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ABSTRACT

We analyze the Crab pulsar at 10 frequencies from 0.43 to 8.8 GHz using data obtained at the Arecibo
Observatory and report the spectral dependence of all pulse components and the rate of occurrence of large-
amplitude ‘‘giant’’ pulses. Giant pulses occur only in the main and interpulse components that are manifest from
radio frequencies to gamma-ray energies (known as the ‘‘P1’’ and ‘‘P2’’ components in the high-energy liter-
ature). Individual giant pulses reach brightness temperatures of at least 1032 K in our data, which do not resolve
the narrowest pulses, and are known to reach 1037 K in nanosecond-resolution observations (Hankins et al.
2003). The Crab pulsar’s pulses are therefore the brightest known in the observable universe. As such, they
represent an important milestone for theories of the pulsar emission mechanism to explain. In addition, their short
durations allow them to serve as especially sensitive probes of the Crab Nebula and the interstellar medium. We
identify and quantify frequency structure in individual giant pulses using a scintillated, amplitude-modulated,
polarized shot-noise (SAMPSN) model. The frequency structure associated with multipath propagation decor-
relates on a timescale �25 s at 1.5 GHz. To produce this timescale requires multipath propagation to be strongly
influenced by material within the Crab Nebula. We also show that some frequency structure decorrelates rapidly,
on timescales less than one spin period, as would be expected from the shot-noise pattern of nanosecond-duration
pulses emitted by the pulsar. We discuss the detectability of individual giant pulses as a function of frequency and
provenance. Taking into account the Crab pulsar’s locality inside a bright supernova remnant, we conclude that
the brightest pulse in a typical 1 hr observation would be most easily detectable in our lowest frequency band
(0.43 GHz) to a distance �1.6 Mpc at 5 �. We also discuss the detection of such pulses using future instruments
such as LOFAR and the SKA.

Subject headinggs: ISM: individual (Crab Nebula) — pulsars: individual (Crab Pulsar) — supernova remnants

Online material: color figures

1. INTRODUCTION

Giant pulses from the Crab pulsar are long known (Staelin
& Reifenstein 1968) but remain enigmatic tools for probing
the pulsar emission mechanism. Recent work has established
that giant-pulse fluctuations are most likely associated with
changes in the coherence of the radio emission (Lundgren
et al. 1995), that giant pulses are broadband, extending over at
least several hundred megahertz (Sallmen et al. 1999), and
that they are superpositions of extremely narrow nanosecond-
duration structures (Hankins et al. 2003). Giant pulses from
the Crab pulsar have the largest implied brightness tempera-
ture of any known astrophysical source. A simple estimate for
the brightness temperature, based on the light-travel size and
ignoring relativistic dilation, is

Tb ¼
S�

2k

D

��t

� �2

¼ 1030:1 K
� �

S�(Jy) �GHz�t�s
� ��2 D

2 kpc

� �2

; ð1Þ

where S� is the peak flux density at frequency �, D is the
distance, k is Boltzmann’s constant, and �t is the pulse width.
For observed peak amplitudes and pulse widths (e.g., 103 Jy
at 5 GHz with �t ¼ 2 ns; Hankins et al. 2003), Tb ranges to
as high as 1037 K.

In this paper we are concerned with the occurrence of giant
pulses as a function of frequency and also where they occur
as a function of pulse phase. We also establish the properties
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of the Crab pulsar’s emission so that we can estimate the
detectability of giant pulse emitters from other galaxies. De-
tections of such objects would enable studies of pulsar pop-
ulations in those galaxies and use of the pulses to probe the
interstellar medium (ISM) in those galaxies, as well as the in-
tervening intergalactic medium. In addition, the Crab pulsar
may serve as a prototype of intense, coherent emission from
other classes of high-energy objects that may share a similar
physical configuration, namely, a collimated flow of relativ-
istic particles. As such, the Crab pulsar may signify the pres-
ence of other source classes in the transient radio universe that
could be targets for proposed wide-field telescopes such as
the Low-Frequency Array (LOFAR) and the Square Kilometer
Array (SKA).

In x 2 we discuss the observations and issues pertaining to
the strong background from the Crab Nebula and to the role of
scintillation modulations associated with multipath propaga-
tion through the ISM and the Crab Nebula. Average profiles
and giant-pulse profiles are discussed in x 3 and timing and
amplitude statistics in x 4.

Detectability of giant pulses in other galaxies is summarized
in x 6, and we conclude the paper in x 7. In the Appendix we
discuss frequency structure caused by intrinsic pulse structure
and by scintillation.

2. OBSERVATIONS

The Crab pulsar was observed at the Arecibo Observatory
in 2002 January to March and May using receivers in the
Gregorian optical path. Analog signals were analyzed with a
fast-dump, real-time correlator system, the Wideband Arecibo
Pulsar Processor1 (WAPP), which outputs a data stream of
correlation functions at specified time intervals. The number
of correlation lags (and hence the number of channels across a
choice of bandwidths after Fourier transformation) is select-
able. The total bandwidth used was 100 MHz for all but
0.43 GHz, where we used 12.5 MHz. We optimized the time
resolution by matching the dump time between correlations
with the dispersion smearing time across individual chan-
nels, subject to a constraint on the overall data rate that could
be recorded, P20 Mbytes s�1. Table 1 gives the observing
parameters: observing frequency, � (GHz); modified Julian
date (MJD); total time, T (hr), of acquired data; total band-

width, B (MHz); sample interval, �t (�s); channel band-
width, �� (MHz); dispersion smearing across a single chan-
nel, �tDM ¼ 8:3 �sð ÞDM����3; and the mean system noise,
Ssys, expressed in Jy. We used a dispersion measure, DM ¼
56:7910 pc cm�3, to dedisperse the data.
Processing consisted of (1) Fourier transforming the cor-

relation functions for each of two polarization channels,
(2) summing the resultant spectra for the two polarizations,
(3) dedispersing by summing over frequency channels while
taking into account time delays associated with plasma dis-
persion in the ISM, (4) averaging the time series synchro-
nously with the pulsar period to form a standard intensity
profile, (5) identifying individual giant pulses and their oc-
currence times by selecting intensity samples that exceeded
the off-pulse mean by 5 �, (6) synchronously averaging the
individual giant pulses to form a histogram of giant pulses
versus pulse phase, and (7) aligning average profiles and in-
dividual giant pulse profiles in pulse phase by using TEMPO
and a spin model for the Crab pulsar. We also used TEMPO to
perform an arrival time analysis on individual giant pulses, as
discussed in x 4. For the TEMPO analysis, we used timing
models from the Jodrell Bank timing program.2

The procedure for finding giant pulses followed that of
Cordes & McLaughlin (2003). The dedispersed time series
was first analyzed with the original time resolution and then
progressively smoothed and decimated by factors of 2 in or-
der to approximately match filter to pulses with different
widths. In the end, most pulses were optimally detected with
no smoothing or only one level of smoothing, as is consistent
with the known properties of giant pulses and average profiles
(Moffett & Hankins 1996; Sallmen et al. 1999). The 5 �
threshold we have used to identify giant pulses may be
compared with the signal-to-noise ratios (S/Ns) of ordinary
pulses (defined as the ratio of pulse peak to rms noise): S/N
declines from �2 at 0.43 GHz to �0.03 at 8.8 GHz. These
numbers, in turn, may be compared with giant pulses, which
have maximum S/Ns in our data that range from �104 at
0.43 GHz to a few hundred at frequencies above 1 GHz.
Above a few gigahertz, these numbers vary greatly as a result
of interstellar scintillation, as discussed below, causing the
largest seen giant pulses to occasionally have S/N as large
as 103 in our data. Note also that the numbers quoted are

TABLE 1

Observational Parameters

�

(GHz) MJD

T a

(hr)

B

(MHz)

�t

(�s)

��

(MHz)

�tDM
(�s)

Ssys
b

(Jy)

0.430................ 52304 1.0 12.5 128 0.024 145 1262

1.180................ 52277 1.2 100 100 0.781 224 309

1.475................ 52277 1.2 100 100 0.781 115 291

2.150................ 52304–52306 1.3 100 32 1.562 74 79

2.330................ 52315 1.0 100 32 1.562 58 78

2.850................ 52306 1.0 100 32 1.562 32 74

3.500................ 52398–52412 3.5 100 64 1.562 64 41

4.150................ 52295–52337 2.9 100 32 3.125 21 20

5.500................ 52336–52411 2.3 100 32 3.125 9 20

8.600–8.800 .... 52398–52414 3.1 100 16 3.125 2 22

a T is the total time of analyzed data, whether the pulsar was detected or not.
b Ssys includes the contribution from the Crab Nebula that takes into account flux dilution by the telescope

beam.

