiment17 succeeds in differentiating between models for LB.

5 Lφ vs L/Lφ∞, in wires of length L at T = 0.38 K. Open circles represent data, and the
dashed line represents a fit to the expression mentioned in the text, with Lφ∞ = 5.3
µm.

6 Lφ vs W/L, in stadia of with side-wires of widthW and length L, at T = 0.38 K. Symbols
represent data, and the solid line function as guide only. The datapoint represented by
a red star is explained in the text.
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