1 See http://www.naic.edu/~wapp. 2 See http://www.jb.man.ac.uk/~pulsar/crab.html.
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Arecibo specific because at frequencies higher than 1 GHz,
the Crab Nebula becomes resolved and the system noise de-
creases dramatically.

2.1. Importance of Nebular Backgground

The Crab Nebula, whose flux density is �955��0.27 Jy (� in
GHz; Allen 1973; Bietenholz et al. 1997), dominates the
system temperature if it is not resolved by the telescope.
Define the system temperature in the absence of the Crab
Nebula as Tsys0 and the contribution from the Crab Nebula as
TCN. Expressing these in flux density units by dividing by the
telescope ‘‘gain’’ G (K Jy�1), the total system noise level is

Ssys ¼ Ssys0 þ SCN: ð2Þ

For the Crab pulsar and Crab Nebula, the system temperature
is strongly influenced by the Crab Nebula if, say, SCN > �Ssys0
with � ¼ 0:1. For a single-dish telescope with typical system
temperature Ssys0 ¼ 50 K and 60% aperture efficiency, this
condition is satisfied for antenna diameters that satisfy

d > 17 mð Þ�0:13
�Tsys0
50 K

� �1=2

: ð3Þ

For very large telescopes (either large single-dish antennas or
arrays), the effective beamwidth can be smaller than the Crab
Nebula, reducing its contribution to the system noise by a
factor f� ¼ �A=�CN, where �A is the solid angle of the pri-
mary antenna beam and �CN is the solid angle of the Crab
Nebula. The total system noise level is then

Ssys ¼ Ssys0 þ f�SCN: ð4Þ

The characteristic diameter (geometric mean of the major and
minor axes) of the Crab Nebula is approximately 5A5. For the
Arecibo telescope, our data at 0.43 GHz, with beam size
equal to 110 (FWHM), include all of the flux density of the
Crab Nebula, while higher frequencies resolve out some of
the flux density. The last column of Table 1 indicates our
estimate of the system noise including any dilution of the
Crab Nebula’s contribution.

In the following, we express pulse amplitudes in terms of
the mean system noise.

2.2. Scintillations

Diffractive interstellar scintillation (DISS) strongly influ-
ences the detectability of the pulsar in a manner that is
strongly frequency dependent. The scintillation bandwidth
scales with frequency as ��d / �4:4, a result that follows if
electron density fluctuations in the ISM follow a Kolmogorov
wavenumber spectrum, as is consistent with measurements on
nearby pulsars (e.g., Cordes et al. 1985).

There are three regimes that may be identified for scintil-
lation modulations, depending on the size of the scintillation
bandwidth, ��d, relative to the total bandwidth B and to the
channel bandwidth ��. For ��dT��, scintillations are es-
sentially quenched because the large number of ‘‘scintles’’ in
the bandpass causes the scintillation modulation to average
out. For ��P��d P 0:2B, scintillations are identifiable as
frequency structure in the spectrum of a strong, individual
pulse; the net modulation in the dedispersed time series
depends on the number of scintles across B and conforms
roughly to a �2 distribution with �0.4B/��d degrees of

freedom. Finally, for ��d k 0:2B, the dedispersed time series
is fully modulated by DISS, with an amplitude modulation
factor conforming to a one-sided exponential (so long as the
scattering is still strong). The factor, 0.2B, represents the ap-
proximate value of ��d for which we would expect only one
scintle within the total bandwidth, B. DISS shows the full
modulation in going to higher frequencies until the scattering
becomes weak (in the sense of phase perturbations on the
Fresnel scale becoming less than 1 rad; see, e.g., Rickett
1990).

We estimate the DISS bandwidth by using the relation
2���d�d ¼ C1 (Cordes & Rickett 1998, hereafter CR98),
where �d is the pulse-broadening time and C1 is a constant
dependent on the spectrum and spatial distribution of scat-
tering irregularities; we adopt C1 ¼ 1:05, a value appropriate
for a thin screen. The pulse-broadening time for the Crab
pulsar is known to vary (e.g., Isaacman & Rankin 1977; Lyne
& Thorne 1975; Backer et al. 1998, 2000; Lyne et al. 2001),
ranging from about 0.28 to 1.3 ms at 0.3 GHz (Sallmen et al.
1999). Adopting �d(0:3 GHz) ¼ 0:5 ms as a reference value,
we estimate ��d � (67 kHz)�4:4½0:5 ms=�d(0:3 GHz)�, with �
in GHz. Using this expression, we expect that the dedispersed
pulse will show fully modulated scintillations (i.e., after
summing over the 100 MHz bandwidth) for �k 3:6 GHz.

We found the mean pulsar flux density (averaged over a few
minutes) to be heavily modulated on timescales as short as
5 minutes at frequencies k3 GHz and nearly unchanging at
lower frequencies. Such fluctuations are consistent with those
expected from DISS, as we discuss in x 5. We also saw epoch-
to-epoch fluctuations (timescales of 1 day and longer) that are
consistent with refractive interstellar scintillations (RISSs),
like those identified by Lundgren et al. (1995) at 0.8 GHz on
timescales of a few days. The combination of RISS and DISS
is particularly strong at 8.8 GHz where the pulsar is unde-
tectable on many days but quite bright, in the mean, on oc-
casional days with DISS fluctuations contributing on shorter
timescales. We note that at 8.8 GHz, the diffraction bandwidth
��d � 1 GHz (assuming the �4.4 scaling), implying that the
strength of scattering (as defined in scintillation literature; see
Rickett 1990) is not strong and that the DISS and RISS
‘‘branches’’ are not as distinct as at lower frequencies (e.g.,
Narayan 1992).

We point out that our measurements were made at a range
of epochs, so direct comparison of giant-pulse statistics at
different frequencies may be influenced by epoch-dependent
effects, most likely exclusively associated with interstellar
scintillations and scattering.

3. AVERAGE PROFILES

We calculated average profiles of the total intensity by
summing partial sum profiles (of 3–12 minutes duration,
depending on frequency) in which the largest pulse compo-
nent had an S/N larger than 5 and that were unmarred by radio
frequency interference (RFI).

At frequencies higher than 0.43 GHz, typically only a mi-
nority of profiles were included as a result of the effects of
DISS or RFI. Likewise, profiles of giant-pulse counts were
calculated using data subsets corresponding to those included
in the average intensity profiles.

Figure 1 shows average intensity and giant-pulse profiles
for the 10 frequencies listed in Table 1. The top panel of the
pair shown for each frequency is the total intensity profile, and
the bottom panel shows the giant-pulse histogram versus pulse
phase, i.e., the number of giant pulses in the given pulse phase
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bin that are above threshold (5 �). In some of the panels
we designate features in the pulse profile, including low-
frequency precursor pulse (P), main pulse (MP), interpulse (IP),
an intermediate-frequency precursor component (P0; referred
to by Moffett & Hankins 1996 as a ‘‘low-frequency compo-
nent’’), a shifted interpulse component appearing at mid- to
high frequencies (IP0), and two high-frequency components
(HFC1 and HFC2) that were first identified by Moffett &
Hankins (1996).

We point out the following features of the set of profiles:

1. The pulsar is more readily detectable in its single giant
pulses than in the average pulse at all frequencies. This is
manifest by the larger S/N in the histogram plots compared to
the average profile plots in Figure 1.

2. There is strong evolution of the relative strength of MP
and IP as a function of frequency. The ratio of peak IP to peak
MP steadily declines from 0.43 to 2 GHz, stays low from 2.5 to
3.5 GHz, and rises at higher frequencies so that the IP is much
stronger than the MP at 8.8 GHz.

3. At 4.15 GHz, IP0 appears approximately 0.03 cycles
before the location of the lower frequency IP and becomes very
strong relative to the MP at 8.8 GHz.

4. At frequencies of 3.5 GHz and higher two new compo-
nents, HFC1 and HFC2, appear and persist up to the highest
frequency we used (8.8 GHz).

5. It is unclear if the HFC1 and HFC2 components are
present at 2.15, 2.33, and 2.85 GHz as a result of the low S/N

of those profiles, which derives from the short integration times
and the effects of scintillations.
6. Giant pulses occur only in MP, IP, and IP0. For this reason

we conclude that IP and IP0 are probably associated with the
same physical emitting region or beam in the pulsar.
7. There is more scatter in the pulse phase of the interpulse

at high frequencies, manifested in the broader width of the
interpulse component. As discussed in x 4, at 8.8 GHz the
phase residuals appear to show a two-component distribution,
one centered on � ¼ 0:38 cycles, the other representing giant
pulses skewed toward smaller phases.

4. AMPLITUDE AND TIMING STATISTICS
OF GIANT PULSES

Table 2 gives the frequency and total time span used in our
analysis in columns (1) and (2); column (3) gives the mean
main pulse–to–interpulse phase difference; column (4) gives
the ratio of the numbers of detected interpulses and main
pulses; and column (5) gives the detection rate for events
found at 8 � or higher.3 At 0.43 GHz, about 1 in 10 pulses is
detected above this level. We emphasize that the detection rate
is epoch dependent as a result of scintillation modulations.
Slow, refractive scintillations affect the rates at all frequencies,

Fig. 1.—Total intensity profiles of the Crab pulsar at 10 radio frequencies. The pair of plots for each frequency is the standard average intensity profile (top) and a
histogram of counts of giant pulses plotted against pulse phase (bottom). A threshold of 5 � was used to obtain giant pulses included in the histograms. The total
integration time is given in the top panel, and a horizontal bar designates the net instrumental time resolution, including the effects of dispersion smearing across
individual spectrometer channels; the shown bar length is 10 times the actual length. [See the electronic edition of the Journal for a color version of this figure.]

3 Here we have used an 8 � rather than a 5 � threshold to keep arrival time
errors small.
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while fast diffractive scintillations are particularly important at
frequencies above 3 GHz. The 8.8 GHz results apply to a
particular day when the scintillation modulation boosted in-
tensities far above their normal level. The main pulse–to–
interpulse phase difference varies systematically with fre-
quency, remaining constant with frequency (within errors)
from 0.43 to 3.5 GHz and then declining with increasing
frequency up to 8.8 GHz. This variation in calculated phase
difference corresponds to the shift from IP to IP0.

While the absolute rates of giant-pulse detection are influ-
enced by scintillations and resolution of the Crab Nebula by
the telescope beam, the ratio of giant-pulse to average flux
density is not. At 0.43 GHz, SGP/hSi has a median value
of 8 and a peak of 840 (in our data). Going to higher fre-
quencies, there is an increasing trend for the median and peak
values for this ratio: 18 and 420 for 1.2 GHz, 29 and 510 for
1.5 GHz, 83 and 1580 for 2.3 GHz, 127 and 2390 for 3.5 GHz,
250 and 4700 for 5.0 GHz, and 533 and 5260 for 8.8 GHz.
These results imply that giant-pulse amplitudes decrease with
frequency more slowly than do average-pulse amplitudes.

Our detections of giant pulses were made using receiver
bandwidths of 100 MHz at frequencies above 1 GHz and
12.5 MHz at 430 MHz. Individual giant pulses extend in
frequency by at least these bandwidths, but the data dis-
cussed here cannot establish the actual bandwidth of individ-
ual pulses. Simultaneous measurements at 0.6 and 1.4 GHz
demonstrate that the radiation bandwidth is at least 0.8 GHz
(Sallmen et al. 1999).

Figures 2 and 3 show histograms of S/N at 0.43 and 8.8 GHz
for the main and interpulse components specified in Figure 1.
We include only pulses with S=N > 8 in order to provide
consistency with the timing analysis discussed below, where
we use an 8 � threshold for the purpose of obtaining timing
residuals minimally influenced by noise. Traditionally, giant-
pulse amplitude distributions have been characterized as power
laws (e.g., Argyle & Gower 1972; Lundgren et al. 1995). The
histograms shown here have roughly power-law segments to
their distributions, but there are outlier pulses at especially
high S/N at both frequencies. Roughly, a power law with

slope � �2:3 can be drawn through the MP histogram at
0.43 GHz in Figure 2 and a slope � �2:9 at 8.8 GHz in
Figure 3. These can be compared with slopes of approxi-
mately �2.5 at 0.146 GHz (Argyle & Gower 1972) and �3.6 at
0.812 GHz (Lundgren et al. 1995). Overall there thus appears
to be steepening of the histogram in going from low to high
frequencies. Remarkably, the largest pulse at 0.43 GHz has

TABLE 2

Giant Pulse Amplitude and Timing Statistics

�

(GHz)

(1)

T a

(hr)

(2)

�ip � �mp

(cycles)

(3)

Nip /Nmp

(4)

ṄGP
b

(s�1)

(5)

0.430............................. 1.0 0.4032 � 10�4 0.56 3.3

1.180............................. 0.47 0.402 � 0.001 0.05 0.51

1.475............................. 0.58 0.402 � 0.001 0.05 0.31

2.150............................. 0.15 0.403 � 0.002 0.07 0.25

2.330............................. 0.15 0.403 � 0.002 0.08 0.17

2.850............................. 0.26 0.404 � 0.003 0.05 0.11

3.500............................. 1.27 0.402 � 0.002 0.04 0.12

4.150............................. 1.49 0.394 � 0.002 0.10 0.31

5.500c ........................... 0.30 . . . . . . 0.02

8.800............................. 1.42 0.380 � 0.001 27 0.44

a T represents the total time included in the average profiles of Fig. 1,
which represents only the high-S/N and RFI-free subset of the overall data.

b For frequencies k3 GHz, the number of detected giant pulses varies
significantly because diffractive interstellar scintillation strongly modulates
their amplitudes. Numbers are therefore biased because many observations
yielded no detection of the pulsar. Refractive scintillation also alters the de-
tection rate at all frequencies.

c At 5 GHz, too few interpulses are detected to allow meaningful estimates
of the MP-to-IP phase offset and number ratio.

Fig. 2.—Histogram of giant-pulse peak amplitudes at 0.43 GHz. The lower
curve is for the interpulse, and the upper curve is for the main pulse. [See the
electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Histogram of giant-pulse peak amplitudes at 8.8 GHz. The upper
curve is for the interpulse, and the lower curve is for the main pulse. Contrary
to lower frequency data, interpulses are much more common than main pulses
at 8.8 GHz. [See the electronic edition of the Journal for a color version of this
figure.]
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S=N �1:1 ; 104, which is inconsistent with the probability
implied by the power law at lower S/N. We suggest that this
pulse is an example of a supergiant pulse. The same is true at
8.8 GHz, where giant pulses in the interpulse region are
dominant in number but the largest pulse appears in the main
pulse component and is 10 times larger than the largest
interpulse giant pulse. Conceivably, the largest pulses seen at
0.43 and 8.8 GHz are statistical flukes. The extensive obser-
vations of Lundgren et al. (1995) at 0.8 GHz do not indicate the
presence of a gap between the brightest and typical giant pulses.

The joint statistics of timing phase residuals and pulse
amplitudes (expressed as S/N) are shown in Figures 4 and 5
for the main pulse and interpulse separately. At the lower
frequency (0.43 GHz), the main pulse phase residuals show a
skewed distribution toward larger phases. At 8.8 GHz, the
distribution of phase residuals in the interpulse is much
broader than in the main pulse and in either component at
0.43 GHz. This trend is consistent with the appearance of the
average profiles in Figure 1. At 8.8 GHz, the giant interpulses
showing the most negative phase residuals tend to be weaker
than the average. Otherwise, there is no evidence for a strong
relationship between amplitude and phase residual.

5. SCINTILLATIONS AND SPECTRAL FLUCTUATIONS

From the discussion in x 2.2, we estimate that the scintil-
lation bandwidth will range from about 2 kHz at 0.43 GHz to
about 1 GHz at 8.8 GHz if we assume a scaling ��d / �4:4.
Previous work also suggests that at any epoch the actual
scintillation bandwidth could vary by a factor of a few about
these values. Such variations are due to the stochastic nature
of the process but also are caused by refractive modification of
the diffraction parameters (e.g., Rickett 1990). At our lowest
frequency, 0.43 GHz, the DISS bandwidth is about 1/10 the
channel bandwidth (see Table 1). Thus, the brightest features
in the frequency-time data are expected to be diminished by

the smoothing implied by the spectrometer resolution. At our
highest frequency, 8.8 GHz, the predicted DISS bandwidth is
a factor of 8 smaller than the center frequency, signifying that
scintillations are in the transition regime between strong and
weak scattering. In the transition regime, we expect deep
modulations as in the strong scattering regime, but with dif-
ferent statistics, and, according to our estimate, they will be
highly correlated across our 100 MHz bandwidth.
Of course, our predictions for DISS bandwidth require

some caveats. First, our data were obtained over a 0.4 yr
period over which time the scattering strength undoubtedly
varied, probably yielding an implied pulse-broadening time at
0.43 GHz different from the value we have assumed (100 �s).
Second, the scaling with frequency of the DISS quantities may
depart from that which has been identified along other lines of
sight (LOSs) in the ISM. The scaling with the 4.4 exponent
has been established for pulsars with small dispersion mea-
sures (DMs), while a few objects show a weaker scaling as �4.
Recent work on high-DM pulsars (Löhmer et al. 2001; Bhat
et al. 2003) indicates that the pulse-broadening time may vary
as weakly as ��3 (and the scintillation bandwidth thus as �3).
However, it is also clear from Bhat et al. (2003) that empirical
determinations of the exponent are sensitive to assumptions
about the form of the pulse-broadening function fitted to the
data and how it interacts with the assumed intrinsic pulse
shape of the pulsar. Nonetheless, despite these uncertainties,
evidence suggests that the pulse broadening from the Crab
pulsar not only is highly variable but often exceeds the pre-
dictions based on lower frequencies using either of the strong
scaling laws, ��d / �4 or �4.4. Possible interpretations in-
clude contributions from scattering within the pulsar magne-
tosphere (Hankins & Moffett 1998) or from scattering regions
within the Crab Nebula that are bounded spatially (Cordes &
Lazio 2001). Spatially bounded scattering regions can gener-
ate scattering times that scale with frequency differently than
with an exponent of 4 or 4.4.

Fig. 4.—Scatter plots of S/N and pulse phase for 0.43 MHz for the inter-
pulse (IP0) and main pulse (MP). The mean main pulse phase is defined to
be zero.

Fig. 5.—Scatter plots of S/N and pulse phase residual for 8.8 GHz for the
interpulse (IP) and main pulse (MP).
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Fig. 6.—Plot of intensity against time and frequency, showing a single
dispersed pulse as it arrives at different frequencies centered on 0.43 GHz. The
right panel shows the pulse amplitude vs. frequency, while the bottom panel
shows the pulse shape with and without compensating for dispersion delays.
The sharp pulse at about 10 ms is the dedispersed pulse, while the noiselike
trace extending over most of the time axis is the dispersed pulse (multiplied by
10). This pulse is the largest in 1 hr of data and has S=N �1:1 ; 104 and a
pulse peak that is 130 times the flux density of the Crab Nebula, or �155 kJy.
Note that the segments at either end of the bandpass have arrival time var-
iations with frequency that are opposite to those seen at most frequencies; this
is caused by aliasing of the signal. [See the electronic edition of the Journal
for a color version of this figure.]

Fig. 7.—Same as Fig. 6, but for a single pulse at 1.475 GHz. This pulse is
the largest in 1 hr of data and has S=N �225 and a pulse peak that is 1.2 times
the mean system noise, or �1.03 kJy. Note that individual scintles in the
spectrum reach 14 times Ssys, or 4.1 kJy. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 8.—Same as Fig. 6, but for a single pulse at 2.33 GHz. This pulse is
the largest in 1 hr of data and has S=N �161, a pulse peak that is 1.1Ssys, and a
scintillation peak �12Ssys. At this frequency the telescope beam resolves the
Crab Nebula, so the peak flux densities are �86 and �936 Jy in the dedis-
persed pulse and spectrum, respectively. [See the electronic edition of the
Journal for a color version of this figure.]

Fig. 9.—Same as Fig. 6, but for a single pulse at 2.85 GHz. This pulse is
the largest in 1 hr of data and has S=N �111, a pulse peak that is 1.2Ssys, and a
scintillation peak �4.5Ssys. At this frequency the telescope beam resolves the
Crab Nebula, so the peak flux densities are �89 and �333 Jy in the dedis-
persed pulse and spectrum, respectively. [See the electronic edition of the
Journal for a color version of this figure.]



In Figures 6–10 we show plots of the pulsed flux for single
giant pulses in the frequency-time plane, the pulse shape
obtained by summing over frequency both with and without
compensation for dispersion delays, and the spectrum of the
pulse.

At 0.43 GHz, the pulse is easily detected even without
dedispersion as a result of the high S/N. Structure in the
spectrum is quite spiky and is associated with individual
scintles caused by DISS. This is so, in spite of the fact that the
DISS bandwidth is substantially smaller than the channel
bandwidth, because the spacing between scintles is quite
large. DISS in the strong scattering regime is exponentially
distributed, with an ensemble average mean modulation of
unity. Consistent with the statistics is the estimate that the
number of strong scintles within a bandwidth B is

N� � 1þ 0:2B=��d: ð5Þ

As can be seen in the right panel of Figure 6, the minimum
spectral values away from the bandpass edges are well offset
from zero, signifying that the overall modulation is less than
the 100% expected from exponential DISS statistics, consis-
tent with the smoothing of scintles that occurs in the process
of channelizing the data.

By comparison, plots of giant pulses at 1.5 and 2.4 GHz
(Figs. 7 and 8) show minimum spectral values nearly equal to
zero flux density, consistent with the larger, nearly resolved or
resolved scintillation structure expected at those frequencies.
At 2.85 GHz, the minimum spectral values are well above
zero, signifying that the DISS bandwidth is large enough
that only one or two scintles are expected across the band.

At 8.8 GHz (Fig. 10), the modulation of the flux across
the bandpass has a much different character, as expected if
��d 3B, where B ¼ 100 MHz.

5.1. Scintillation Bandwidths

We estimate the scintillation bandwidth by calculating the in-
tensity autocorrelation function, A(	�) ¼ hI(t; �)I(t; � þ 	�)i,
for the spectrum of each giant pulse and summing over giant
pulses. For this analysis, we used giant pulses with S=N > 20
in the dedispersed pulse. Scintillation structure is unresolved at
frequencies below 2 GHz and is comparable to or larger than
our receiver bandpass at frequencies larger than 4 GHz. Results
are shown in Table 3 along with scintillation timescales, dis-
cussed in the next section, and the number of giant pulses used
to estimate the parameters.

5.2. Scintillation Timescale

The scintillation timescale is the time for features in the
diffraction pattern to transport across the LOS, combined with
any reorganization of the diffraction pattern itself. These two
contributions are determined by the velocities of the source
and observer and any bulk motion of the intervening material,
which change the sampling geometry of the diffraction pat-
tern, combined with random velocities in the medium. Tra-
ditionally the scintillation timescale is calculated as the e�1

width along the time-lag axis of the two-dimensional inten-
sity correlation function, C(	�; �) ¼ hI(t; �)I(t þ �; � þ 	�)i.
For strong pulsars with steady pulse emission and scintillation
timescales of minutes or longer, C(	�; �) can be calculated on
a uniform grid of 	� and � . However, for the Crab pulsar, the
giant pulses allow only sporadic sampling along the time-lag
axis. At most of our observing frequencies, it is difficult to
establish values for �td either because the DISS frequency
structure is unresolved (e.g., at 0.43 GHz) or because we
cannot find enough close pairs of giant pulses having adequate
S/N to estimate reliably the correlation coefficient of the
spectra. However, at 1.475 and 2.33 GHz, detectable pulses
allow us to estimate �td.
Figure 11 shows spectra for a close pair of high-S/N pulses

at 1.475 GHz. While some of the features in the spectra align,
it is clear that the frequency structure has decorrelated sig-
nificantly. The correlation coefficient is only 0.46. If scintil-
lations were the only source of frequency structure, this would
imply an exceedingly short decorrelation time. However,
some of the frequency structure is associated with the intrinsic
noise of the pulsar signal. (Little structure is associated with
additive radiometer noise as a result of the high S/N of 66 and
82 for the dedispersed pulses.) The intrinsic frequency struc-
ture has a frequency scale ��i � W�1

A , where WA is the
characteristic pulse width. With WA � 100 �s, the intrinsic
structure is expected to show ��i � 10 kHz, much narrower

Fig. 10.—Plot of intensity against time and frequency, showing a single
dispersed pulse as it arrives at different frequencies centered on 8.8 GHz. The
right panel shows the pulse amplitude vs. frequency, while the bottom panel
shows the pulse shape with and without compensating for dispersion delays.
This pulse is the largest in 1 hr of data and has S=N �1:3 ;103, a pulse peak
that is �40Ssys, and a spectral peak �100Ssys. At this frequency the telescope
beam resolves the Crab Nebula. The peak flux densities are �880 and
�2:2 ; 103 Jy in the dedispersed pulse and spectrum, respectively. [See the
electronic edition of the Journal for a color version of this figure.]

TABLE 3

Scintillation Parameters

�

(GHz)

��d
(MHz)

�td
(s) NGP

0.43.......................................... <0.024 . . . 100

1.48.......................................... <0.8 25 � 5 180

2.33.......................................... 2.3 � 0.4 35 � 5 170

2.85.......................................... 7 � 2 . . . 60

3.50.......................................... 15 � 10 . . . 15
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than the channel bandwidth of 0.78 MHz. However, sub-
structure within the pulse envelope comprising short-duration
pulses of duration 1 �s or less would increase this scale
to 1 MHz or more. Hankins et al. (2003) have identified
substructure in giant pulses on these short timescales. We
conclude that the intrinsic pulse structure is responsible pri-
marily for the fast decorrelation between the pair of pulses.
This conclusion is corroborated by a statistical study of a large
number of pulse pairs, as follows.

Figure 12 shows the correlation coefficient C(0, �) between
a large number of pulse pairs plotted against time separation,
� . We have used only those pulses with S=N > 20 in the
dedispersed pulse in order to reduce scatter in the correlation
estimates from additive noise. The roll-off of the correlation
coefficient at larger lags represents a correlation time, �td �
25 � 5 s at 1.475 MHz. From the Appendix, we expect the
asymptotic correlation coefficient (at small lags) to be 1=(2þ
d2p), in the mean, under the scintillated, amplitude-modulated,
polarized shot-noise (SAMPSN) model and where dp is the
degree of polarization (�1). This level is consistent with the
level of correlation seen at lags � P 1 s if the pulses are
typically highly polarized. Consistency of giant-pulse spectral
statistics with SAMPSN implies that, typically, pulses at
1.475 GHz are composed of a large number (k5) of individual
shot pulses in order that the intrinsic fluctuations are Gaussian
and thus contribute to the rapid decorrelation seen (see the
Appendix).

A similar analysis for 2.33 GHz data yields a somewhat
longer timescale (Table 3). At still higher frequencies, there
are insufficient pairs of strong pulses to establish the corre-

lation time, although we are able to estimate the scintillation
bandwidth up to 3.5 GHz. At 8.8 GHz, where the scintillation
bandwidth is larger than the observation bandwidth, we ex-
pect spectral modulations to derive solely from amplitude-
modulated noise statistics (combined with radiometer noise),
implying that the modulation index mI ¼ �I=I ¼ ½(1þ
d2p)=2�1=2 (after correction for any contribution from radiom-
eter noise, which is negligible for the largest pulses). For the
pulse displayed in Figure 10, the modulation index is only
0.29. A low modulation index suggests that the giant pulse of
that figure is dominated by a single shot pulse with duration
comparable to the reciprocal bandwidth, �10 ns, or that the
giant pulse comprises a cluster of shot pulses with a similar
width. Such results are not inconsistent with those of Hankins
et al. (2003), who found nanosecond structure within indi-
vidual giant pulses at 5 GHz.

5.3. Scintillation Speed

The effective speed with which the intensity pattern caused
by multipath propagation crosses the LOS can be estimated
from the scintillation bandwidth and timescale. If we assume
that electron density fluctuations have a Kolmogorov spec-
trum and fill the LOS uniformly, the pattern speed would be
(CR98)

VISS;5=3;u ¼ AISS;5=3;u

ffiffiffiffiffiffiffiffiffiffiffiffi
D��d

p

��td
; ð6Þ

with AISS;5=3;u ¼ 2:53 ; 104 km s�1 for � in GHz, �td in s, ��d
in MHz, and D in kpc. We evaluate VISS;5=3;u at 1.475 GHz by
using the decorrelation time estimated in the previous section
but by scaling the scintillation bandwidth from 2.33 GHz,

Fig. 11.—Plot showing spectra for two giant pulses spaced by �t ¼ 0:44 s
and having S/N of 66 and 82 (defined as peak to rms in the dedispersed time
series) for the curves with the thin and thick lines, respectively. The largest
spectral peaks in the stronger pulse have S=N � 100. Additive radiometer
noise therefore contributes very little to the spectral structure shown here.
Features in the spectra for the two pulses align in frequency but have very
different amplitudes. The correlation coefficient between the two spectra is
0.46. As discussed in the Appendix, some of the frequency structure is caused
by DISS, while other structure is associated with the intrinsic noise properties
of the pulse. [See the electronic edition of the Journal for a color version of
this figure.]

Fig. 12.—Plot of the correlation coefficient C(	� ¼ 0; �) vs. time lag �
between spectra of giant pulses at 1.475 GHz, where � is the time separation
between pairs of giant pulses. At this frequency, the number of close pairs is
sufficient to establish that frequency structure in the spectra is correlated over
short timescales, with an e�1 timescale �25 � 5 s. The smallest lag occurs at
one of the quantized values determined by the spacing of the main pulse and
interpulse components. The line represents the mean correlation function
expected for scintillating amplitude-modulated shot noise with a correlation
time of 25 s.
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since it is unresolved at 1.475 GHz. Scaling from 2.33 GHz
using ��d / �4:4, we obtain ��d � 0:31 � 0:05 MHz. Using
D ¼ 2 kpc for the distance to the Crab Nebula, the scintilla-
tion speed is VISS;5=3;u � 540 km s�1. Under the assumptions
leading to this estimate, VISS;5=3;u should be approximately
equal to the transverse pulsar speed, jVp?j � 171 � 28 km
s�1, from a Hubble Space Telescope (HST ) proper-motion
measurement (Caraveo & Mignani 1999); instead, there is a
factor of 3 discrepancy.

No element in the scattering geometry (pulsar, medium, or
source) has a velocity as large as VISS;5=3;u, and it is reasonable
to conclude that the scattering medium is in fact not uniform
along the LOS and in particular receives significant con-
tributions from the Crab Nebula’s filaments. The filaments are
dense (�103 cm�3) and have characteristic scales �1016 cm
(e.g., Sankrit et al. 1998), so that significant phase perturbations
are expected at our frequencies of observation. First, we ignore
the effects of the general ISM and consider filamentary scat-
tering screens at a distance Ds � 1 pc from the pulsar. Then,
using equations (13)–(18) of CR98 to correct for the geometric
leveraging effects of screen(s) near the pulsar, we obtain

VISS ¼ WC

2 D� Dsð Þ
Ds

� �1=2
VISS;5=3;u

� 3:4 ;104
D=Ds

2000

� �
km s�1; ð7Þ

where we have used WC � 1:05 (see Fig. 1 of CR98).
For a thin screen, the pattern speed is related physically to

the velocities of the pulsar, observer, and medium as (CR98,
eq. [4]) VISS ¼ (D=Ds)jVeA;?j, or

VISS ¼ D

Ds

� 1

� �
Vp? þ Vobs? � D

Ds

� �
Vm?

����
����; ð8Þ

where Vp?, Vobs?, and Vm? are the transverse velocities of the
pulsar, observer, and medium, respectively, relative to the
local standard of rest. The pulsar and medium’s velocities are
‘‘boosted’’ by the factor D=Ds � 2000, so we may ignore the
Earth’s motion in the following.

Filament velocities along the LOS are P1500 km s�1 (Fesen
& Kirshner 1982). To estimate the effective transverse velocity,
we consider the symmetry of filament motions and the change
in geometry since the supernova explosion. Figure 13 shows
the geometry under the assumption of purely radial motion by
wind material (which may represent a pre-supernova wind or
blast wave material). The present-day transverse velocity of the
pulsar implies transverse wind/filament velocities Vw? � Vp?
(for filament segments along the present-day LOS to the pul-
sar) if filaments originally had strictly radial velocities (relative
to the explosion center) and if there was no pre-supernova
wind. In this case, �Vpw? � Vp? � Vw? vanishes and the ef-
fective transverse speed is merely the pulsar speed. (Note that
we identify Vm? in eq. [8] with Vw?.)

However, nonradial filament motions are expected because
the pulsar’s progenitor star was rotating. Even with fairly slow
rotation, nonradial filament speeds of a few kilometers per
second are boosted by the factor Ds/D to several thousand
kilometers per second. Faster rotation yields accordingly faster
transverse filament speeds today. Filaments may also have
arisen from material in or deflected by a circumstellar disk
around the progenitor (Fesen et al. 1992), again yielding large
nonradial filament speeds today. Alternatively, the material

responsible for scattering in the Crab Nebula could derive from
the presupernova wind that occurred for a time � prior to the
explosion, as indicated in Figure 13. In any case, we assume
that �Vpw? is nonnegligible. It is not clear if nonradial fila-
mentary motions have been detected directly or not in the Crab
Nebula (MacAlpine et al. 1994; Schaller & Fesen 2002). How-
ever, indirect constraints (Trimble 1968; see also discussion
in Backer et al. 2000) based on filament motions with respect to
the explosion center allow nonradial motions �70 km s�1.
By equating equations (7) and (8), we derive a constraint

�Vpw? ¼
ffiffiffi
2

p
WCVISS;5=3;u

Ds

D

� �1=2

� 18D1=2
s km s�1; ð9Þ

where Ds is in pc in the approximate equality. For pulsar
filament distances Ds ¼ 1 pc, transverse filament speeds rel-
ative to the pulsar �18 km s�1 are needed. We conclude that
filaments that affect the pulsar’s radio emission possess
modest nonradial motions relative to the explosion center.
Alternatively, we can consider the combined effects of fil-

aments in the Crab Nebula and the general ISM. We relate VISS

to VISS;5=3;u using equations (10)–(18) of CR98 for a uniform
ISM combined with a thin screen and find an expression
analogous to equation (9),

�Vpw? � 3

8

� �3=5

WCVISS;5=3;u
SMISM

SMCN

� �3=5

; ð10Þ

where SMISM and SMCN are the scattering measures for the
general ISM and the Crab Nebula, respectively, and we have
assumed that Ds=Dð ÞSMISM 3SMCN but that SMCN > SMISM.
The scattering measure is the LOS integral of C2

n , the spectral
coefficient for electron density irregularities (e.g., Cordes &

Fig. 13.—Geometry showing the LOS to the present-day location of the
pulsar, which has moved a distance Vpt over the time t since the supernova
explosion, while the present-day location of stellar wind material along the LOS
is at a location Vw(t þ �), taking into account an additional time � prior to the
supernova explosion during which the progenitor wind was active. Under the
assumption of radial motion of the wind, the wind material (or blast wave ma-
terial condensed into filaments) has a transverse speed Vw? ¼ Vp?=(1þ �=t).
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Lazio 2002). Using values inferred for the two scattering
measures (from, e.g., the electron density model, NE2001, of
Cordes & Lazio 2002 and from pulse broadening of the Crab
Nebula), equation (10) yields an estimate�Vpw? � 20 km s�1,
similar to that using equation (9).

6. DETECTABILITY OF GIANT PULSES FROM
EXTRAGALACTIC CRAB-LIKE PULSARS

The pulses we have identified are sufficiently strong to be
detected from other galaxies. If we were to place the Crab
pulsar in another galaxy, the inverse square law would lessen
pulse amplitudes, but so too would it decrease the contribution
to the system temperature from the Crab Nebula. Consider a
Crab-like pulsar in a Crab Nebula–like nebula at distance
DNeb. The system noise level for this object is (assuming it to
be unresolved)

Ssys ¼ Ssys 0 þ
DCN

DNeb

� �2

SCN: ð11Þ

The nebular contribution to the system noise becomes less
than a fraction � of the nominal system noise if Ssys < (1þ
�)Ssys0 or

DNeb > DCN

SCN

�Ssys0

� �1=2

: ð12Þ

Table 4 shows values of DNeb that satisfy the inequality
given by equation (12) for the Arecibo telescope, the Green
Bank Telescope (GBT), the VLA (and the extended VLA), the
Allen Telescope Array, LOFAR, and the SKA. In all cases, we
assume that the nebula is unresolved. For the VLA, the ATA,
LOFAR, and some designs for the SKA, this assumption will
break down. For � ¼ 1 (equal contributions to Ssys from the
nebula and from receiver and background noise), the nebula is
unimportant for objects in the Magellanic Clouds for either of
the existing telescopes. However, for the SKA, nebular noise
is dominant for such objects. For the largest nearby spiral
galaxies (M31 and M33), however, nebular noise is negligible
for all existing and contemplated telescopes.

The optimal frequency can also be determined. If we as-
sume that the spectrum is the same as that of the Crab pul-

sar, lower frequencies are favored unless propagation effects
smear the pulse. For the Crab pulsar itself, 0.43 GHz is ap-
proximately the lowest frequency at which propagation effects
are sufficiently small to allow detection of many giant pulses.
For pulsars in M31 or M33, the dispersion measures expected
given their respective Galactic latitudes and inclinations are
approximately equal to the DM of the Crab pulsar. Similarly,
the scattering is expected to be approximately the same.
Consequently, we can use our 0.43 GHz results on the Crab
pulsar to estimate the S/N expected for extragalactic emitters
of giant pulses.

The strongest pulse observed at 0.43 GHz has S=N max ¼
1:1 ;104 even with the system noise dominated by the Crab
Nebula. For objects in M31 (D � 0:8 Mpc) or further, the
system noise is essentially unaffected by the nebular contri-
bution. If the Crab pulsar were not embedded in its nebula, the
S/N of our largest pulse would have been SCN=Ssys 0 � 300
times larger, or 3:3 ;106. For this particular pulse, the maxi-
mum distance it could be detected at a specified S/N, (S/N)det,
is

D max ¼ DCN

(S=N) max

(S=N) det
1þ SCN

Ssys 0

� �
� SCN

Ssys 0

� �1=2
ð13Þ

� 1:6 Mpc
(S=N) det

5

� ��1=2

: ð14Þ

The largest 0.43 GHz pulse would thus be detectable from
M33 (D � 0:93 Mpc) using the Arecibo telescope and our
current spectrometer at S=N � 15. Using the GBT to observe
M31 (since M31 is outside the declination range of Arecibo),
our largest pulse would have S=N � 4:8. Thus, a convincing
detection of giant pulses from M31 with the GBT would re-
quire longer dwell times than 1 hr in order that yet stronger
pulses could be detected. Detection of giant pulses is discussed
in general in Cordes & McLaughlin (2003) and in particular
from nearby galaxies in McLaughlin & Cordes (2003).

LOFAR would allow detection of a giant pulse at 0.2 GHz
at the 5 � level out to a distance of 1.5 Mpc for our largest
pulse at 0.43 GHz, scaled to 0.2 GHz. The SKA would yield
D max � 5:9 Mpc for a 5 � detection of our largest pulse at
0.43 GHz. There are approximately 16 galaxies (of M33’s size
or larger) within this distance. If pulsars like the Crab pulsar
persist in emitting giant pulses for a time of order the current
age of the Crab (�103 yr) and if the birth rate of pulsars scales
as the ratio of a galaxy’s mass to the Milky Way’s mass,
Ṅpsr � (10�2 yr�1)Mgal=MMW, we expect that there should be
a few to about 20 such pulsars in each of these galaxies. Of
course, giant pulses are also emitted by millisecond pulsars
whose magnetic fields at their light cylinders are comparable
to that of the Crab pulsar (Cognard et al. 1996; Romani &
Johnston 2001; Johnston & Romani 2002), so the numbers of
detectable objects may be larger. At present, however, the
Crab pulsar emits the most luminous giant pulses of any of
these objects and best serves as a prototype for detectable
objects from other galaxies.

7. SUMMARY AND CONCLUSIONS

We have shown that giant pulses from the Crab pulsar are
restricted to only two of the pulse components seen in long-
term average profiles. These components are the same as those
detected at optical, X-ray, and gamma-ray energies, suggest-
ing that the mechanism for giant-pulse emission occurs high in

TABLE 4

Maximum Distance for Importance of Nebular Noise

Telescope

�

(GHz)

G

(K Jy�1)

Tsys 0
(K)

��1/2DNeb

(kpc)

Arecibo..................... 0.43 15 60 30

Arecibo..................... 1.4 11 40 30

GBT.......................... 1.4 3 30 20

VLA ......................... 0.33 2 165 <5a

VLA ......................... 1.4 2.8 35 <2.3a

ATA.......................... 1.4 2.5 50 13

LOFAR..................... 0.2 34b 476 20

SKA.......................... 1.4 200c 50 120

a The VLA numbers are for the D configuration, which yields the largest
contribution to the system temperature from the Crab Nebula.

b The gain for LOFAR is that for an inner core of antennas that represents
75% of the total collecting area.

c The full gain of the SKA is used. In actuality, only a fraction of this gain
is likely to be available for time-domain studies of pulsars.
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the magnetosphere, where these emissions are expected to
originate. The alignment of the radio components with high-
energy components is good to at least 0.05 cycles, or about
1.7 ms, indicating that the emission regions are colocated in
altitude to within this light-travel distance. Apart from these
constraints on relative localizations, our data do not provide
any independent absolute constraints on the location of
emission regions.

The occurrence of giant pulses is strongly frequency de-
pendent. We find that giant pulses ‘‘follow’’ the interpulse in
pulse phase as it shifts to earlier phases above �4 GHz. We
therefore conclude that the same physical region produces
both the low-frequency and the shifted, high-frequency
interpulse. While the main pulse is dominant from 0.43 to
5.5 GHz, in both the average profiles and the number of giant
pulses, at 8.8 GHz the interpulse is dominant. We have no
clear interpretation of this trend other than the usual suspect
processes: beaming and spectral dependence. It is our aim to
analyze the profile shapes and giant-pulse occurrence histo-
grams along with multiwavelength pulse profiles extending to
greater than 100 MeV gamma rays in order to better constrain
the roles of beaming and coherence mechanisms. This work
will be deferred to another paper.

Epoch dependence of the giant-pulse rate derives from
scintillation effects that appear to be strongly influenced by

plasma in the Crab Nebula. Backer et al. (2000) demonstrate
that multiple images occur as a result of the passage across the
LOS of refracting plasma. We establish the scintillation time-
scale that is sufficiently short (�25 s at 1.48 GHz) that plasma
relatively near the pulsar (i.e., inside the Crab Nebula) is re-
quired. Our analysis on giant-pulse amplitudes suggests that, to
the extent that the Crab pulsar serves as a prototype of giant-
pulse emission, giant pulses from extragalactic pulsars should
be detectable out to large distances �1.6 Mpc at Arecibo with
existing back-end spectrometers.
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APPENDIX

FREQUENCY STRUCTURE FROM SCINTILLATING AMPLITUDE-MODULATED, POLARIZED SHOT NOISE

Frequency structure in the radio spectrum of a single pulse is caused by both the statistical properties of the pulsed radiation at
the time of emission and the interference effects of multipath propagation. A model that suffices to describe many aspects of pulsar
radiation is the amplitude-modulated noise model (Rickett 1975) augmented to include polarized shot-noise statistics (Cordes
1976): the amplitude-modulated, polarized shot-noise (AMPSN) model. Frequency structure of single pulses was discussed by
Cordes & Hankins (1979) in terms of the AMPSN model for B0950+08. Here we amplify their treatment to show the interplay of
intrinsic and interference effects on the frequency structure. We thus develop the SAMPSN model.

Recent results (Hankins et al. 2003) imply that the Crab pulsar’s giant pulses are indeed comprised of individual shot nano-
pulses, in conformance with the AMPSN model. Let �e(t) be the complex, narrowband electric field emitted at the pulsar and
selected by the receiving system and mixed to baseband (see, e.g., Rickett 1975; Cordes 1976). We consider, for now, just a single
polarization channel. For an individual giant pulse, we describe �e as an ensemble of Ns shot pulses having individual amplitudes,
aj, but (for simplicity) identical shapes, �(t):

�e(t) ¼
XNs

j¼1

aj� t � tj
� �

: ðA1Þ

The width of �(t) is the reciprocal of the receiver bandwidth used to form �(t). The corresponding shot pulse at the original radio
frequency has width ���1

RF �0:1 2 ns for our data. Each shot pulse reaches the observer along Np paths as a result of multipath
propagation between the pulsar and Earth. Each path has an associated time delay 	tp and amplitude gk. The set of paths changes on
a timescale that we assume is much longer than a single spin period. In addition, all propagation quantities (Np, 	tp, and gk) are
strong functions of frequency because the refractive index is that for a cold plasma. Using the total propagation time, D=cþ 	tp, the
received electric field is

�(t) /
XNs

j¼1

aj
XNp

k¼1

gk� t � tj � D=c� 	tpk
� �

: ðA2Þ

Here we have ignored delays from dispersive propagation through the ISM because they are deterministic and correctable.
Denoting a Fourier transform with a tilde and using the shift theorem, we find that the instantaneous spectrum is

I(�) � �̃(�)j j2/ �̃(�)
�� ��2A(�)G(�); ðA3Þ
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where � is the baseband frequency and

A(�) ¼
XNs

j¼1

aje
�2�i�tj

�����
�����
2

; ðA4Þ

G(�) ¼
XNp

k¼1

gje
�2�i�	tpk

�����
�����
2

: ðA5Þ

In the limit of large Ns and Np, we expect Gaussian statistics for the sums in the equations for A and G. Consequently, A and G
will both have exponential statistics, for which hA2i=hAi2 ¼ hG2i=hGi2 ¼ 2. As is well known in the scintillation literature (e.g.,
Rickett 1990), scintillation fluctuations in the strong scattering regime have exponential statistics for a point source if there is no
bandwidth smoothing. Note that our formulation of amplitude-modulated noise differs from that of Rickett (1975) and Cordes
(1976), who model the emitted signal as �e(t) ¼ a(t)m(t), where a(t) is an envelope function that modulates the noise process m(t).
Instead, the envelope function is absorbed into the particular distribution of emission times, tj.

To isolate the frequency structure of A(�) from G(�), one must take into account their characteristic timescales. It is reasonable to
assume that the pattern of shot pulses in �(t) does not repeat. On a physical basis, such shot pulses may result from the sweep of
relativistic beams through the LOS, or they may represent bona fide temporal modulations. Either way, on timescales kP/2� (P is
the pulsar period), we expect the relativistic plasma flow in the pulsar magnetosphere to have reorganized completely. The
scintillation pattern, on the other hand, is sustained. It is usually true for pulsars that if the scintillation frequency structure is
resolved by the spectrometer, it persists over timescales of seconds to hours, depending on the pulsar and frequency. For heavily
scattered pulsars, the frequency structure is too fine to resolve and the scintillation time is accordingly short. Thus, for most pulsars,
the frequency structure in G(�), if resolved, is characterized by averaging I(�) over many individual pulses and then performing a
correlation analysis to determine the characteristic bandwidth.

For the Crab pulsar, which emits giant pulses only sporadically, it is more difficult to separate A(�) from G(�) and also estimate
the scintillation timescale. For an individual giant pulse, A(�) and G(�) both contribute to the observed frequency structure, with
similar statistics. However, the characteristic width of G(�) scales strongly with frequency, as discussed above, while A(�) is
associated with the temporal widths of the giant pulses and may be less frequency dependent.

A1. STATISTICS FOR A SINGLE POLARIZATION CHANNEL

Some useful statistics of the SAMPSN model are as follows. The modulation index of the spectrum I(�) is �I=hIi ¼ 3 when A
and G both have exponential statistics. For a pair of pulses for which A(�) has decorrelated completely while G(�) is perfectly
correlated, we expect the cross-correlation to be 
12 ¼ h	I1(�)	I2(�)i=�2

I ¼ 1
3
. The correlation coefficient will decline to zero on a

time lag between the pair of pulses determined by the characteristic scintillation time, defined as the lag at which the correlation
coefficient is e�1 of its maximum value of 1

3
.

The autocorrelation function (ACF) of the spectra for single pulses can be written in the form

R(	�) ¼ hI(�)I(� þ 	�)i ¼ R
�̃j j2 (	�)RA(	�)RG(	�): ðA6Þ

Rj�̃j2 (	�) is a broad function that is the ACF of the bandpass filter used to form �(t), while RA and RG can be much narrower and
are of the form RX (	�) ¼ hX i2½1þ m2

X
X (	�)�, where mX ¼ 1 for exponential statistics and 
X (0) ¼ 1. The intensity correlation
function,

R(	�) ¼ hGi2hAi2Rj�̃j2 (	�) 1þ m2
A
A(	�)

	 

1þ m2

G
G(	�)
	 


; ðA7Þ

will typically have a narrower component and a broader component associated with 
A and 
G, respectively, or vice versa. The
total squared modulation index is m2 ¼ �2

I =hIi
2 ¼ R(0)=hGi2hAi2Rj�̃j2 (0)� 1 ¼ 1þ m2

A þ m2
G ¼ 3. If the data are channelized with

channel bandwidths larger than the characteristic bandwidth of A or G, the modulation index will be reduced.
Some giant pulses comprise a small number of shot pulses, Ns � few, in which case A(�) will have nonexponential statistics. For

example, for two equal-amplitude shot pulses separated by �t12, A(�) / (1� cos 2���t12). If ��t12 31, we would have
mA ¼ 2�1=2 and the spectral shape would be oscillatory. In the limit of a single shot pulse (or a cluster of shot pulses contained
within an interval smaller than the reciprocal bandwidth), the modulation across the bandwidth would derive solely from G, the
scintillation factor.

A2. STATISTICS FOR THE TOTAL INTENSITY

When two polarization channels are summed to yield the total intensity, as in the analysis of this paper, the statistics are altered.
Scintillations are identical for the two polarizations, while the frequency structure from the AMPSN will differ according to the
degree of polarization. If the signal is 100% polarized, the total intensity will have the same statistics as that of a single polarization
channel containing the signal, while for an unpolarized signal, the AMPSN spectral fluctuations will be reduced by

ffiffiffi
2

p
.
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Letting dp equal the total degree of polarization (linear and circular), it may be shown (Cordes 1976) that the intensity
modulation index is now (in the limit of Gaussian statistics for a single polarization channel)

m2
I ¼ m2

G þ 1þ m2
G

� �
1þ d2p

� �
=2mG ¼ 1 ¼ 2þ d2p ; ðA8Þ

where the last equality holds for mG ¼ 1. Now, when the total intensity spectra of pulse pairs are cross-correlated, we have


12 ¼ 	I1(�)	I2(�)h i=�2
I ¼

m2
G

m2
G þ 1þ m2

G

� �
1þ d2p

� �
=2

mG ¼ 1 ¼ 1

2þ d2p
: ðA9Þ
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